[llvm-commits] [llvm] r43218 - in /llvm/trunk/docs/tutorial: LangImpl1.html LangImpl2.html index.html

Chris Lattner sabre at nondot.org
Sun Oct 21 23:34:16 PDT 2007


Author: lattner
Date: Mon Oct 22 01:34:15 2007
New Revision: 43218

URL: http://llvm.org/viewvc/llvm-project?rev=43218&view=rev
Log:
Check in part 2: parser and ast.

Added:
    llvm/trunk/docs/tutorial/LangImpl2.html
Modified:
    llvm/trunk/docs/tutorial/LangImpl1.html
    llvm/trunk/docs/tutorial/index.html

Modified: llvm/trunk/docs/tutorial/LangImpl1.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl1.html?rev=43218&r1=43217&r2=43218&view=diff

==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl1.html (original)
+++ llvm/trunk/docs/tutorial/LangImpl1.html Mon Oct 22 01:34:15 2007
@@ -56,7 +56,7 @@
 <pre>
 # Compute the x'th fibonacci number.
 def fib(x)
-  if x < 3 then
+  if x < 3 then
     1
   else
     fib(x-1)+fib(x-2)
@@ -241,8 +241,8 @@
 
 <p>With this, we have the complete lexer for the basic Kaleidoscope language.
 Next we'll <a href="LangImpl2.html">build a simple parser that uses this to 
-build an Abstract Syntax Tree</a>.  If you prefer, you can jump to the <a
-href="index.html">main tutorial index page</a>.
+build an Abstract Syntax Tree</a>.  When we have that, we'll include a driver
+so that you can use the lexer and parser together.
 </p>
 
 </div>

Added: llvm/trunk/docs/tutorial/LangImpl2.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/LangImpl2.html?rev=43218&view=auto

==============================================================================
--- llvm/trunk/docs/tutorial/LangImpl2.html (added)
+++ llvm/trunk/docs/tutorial/LangImpl2.html Mon Oct 22 01:34:15 2007
@@ -0,0 +1,1177 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
+                      "http://www.w3.org/TR/html4/strict.dtd">
+
+<html>
+<head>
+  <title>Kaleidoscope: Implementing a Parser and AST</title>
+  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
+  <meta name="author" content="Chris Lattner">
+  <link rel="stylesheet" href="../llvm.css" type="text/css">
+</head>
+
+<body>
+
+<div class="doc_title">Kaleidoscope: Implementing a Parser and AST</div>
+
+<div class="doc_author">
+  <p>Written by <a href="mailto:sabre at nondot.org">Chris Lattner</a></p>
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="intro">Part 2 Introduction</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Welcome to part 2 of the "<a href="index.html">Implementing a language with
+LLVM</a>" tutorial.  This chapter shows you how to use the <a 
+href="LangImpl1.html">Lexer built in Chapter 1</a> to build a full <a
+href="http://en.wikipedia.org/wiki/Parsing">parser</a> for
+our Kaleidoscope language and build an <a 
+href="http://en.wikipedia.org/wiki/Abstract_syntax_tree">Abstract Syntax 
+Tree</a> (AST).</p>
+
+<p>The parser we will build uses a combination of <a 
+href="http://en.wikipedia.org/wiki/Recursive_descent_parser">Recursive Descent
+Parsing</a> and <a href=
+"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence 
+Parsing</a> to parse the Kaleidoscope language (the later for binary expression
+and the former for everything else).  Before we get to parsing though, lets talk
+about the output of the parser: the Abstract Syntax Tree.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="ast">The Abstract Syntax Tree (AST)</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>The AST for a program captures its behavior in a way that it is easy for
+later stages of the compiler (e.g. code generation) to interpret.  We basically
+want one object for each construct in the language, and the AST should closely
+model the language.  In Kaleidoscope, we have expressions, a prototype, and a
+function object.  We'll start with expressions first:</p>
+
+<div class="doc_code">
+<pre>
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+  virtual ~ExprAST() {}
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+  double Val;
+public:
+  NumberExprAST(double val) : Val(val) {}
+};
+</pre>
+</div>
+
+<p>The code above shows the definition of the base ExprAST class and one
+subclass which we use for numeric literals.  The important thing about this is
+that the NumberExprAST class captures the numeric value of the literal in the
+class, so that later phases of the compiler can know what it is.</p>
+
+<p>Right now we only create the AST,  so there are no useful accessor methods on
+them.  It would be very easy to add a virtual method to pretty print the code,
+for example.  Here are the other expression AST node definitions that we'll use
+in the basic form of the Kaleidoscope language.
