[llvm-commits] CVS: llvm/lib/Transforms/Scalar/PredicateSimplifier.cpp

Nick Lewycky nicholas at mxc.ca
Wed Jan 10 18:32:57 PST 2007



Changes in directory llvm/lib/Transforms/Scalar:

PredicateSimplifier.cpp updated: 1.40 -> 1.41
---
Log message:

New predicate simplifier!

Please do not enable, there is still some known miscompile problem.



---
Diffs of the changes:  (+1167 -986)

 PredicateSimplifier.cpp | 2153 ++++++++++++++++++++++++++----------------------
 1 files changed, 1167 insertions(+), 986 deletions(-)


Index: llvm/lib/Transforms/Scalar/PredicateSimplifier.cpp
diff -u llvm/lib/Transforms/Scalar/PredicateSimplifier.cpp:1.40 llvm/lib/Transforms/Scalar/PredicateSimplifier.cpp:1.41
--- llvm/lib/Transforms/Scalar/PredicateSimplifier.cpp:1.40	Sat Dec 23 00:05:41 2006
+++ llvm/lib/Transforms/Scalar/PredicateSimplifier.cpp	Wed Jan 10 20:32:38 2007
@@ -41,11 +41,11 @@
 //   %a < %b < %c < %d
 //
 // with four nodes representing the properties. The InequalityGraph provides
-// queries (such as "isEqual") and mutators (such as "addEqual"). To implement
-// "isLess(%a, %c)", we start with getNode(%c) and walk downwards until
-// we reach %a or the leaf node. Note that the graph is directed and acyclic,
-// but may contain joins, meaning that this walk is not a linear time
-// algorithm.
+// querying with "isRelatedBy" and mutators "addEquality" and "addInequality".
+// To find a relationship, we start with one of the nodes any binary search
+// through its list to find where the relationships with the second node start.
+// Then we iterate through those to find the first relationship that dominates
+// our context node.
 //
 // To create these properties, we wait until a branch or switch instruction
 // implies that a particular value is true (or false). The VRPSolver is
@@ -74,13 +74,13 @@
 #include "llvm/DerivedTypes.h"
 #include "llvm/Instructions.h"
 #include "llvm/Pass.h"
+#include "llvm/ADT/DepthFirstIterator.h"
 #include "llvm/ADT/SetOperations.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/Analysis/Dominators.h"
 #include "llvm/Analysis/ET-Forest.h"
-#include "llvm/Assembly/Writer.h"
 #include "llvm/Support/CFG.h"
 #include "llvm/Support/Compiler.h"
 #include "llvm/Support/Debug.h"
@@ -89,14 +89,82 @@
 #include <algorithm>
 #include <deque>
 #include <sstream>
-#include <map>
 using namespace llvm;
 
 STATISTIC(NumVarsReplaced, "Number of argument substitutions");
 STATISTIC(NumInstruction , "Number of instructions removed");
 STATISTIC(NumSimple      , "Number of simple replacements");
+STATISTIC(NumBlocks      , "Number of blocks marked unreachable");
 