+</p>
+
+<div class="doc_code">
+<pre>
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+  std::string Name;
+public:
+  VariableExprAST(const std::string &name) : Name(name) {}
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+  char Op;
+  ExprAST *LHS, *RHS;
+public:
+  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
+    : Op(op), LHS(lhs), RHS(rhs) {}
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+  std::string Callee;
+  std::vector<ExprAST*> Args;
+public:
+  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+    : Callee(callee), Args(args) {}
+};
+</pre>
+</div>
+
+<p>This is all (intentially) rather straight-forward: variables capture the
+variable name, binary operators capture their opcode (e.g. '+'), and calls
+capture a function name and list of argument expressions.  One thing that is 
+nice about our AST is that it captures the language features without talking
+about the syntax of the language.  Note that there is no discussion about 
+precedence of binary operators, lexical structure etc.</p>
+
+<p>For our basic language, these are all of the expression nodes we'll define.
+because it doesn't have conditional control flow, it isn't turing complete:
+we'll fix that in a later installment.  The two things we need next are a way
+to talk about the interface to a function, and a way to talk about functions
+themselves:</p>
+
+<div class="doc_code">
+<pre>
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+  std::string Name;
+  std::vector<std::string> Args;
+public:
+  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+    : Name(name), Args(args) {}
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+  PrototypeAST *Proto;
+  ExprAST *Body;
+public:
+  FunctionAST(PrototypeAST *proto, ExprAST *body)
+    : Proto(proto), Body(body) {}
+};
+</pre>
+</div>
+
+<p>In Kaleidoscope, functions are typed with just a count of their arguments.
+Since all values are double precision floating point, this fact doesn't need to
+be captured anywhere.  In a more aggressive and realistic language, the
+"ExprAST" class would probably have a type field.</p>
+
+<p>With this scaffolding, we can now talk about parsing expressions and function
+bodies in Kaleidoscope.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="parserbasics">Parser Basics</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Now that we have an AST to build, we need to define the parser code to build
+it.  The idea here is that we want to parse something like "x+y" (which is
+returned as three tokens by the lexer) into an AST that could be generated with
+calls like this:</p>
+
+<div class="doc_code">
+<pre>
+  ExprAST *X = new VariableExprAST("x");
+  ExprAST *Y = new VariableExprAST("y");
+  ExprAST *Result = new BinaryExprAST('+', X, Y);
+</pre>
+</div>
+
+<p>In order to do this, we'll start by defining some basic helper routines:</p>
+
+<div class="doc_code">
+<pre>
+/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+/// token the parser it looking at.  getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+  return CurTok = gettok();
+}
+</pre>
+</div>
+
+<p>
+This implements a simple token buffer around the lexer.  This allows 
+us to look one token ahead at what the lexer is returning.  Every function in
+our lexer will assume that CurTok is the current token that needs to be
+parsed.</p>
+
+<p>Again, we define
+these with global variables: it would be better design to wrap the entire parser
+in a class and use instance variables for these.
+</p>
+
+<div class="doc_code">
+<pre>
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+</pre>
+</div>
+
+<p>
+The <tt>Error</tt> routines are simple helper routines that our parser will use
+to handle errors.  The error recovery in our parser will not be the best and
+are not particular user-friendly, but it will be enough for our tutorial.  These
+routines make it easier to handle errors in routines that have various return
+types: they always return null.</p>
+
+<p>With these basic helper functions implemented, we can implement the first
+piece of our grammar: we'll start with numeric literals.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="parserprimexprs">Basic Expression
+ Parsing</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>We start with numeric literals, because they are the simplest to process.
+For each production in our grammar, we'll define a function which parses that
+production.  For numeric literals, we have:
+</p>
+
+<div class="doc_code">
+<pre>
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+  ExprAST *Result = new NumberExprAST(NumVal);
+  getNextToken(); // consume the number
+  return Result;
+}
+</pre>
+</div>
+
+<p>This routine is very simple: it expects to be called when the current token
+is a <tt>tok_number</tt> token.  It takes the current number value, creates 
+a <tt>NumberExprAST</tt> node, advances the lexer to the next token, then
+returns.</p>
+
+<p>There are some interesting aspects of this.  The most important one is that
+this routine eats all of the tokens that correspond to the production, and
+returns the lexer buffer with the next token (which is not part of the grammar
+production) ready to go.  This is a fairly standard way to go for recursive
+descent parsers.  For a better example, the parenthesis operator is defined like
+this:</p>
+
+<div class="doc_code">
+<pre>
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+  getNextToken();  // eat (.
+  ExprAST *V = ParseExpression();
+  if (!V) return 0;
+  
+  if (CurTok != ')')
+    return Error("expected ')'");
+  getNextToken();  // eat ).
+  return V;
+}
+</pre>
+</div>
+
+<p>This function illustrates a number of interesting things about the parser:
+1) it shows how we use the Error routines.  When called, this function expects
+that the current token is a '(' token, but after parsing the subexpression, it
+is possible that there is not a ')' waiting.  For example, if the user types in
+"(4 x" instead of "(4)", the parser should emit an error.  Because errors can
+occur, the parser needs a way to indicate that they happened: in our parser, we
+return null on an error.</p>
+
+<p>Another interesting aspect of this function is that it uses recursion by
+calling <tt>ParseExpression</tt> (we will soon see that ParseExpression can call
+<tt>ParseParenExpr</tt>).  This is powerful because it allows us to handle 
+recursive grammars, and keeps each production very simple.  Note that
+parenthesis do not cause construction of AST nodes themselves.  While we could
+do this, the most important role of parens are to guide the parser and provide
+grouping.  Once the parser constructs the AST, parens are not needed.</p>
+
+<p>The next simple production is for handling variable references and function
+calls:</p>
+
+<div class="doc_code">
+<pre>
+/// identifierexpr
+///   ::= identifer
+///   ::= identifer '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+  std::string IdName = IdentifierStr;
+  
+  getNextToken();  // eat identifer.
+  
+  if (CurTok != '(') // Simple variable ref.
+    return new VariableExprAST(IdName);
+  
+  // Call.
+  getNextToken();  // eat (
+  std::vector<ExprAST*> Args;
+  while (1) {
+    ExprAST *Arg = ParseExpression();
+    if (!Arg) return 0;
+    Args.push_back(Arg);
+    
+    if (CurTok == ')') break;
+    
+    if (CurTok != ',')
+      return Error("Expected ')'");
+    getNextToken();
+  }
+
+  // Eat the ')'.
+  getNextToken();
+  
+  return new CallExprAST(IdName, Args);
+}
+</pre>
+</div>
+
+<p>This routine follows the same style as the other routines (it expects to be
+called if the current token is a <tt>tok_identifier</tt> token).  It also has
+recursion and error handling.  One interesting aspect of this is that it uses
+<em>look-ahead</em> to determine if the current identifier is a stand alone
+variable reference or if it is a function call expression.  It handles this by
+checking to see if the token after the identifier is a '(' token, and constructs
+either a <tt>VariableExprAST</tt> or <tt>CallExprAST</tt> node as appropriate.
+</p>
+
+<p>Now that we have all of our simple expression parsing logic in place, we can
+define a helper function to wrap them up in a class.  We call this class of 
+expressions "primary" expressions, for reasons that will become more clear
+later.  In order to parse a primary expression, we need to determine what sort
+of expression it is:</p>
+
+<div class="doc_code">
+<pre>
+/// primary
+///   ::= identifierexpr
+///   ::= numberexpr
+///   ::= parenexpr
+static ExprAST *ParsePrimary() {
+  switch (CurTok) {
+  default: return Error("unknown token when expecting an expression");
+  case tok_identifier: return ParseIdentifierExpr();
+  case tok_number:     return ParseNumberExpr();
+  case '(':            return ParseParenExpr();
+  }
+}
+</pre>
+</div>
+
+<p>Now that you see the definition of this function, it makes it more obvious
+why we can assume the state of CurTok in the various functions.  This uses
+look-ahead to determine which sort of expression is being inspected, and parses
+it with a function call.</p>
+
+<p>Now that basic expressions are handled, we need to handle binary expressions,
+which are a bit more complex.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="parserbinops">Binary Expression
+ Parsing</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Binary expressions are significantly harder to parse because they are often
+ambiguous.  For example, when given the string "x+y*z", the parser can choose
+to parse it as either "(x+y)*z" or "x+(y*z)".  With common definitions from
+mathematics, we expect the later parse, because "*" (multiplication) has
+higher <em>precedence</em> than "+" (addition).</p>
+
+<p>There are many ways to handle this, but an elegant and efficient way is to
+use <a href=
+"http://en.wikipedia.org/wiki/Operator-precedence_parser">Operator-Precedence 
+Parsing</a>.  This parsing technique uses the precedence of binary operators to
+guide recursion.  To start with, we need a table of precedences:</p>
+
+<div class="doc_code">
+<pre>
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+  if (!isascii(CurTok))
+    return -1;
+    
+  // Make sure it's a declared binop.
+  int TokPrec = BinopPrecedence[CurTok];
+  if (TokPrec <= 0) return -1;
+  return TokPrec;
+}
+
+int main() {
+  // Install standard binary operators.
+  // 1 is lowest precedence.
+  BinopPrecedence['<'] = 10;
+  BinopPrecedence['+'] = 20;
+  BinopPrecedence['-'] = 20;
+  BinopPrecedence['*'] = 40;  // highest.
+  ...
+}
+</pre>
+</div>
+
+<p>For the basic form of Kaleidoscope, we will only support 4 binary operators
+(this can obviously be extended by you, the reader).  The
+<tt>GetTokPrecedence</tt> function returns the precedence for the current token,
+or -1 if the token is not a binary operator.  Having a map makes it easy to add
+new operators and makes it clear that the algorithm doesn't depend on the
+specific operators involved, but it would be easy enough to eliminate the map
+and do the comparisons in the <tt>GetTokPrecedence</tt> function.</p>
+
+<p>With the helper above defined, we can now start parsing binary expressions.
+The basic idea of operator precedence parsing is to break down an expression
+with potentially ambiguous binary operators into pieces.  Consider for example
+the expression "a+b+(c+d)*e*f+g".  Operator precedence parsing considers this
+as a stream of primary expressions separated by binary operators.  As such,
+it will first parse the leading primary expression "a", then it will see the
+pairs [+, b] [+, (c+d)] [*, e] [*, f] and [+, g].  Note that because parentheses
+are primary expressions that the binary expression parser doesn't need to worry
+about nested subexpressions like (c+d) at all. 
+</p>
+
+<p>
+To start, an expression is a primary expression potentially followed by a
+sequence of [binop,primaryexpr] pairs:</p>
+
+<div class="doc_code">
+<pre>
+/// expression
+///   ::= primary binoprhs
+///
+static ExprAST *ParseExpression() {
+  ExprAST *LHS = ParsePrimary();
+  if (!LHS) return 0;
+  
+  return ParseBinOpRHS(0, LHS);
+}
+</pre>
+</div>
+
+<p><tt>ParseBinOpRHS</tt> is the function that parses the sequence of pairs for
+us.  It takes a precedence and a pointer to an expression for the part parsed
+so far.   Note that "x" is a perfectly valid expression: As such, "binoprhs" is
+allowed to be empty, in which case it returns the expression that is passed into
+it. In our example above, the code passes the expression for "a" into
+<tt>ParseBinOpRHS</tt> and the current token is "+".</p>
+
+<p>The precedence value passed into <tt>ParseBinOpRHS</tt> indicates the <em>
+minimal operator precedence</em> that the function is allowed to eat.  For
+example, if the current pair stream is [+, x] and <tt>ParseBinOpRHS</tt> is
+passed in a precedence of 40, it will not consume any tokens (because the
+precedence of '+' is only 20).  With this in mind, <tt>ParseBinOpRHS</tt> starts
+with:</p>
+
+<div class="doc_code">
+<pre>
+/// binoprhs
+///   ::= ('+' primary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+  // If this is a binop, find its precedence.
+  while (1) {
+    int TokPrec = GetTokPrecedence();
+    
+    // If this is a binop that binds at least as tightly as the current binop,
+    // consume it, otherwise we are done.
+    if (TokPrec < ExprPrec)
+      return LHS;
+</pre>
+</div>
+
+<p>This code gets the precedence of the current token and checks to see if if is
+too low.  Because we defined invalid tokens to have a precedence of -1, this 
+check implicitly knows that the pair-stream ends when the token stream runs out
+of binary operators.  If this check succeeds, we know that the token is a binary
+operator and that it will be included in this expression:</p>
+
+<div class="doc_code">
+<pre>
+    // Okay, we know this is a binop.
+    int BinOp = CurTok;
+    getNextToken();  // eat binop
+    
+    // Parse the primary expression after the binary operator.
+    ExprAST *RHS = ParsePrimary();
+    if (!RHS) return 0;
+</pre>
+</div>
+
+<p>As such, this code eats (and remembers) the binary operator and then parses
+the following primary expression.  This builds up the whole pair, the first of
+which is [+, b] for the running example.</p>
+
+<p>Now that we parsed the left-hand side of an expression and one pair of the 
+RHS sequence, we have to decide which way the expression associates.  In
+particular, we could have "(a+b) binop unparsed"  or "a + (b binop unparsed)".
+To determine this, we look ahead at "binop" to determine its precedence and 
+compare it to BinOp's precedence (which is '+' in this case):</p>
+
+<div class="doc_code">
+<pre>
+    // If BinOp binds less tightly with RHS than the operator after RHS, let
+    // the pending operator take RHS as its LHS.
+    int NextPrec = GetTokPrecedence();
+    if (TokPrec < NextPrec) {
+</pre>
+</div>
+
+<p>If the precedence of the binop to the right of "RHS" is lower or equal to the
+precedence of our current operator, then we know that the parentheses associate
+as "(a+b) binop ...".  In our example, since the next operator is "+" and so is
+our current one, we know that they have the same precedence.  In this case we'll
+create the AST node for "a+b", and then continue parsing:</p>
+
+<div class="doc_code">
+<pre>
+      ... if body omitted ...
+    }
+    
+    // Merge LHS/RHS.
+    LHS = new BinaryExprAST(BinOp, LHS, RHS);
+  }  // loop around to the top of the while loop.
+}
+</pre>
+</div>
+
+<p>In our example above, this will turn "a+b+" into "(a+b)" and execute the next
+iteration of the loop, with "+" as the current token.  The code above will eat
+and remember it and parse "(c+d)" as the primary expression, which makes the
+current pair be [+, (c+d)].  It will then enter the 'if' above with "*" as the
+binop to the right of the primary.  In this case, the precedence of "*" is
+higher than the precedence of "+" so the if condition will be entered.</p>
+
+<p>The critical question left here is "how can the if condition parse the right
+hand side in full"?  In particular, to build the AST correctly for our example,
+it needs to get all of "(c+d)*e*f" as the RHS expression variable.  The code to
+do this is surprisingly simple (code from the above two blocks duplicated for
+context):</p>
+
+<div class="doc_code">
+<pre>
+    // If BinOp binds less tightly with RHS than the operator after RHS, let
+    // the pending operator take RHS as its LHS.
+    int NextPrec = GetTokPrecedence();
+    if (TokPrec < NextPrec) {
+      RHS = ParseBinOpRHS(TokPrec+1, RHS);
+      if (RHS == 0) return 0;
+    }
+    // Merge LHS/RHS.
+    LHS = new BinaryExprAST(BinOp, LHS, RHS);
+  }  // loop around to the top of the while loop.
+}
+</pre>
+</div>
+
+<p>At this point, we know that the binary operator to the RHS of our primary
+has higher precedence than the binop we are currently parsing.  As such, we know
+that any sequence of pairs whose operators are all higher precedence than "+"
+should be parsed together and returned as "RHS".  To do this, we recursively
+invoke the <tt>ParseBinOpRHS</tt> function specifying "TokPrec+1" as the minimum
+precedence required for it to continue.  In our example above, this will cause
+it to return the AST node for "(c+d)*e*f" as RHS, which is then set as the RHS
+of the '+' expression.</p>
+
+<p>Finally, on the next iteration of the while loop, the "+g" piece is parsed.
+and added to the AST.  With this little bit of code (14 non-trivial lines), we
+correctly handle fully general binary expression parsing in a very elegant way.
+</p>
+
+<p>This wraps up handling of expressions.  At this point, we can point the
+parser at an arbitrary token stream and build an expression from them, stopping
+at the first token that is not part of the expression.  Next up we need to
+handle function definitions etc.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="parsertop">Parsing the Rest</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+The first basic thing missing is that of function prototypes.  In Kaleidoscope,
+these are used both for 'extern' function declarations as well as function body
+definitions.  The code to do this is straight-forward and not very interesting
+(once you've survived expressions):
+</p>
+
+<div class="doc_code">
+<pre>
+/// prototype
+///   ::= id '(' id* ')'
+static PrototypeAST *ParsePrototype() {
+  if (CurTok != tok_identifier)
+    return ErrorP("Expected function name in prototype");
+
+  std::string FnName = IdentifierStr;
+  getNextToken();
+  
+  if (CurTok != '(')
+    return ErrorP("Expected '(' in prototype");
+  
+  std::vector<std::string> ArgNames;
+  while (getNextToken() == tok_identifier)
+    ArgNames.push_back(IdentifierStr);
+  if (CurTok != ')')
+    return ErrorP("Expected ')' in prototype");
+  
+  // success.
+  getNextToken();  // eat ')'.
+  
+  return new PrototypeAST(FnName, ArgNames);
+}
+</pre>
+</div>
+
+<p>Given this, a function definition is very simple, just a prototype plus
+and expression to implement the body:</p>
+
+<div class="doc_code">
+<pre>
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+  getNextToken();  // eat def.
+  PrototypeAST *Proto = ParsePrototype();
+  if (Proto == 0) return 0;
+
+  if (ExprAST *E = ParseExpression())
+    return new FunctionAST(Proto, E);
+  return 0;
+}
+</pre>
+</div>
+
+<p>In addition, we support 'extern' to declare functions like 'sin' and 'cos' as
+well as to support forward declaration of user functions.  'externs' are just
+prototypes with no body:</p>
+
+<div class="doc_code">
+<pre>
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+  getNextToken();  // eat extern.
+  return ParsePrototype();
+}
+</pre>
+</div>
+
+<p>Finally, we'll also let the user type in arbitrary top-level expressions and
+evaluate them on the fly.  We will handle this by defining anonymous nullary
+(zero argument) functions for them:</p>
+
+<div class="doc_code">
+<pre>
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+  if (ExprAST *E = ParseExpression()) {
+    // Make an anonymous proto.
+    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
+    return new FunctionAST(Proto, E);
+  }
+  return 0;
+}
+</pre>
+</div>
+
+<p>Now that we have all the pieces, lets build a little driver that will let us
+actually <em>execute</em> this code we've built!</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="driver">The Driver</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>The driver for this simply invokes all of the parsing pieces with a top-level
+dispatch loop.  There isn't much interesting here, so I'll just include the
+top-level loop.  See <a href="#code">below</a> for full code in the "Top-Level
+Parsing" section.</p>
+
+<div class="doc_code">
+<pre>
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+  while (1) {
+    fprintf(stderr, "ready> ");
+    switch (CurTok) {
+    case tok_eof:    return;
+    case ';':        getNextToken(); break;  // ignore top level semicolons.
+    case tok_def:    HandleDefinition(); break;
+    case tok_extern: HandleExtern(); break;
+    default:         HandleTopLevelExpression(); break;
+    }
+  }
+}
+</pre>
+</div>
+
+<p>The most interesting part of this is that we ignore top-level semi colons.
+Why is this do you ask?  The basic reason is that if you type "4 + 5" at the
+command line, the parser doesn't know that that is the end of what you will
+type.  For example, on the next line you could type "def foo..." in which case
+4+5 is the end of a top-level expression.  Alternatively you could type "* 6",
+which would continue the expression.  Having top-level semicolons allows you to
+type "4+5;" and the parser will know you are done.</p> 
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="code">Conclusions and the Full Code</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>With just under 400 lines of commented code, we fully defined our minimal
+language, including a lexer, parser and AST builder.  With this done, the
+executable will validate code and tell us if it is gramatically invalid.  For
+example, here is a sample interaction:</p>
+
+<div class="doc_code">
+<pre>
+$ ./a.out 
+ready> def foo(x y) x+foo(y, 4.0);
+ready> Parsed an function definition.
+ready> def foo(x y) x+y y;
+ready> Parsed an function definition.
+ready> Parsed a top-level expr
+ready> def foo(x y) x+y );
+ready> Parsed an function definition.
+ready> Error: unknown token when expecting an expression
+ready> extern sin(a);
+ready> Parsed an extern
+ready> ^D
+$ 
+</pre>
+</div>
+
+<p>
+Here is the full code.  Note that it is fully self-contained: you don't even
+need LLVM for this.  In the <a href="LangImpl3.html">next installment</a>, we
+will describe how to generate LLVM IR from the AST.</p>
+
+<div class="doc_code">
+<pre>
+// To build this:
+//  g++ -g toy.cpp 
+//  ./a.out 
+
+#include <cstdio>
+#include <string>
+#include <
+#include <vector>
+
+//===----------------------------------------------------------------------===//
+// Lexer
+//===----------------------------------------------------------------------===//
+
+// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
+// of these for known things.
+enum Token {
+  tok_eof = -1,
+
+  // commands
+  tok_def = -2, tok_extern = -3,
+
+  // primary
+  tok_identifier = -4, tok_number = -5,
+};
+
+static std::string IdentifierStr;  // Filled in if tok_identifier
+static double NumVal;              // Filled in if tok_number
+
+/// gettok - Return the next token from standard input.
+static int gettok() {
+  static int LastChar = ' ';
+
+  // Skip any whitespace.
+  while (isspace(LastChar))
+    LastChar = getchar();
+
+  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
+    IdentifierStr = LastChar;
+    while (isalnum((LastChar = getchar())))
+      IdentifierStr += LastChar;
+
+    if (IdentifierStr == "def") return tok_def;
+    if (IdentifierStr == "extern") return tok_extern;
+    return tok_identifier;
+  }
+
+  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
+    std::string NumStr;
+    do {
+      NumStr += LastChar;
+      LastChar = getchar();
+    } while (isdigit(LastChar) || LastChar == '.');
+
+    NumVal = strtod(NumStr.c_str(), 0);
+    return tok_number;
+  }
+
+  if (LastChar == '#') {
+    // Comment until end of line.
+    do LastChar = getchar();
+    while (LastChar != EOF && LastChar != '\n' & LastChar != '\r');
+    
+    if (LastChar != EOF)
+      return gettok();
+  }
+  
+  // Check for end of file.  Don't eat the EOF.
+  if (LastChar == EOF)
+    return tok_eof;
+
+  // Otherwise, just return the character as its ascii value.
+  int ThisChar = LastChar;
+  LastChar = getchar();
+  return ThisChar;
+}
+
+//===----------------------------------------------------------------------===//
+// Abstract Syntax Tree (aka Parse Tree)
+//===----------------------------------------------------------------------===//
+
+/// ExprAST - Base class for all expression nodes.
+class ExprAST {
+public:
+  virtual ~ExprAST() {}
+};
+
+/// NumberExprAST - Expression class for numeric literals like "1.0".
+class NumberExprAST : public ExprAST {
+  double Val;
+public:
+  NumberExprAST(double val) : Val(val) {}
+};
+
+/// VariableExprAST - Expression class for referencing a variable, like "a".
+class VariableExprAST : public ExprAST {
+  std::string Name;
+public:
+  VariableExprAST(const std::string &name) : Name(name) {}
+};
+
+/// BinaryExprAST - Expression class for a binary operator.
+class BinaryExprAST : public ExprAST {
+  char Op;
+  ExprAST *LHS, *RHS;
+public:
+  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
+    : Op(op), LHS(lhs), RHS(rhs) {}
+};
+
+/// CallExprAST - Expression class for function calls.
+class CallExprAST : public ExprAST {
+  std::string Callee;
+  std::vector<ExprAST*> Args;
+public:
+  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
+    : Callee(callee), Args(args) {}
+};
+
+/// PrototypeAST - This class represents the "prototype" for a function,
+/// which captures its argument names as well as if it is an operator.
+class PrototypeAST {
+  std::string Name;
+  std::vector< Args;
+public:
+  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
+    : Name(name), Args(args) {}
+  
+};
+
+/// FunctionAST - This class represents a function definition itself.
+class FunctionAST {
+  PrototypeAST *Proto;
+  ExprAST *Body;
+public:
+  FunctionAST(PrototypeAST *proto, ExprAST *body)
+    : Proto(proto), Body(body) {}
+  
+};
+
+//===----------------------------------------------------------------------===//
+// Parser
+//===----------------------------------------------------------------------===//
+
+/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
+/// token the parser it looking at.  getNextToken reads another token from the
+/// lexer and updates CurTok with its results.
+static int CurTok;
+static int getNextToken() {
+  return CurTok = gettok();
+}
+
+/// BinopPrecedence - This holds the precedence for each binary operator that is
+/// defined.
+static std::map<char, int> BinopPrecedence;
+
+/// GetTokPrecedence - Get the precedence of the pending binary operator token.
+static int GetTokPrecedence() {
+  if (!isascii(CurTok))
+    return -1;
+  
+  // Make sure it's a declared binop.
+  int TokPrec = BinopPrecedence[CurTok];
+  if (TokPrec <= 0) return -1;
+  return TokPrec;
+}
+
+/// Error* - These are little helper functions for error handling.
+ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
+PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+
+static ExprAST *ParseExpression();
+
+/// identifierexpr
+///   ::= identifer
+///   ::= identifer '(' expression* ')'
+static ExprAST *ParseIdentifierExpr() {
+  std::string IdName = IdentifierStr;
+  
+  getNextToken();  // eat identifer.
+  
+  if (CurTok != '(') // Simple variable ref.
+    return new VariableExprAST(IdName);
+  
+  // Call.
+  getNextToken();  // eat (
+  std::vector<ExprAST*> Args;
+  while (1) {
+    ExprAST *Arg = ParseExpression();
+    if (!Arg) return 0;
+    Args.push_back(Arg);
+    
+    if (CurTok == ')') break;
+    
+    if (CurTok != ',')
+      return Error("Expected ')'");
+    getNextToken();
+  }
+
+  // Eat the ')'.
+  getNextToken();
+  
+  return new CallExprAST(IdName, Args);
+}
+
+/// numberexpr ::= number
+static ExprAST *ParseNumberExpr() {
+  ExprAST *Result = new NumberExprAST(NumVal);
+  getNextToken(); // consume the number
+  return Result;
+}
+
+/// parenexpr ::= '(' expression ')'
+static ExprAST *ParseParenExpr() {
+  getNextToken();  // eat (.
+  ExprAST *V = ParseExpression();
+  if (!V) return 0;
+  
+  if (CurTok != ')')
+    return Error("expected ')'");
+  getNextToken();  // eat ).
+  return V;
+}
+
+/// primary
+///   ::= identifierexpr
+///   ::= numberexpr
+///   ::= parenexpr
+static ExprAST *ParsePrimary() {
+  switch (CurTok) {
+  default: return Error("unknown token when expecting an expression");
+  case tok_identifier: return ParseIdentifierExpr();
+  case tok_number:     return ParseNumberExpr();
+  case '(':            return ParseParenExpr();
+  }
+}
+
+/// binoprhs
+///   ::= ('+' primary)*
+static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+  // If this is a binop, find its precedence.
+  while (1) {
+    int TokPrec = GetTokPrecedence();
+    
+    // If this is a binop that binds at least as tightly as the current binop,
+    // consume it, otherwise we are done.
+    if (TokPrec < ExprPrec)
+      return LHS;
+    
+    // Okay, we know this is a binop.
+    int BinOp = CurTok;
+    getNextToken();  // eat binop
+    
+    // Parse the primary expression after the binary operator.
+    ExprAST *RHS = ParsePrimary();
+    if (!RHS) return 0;
+    
+    // If BinOp binds less tightly with RHS than the operator after RHS, let
+    // the pending operator take RHS as its LHS.
+    int NextPrec = GetTokPrecedence();
+    if (TokPrec < NextPrec) {
+      RHS = ParseBinOpRHS(TokPrec+1, RHS);
+      if (RHS == 0) return 0;
+    }
+    
+    // Merge LHS/RHS.
+    LHS = new BinaryExprAST(BinOp, LHS, RHS);
+  }
+}
+
+/// expression
+///   ::= primary binoprhs
+///
+static ExprAST *ParseExpression() {
+  ExprAST *LHS = ParsePrimary();
+  if (!LHS) return 0;
+  
+  return ParseBinOpRHS(0, LHS);
+}
+
+/// prototype
+///   ::= id '(' id* ')'
+static PrototypeAST *ParsePrototype() {
+  if (CurTok != tok_identifier)
+    return ErrorP("Expected function name in prototype");
+
+  std::string FnName = IdentifierStr;
+  getNextToken();
+  
+  if (CurTok != '(')
+    return ErrorP("Expected '(' in prototype");
+  
+  std::vector<std::string> ArgNames;
+  while (getNextToken() == tok_identifier)
+    ArgNames.push_back(IdentifierStr);
+  if (CurTok != ')')
+    return ErrorP("Expected ')' in prototype");
+  
+  // success.
+  getNextToken();  // eat ')'.
+  
+  return new PrototypeAST(FnName, ArgNames);
+}
+
+/// definition ::= 'def' prototype expression
+static FunctionAST *ParseDefinition() {
+  getNextToken();  // eat def.
+  PrototypeAST *Proto = ParsePrototype();
+  if (Proto == 0) return 0;
+
+  if (ExprAST *E = ParseExpression())
+    return new FunctionAST(Proto, E);
+  return 0;
+}
+
+/// toplevelexpr ::= expression
+static FunctionAST *ParseTopLevelExpr() {
+  if (ExprAST *E = ParseExpression()) {
+    // Make an anonymous proto.
+    PrototypeAST *Proto = new PrototypeAST("", std::vector<());
+    return new FunctionAST(Proto, E);
+  }
+  return 0;
+}
+
+/// external ::= 'extern' prototype
+static PrototypeAST *ParseExtern() {
+  getNextToken();  // eat extern.
+  return ParsePrototype();
+}
+
+//===----------------------------------------------------------------------===//
+// Top-Level parsing
+//===----------------------------------------------------------------------===//
+
+static void HandleDefinition() {
+  if (FunctionAST *F = ParseDefinition()) {
+    fprintf(stderr, "Parsed a function definition.\n");
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+static void HandleExtern() {
+  if (PrototypeAST *P = ParseExtern()) {
+    fprintf(stderr, "Parsed an extern\n");
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+static void HandleTopLevelExpression() {
+  // Evaluate a top level expression into an anonymous function.
+  if (FunctionAST *F = ParseTopLevelExpr()) {
+    fprintf(stderr, "Parsed a top-level expr\n");
+  } else {
+    // Skip token for error recovery.
+    getNextToken();
+  }
+}
+
+/// top ::= definition | external | expression | ';'
+static void MainLoop() {
+  while (1) {
+    fprintf(stderr, "ready> ");
+    switch (CurTok) {
+    case tok_eof:    return;
+    case ';':        getNextToken(); break;  // ignore top level semicolons.
+    case tok_def:    HandleDefinition(); break;
+    case tok_extern: HandleExtern(); break;
+    default:         HandleTopLevelExpression(); break;
+    }
+  }
+}
+
+//===----------------------------------------------------------------------===//
+// Main driver code.
+//===----------------------------------------------------------------------===//
+
+int main() {
+  // Install standard binary operators.
+  // 1 is lowest precedence.
+  BinopPrecedence['<'] = 10;
+  BinopPrecedence['+'] = 20;
+  BinopPrecedence['-'] = 20;
+  BinopPrecedence['*'] = 40;  // highest.
+
+  // Prime the first token.
+  fprintf(stderr, "ready> ");
+  getNextToken();
+
+  MainLoop();
+  return 0;
+}
+</pre>
+</div>
+</div>
+
+<!-- *********************************************************************** -->
+<hr>
+<address>
+  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
+  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
+  <a href="http://validator.w3.org/check/referer"><img
+  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
+
+  <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
+  <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
+  Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
+</address>
+</body>
+</html>

Modified: llvm/trunk/docs/tutorial/index.html
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/docs/tutorial/index.html?rev=43218&r1=43217&r2=43218&view=diff

==============================================================================
--- llvm/trunk/docs/tutorial/index.html (original)
+++ llvm/trunk/docs/tutorial/index.html Mon Oct 22 01:34:15 2007
@@ -28,7 +28,7 @@
   <li>Implementing a language with LLVM: Kaleidoscope
   <ol>
     <li><a href="LangImpl1.html">The basic language, with its lexer</a></li>
-    <li>Implementing a Parser and AST</li>
+    <li><a href="LangImpl2.html">Implementing a Parser and AST</a></li>
     <li>Implementing code generation to LLVM IR</li>
     <li>Adding JIT codegen support</li>
     <li>Extending the language: if/then/else</li>





More information about the llvm-commits mailing list