 namespace {
+  // SLT SGT ULT UGT EQ
+  //   0   1   0   1  0 -- GT                  10
+  //   0   1   0   1  1 -- GE                  11
+  //   0   1   1   0  0 -- SGTULT              12
+  //   0   1   1   0  1 -- SGEULE              13
+  //   0   1   1   1  0 -- SGTUNE              14
+  //   0   1   1   1  1 -- SGEUANY             15
+  //   1   0   0   1  0 -- SLTUGT              18
+  //   1   0   0   1  1 -- SLEUGE              19
+  //   1   0   1   0  0 -- LT                  20
+  //   1   0   1   0  1 -- LE                  21
+  //   1   0   1   1  0 -- SLTUNE              22
+  //   1   0   1   1  1 -- SLEUANY             23
+  //   1   1   0   1  0 -- SNEUGT              26
+  //   1   1   0   1  1 -- SANYUGE             27
+  //   1   1   1   0  0 -- SNEULT              28
+  //   1   1   1   0  1 -- SANYULE             29
+  //   1   1   1   1  0 -- NE                  30
+  enum LatticeBits {
+    EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16
+  };
+  enum LatticeVal {
+    GT = SGT_BIT | UGT_BIT,
+    GE = GT | EQ_BIT,
+    LT = SLT_BIT | ULT_BIT,
+    LE = LT | EQ_BIT,
+    NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT,
+    SGTULT = SGT_BIT | ULT_BIT,
+    SGEULE = SGTULT | EQ_BIT,
+    SLTUGT = SLT_BIT | UGT_BIT,
+    SLEUGE = SLTUGT | EQ_BIT,
+    SNEULT = SLT_BIT | SGT_BIT | ULT_BIT,
+    SNEUGT = SLT_BIT | SGT_BIT | UGT_BIT,
+    SLTUNE = SLT_BIT | ULT_BIT | UGT_BIT,
+    SGTUNE = SGT_BIT | ULT_BIT | UGT_BIT,
+    SLEUANY = SLT_BIT | ULT_BIT | UGT_BIT | EQ_BIT,
+    SGEUANY = SGT_BIT | ULT_BIT | UGT_BIT | EQ_BIT,
+    SANYULE = SLT_BIT | SGT_BIT | ULT_BIT | EQ_BIT,
+    SANYUGE = SLT_BIT | SGT_BIT | UGT_BIT | EQ_BIT
+  };
+
+  static bool validPredicate(LatticeVal LV) {
+    switch (LV) {
+    case GT: case GE: case LT: case LE: case NE:
+    case SGTULT: case SGTUNE: case SGEULE:
+    case SLTUGT: case SLTUNE: case SLEUGE:
+    case SNEULT: case SNEUGT:
+    case SLEUANY: case SGEUANY: case SANYULE: case SANYUGE:
+      return true;
+    default:
+      return false;
+    }
+  }
+
+  /// reversePredicate - reverse the direction of the inequality
+  static LatticeVal reversePredicate(LatticeVal LV) {
+    unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT
+    if ((reverse & (SLT_BIT|SGT_BIT)) == 0)
+      reverse |= (SLT_BIT|SGT_BIT);
+
+    if ((reverse & (ULT_BIT|UGT_BIT)) == 0)
+      reverse |= (ULT_BIT|UGT_BIT);
+
+    LatticeVal Rev = static_cast<LatticeVal>(reverse);
+    assert(validPredicate(Rev) && "Failed reversing predicate.");
+    return Rev;
+  }
+
   /// The InequalityGraph stores the relationships between values.
   /// Each Value in the graph is assigned to a Node. Nodes are pointer
   /// comparable for equality. The caller is expected to maintain the logical
@@ -105,38 +173,51 @@
   /// The InequalityGraph class may invalidate Node*s after any mutator call.
   /// @brief The InequalityGraph stores the relationships between values.
   class VISIBILITY_HIDDEN InequalityGraph {
+    ETNode *TreeRoot;
+
+    InequalityGraph();                  // DO NOT IMPLEMENT
+    InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT
   public:
+    explicit InequalityGraph(ETNode *TreeRoot) : TreeRoot(TreeRoot) {}
+
     class Node;
 
-    // LT GT EQ
-    //  0  0  0 -- invalid (false)
-    //  0  0  1 -- invalid (EQ)
-    //  0  1  0 -- GT
-    //  0  1  1 -- GE
-    //  1  0  0 -- LT
-    //  1  0  1 -- LE
-    //  1  1  0 -- NE
-    //  1  1  1 -- invalid (true)
-    enum LatticeBits {
-      EQ_BIT = 1, GT_BIT = 2, LT_BIT = 4
-    };
-    enum LatticeVal {
-      GT = GT_BIT, GE = GT_BIT | EQ_BIT,
-      LT = LT_BIT, LE = LT_BIT | EQ_BIT,
-      NE = GT_BIT | LT_BIT
+    /// This is a StrictWeakOrdering predicate that sorts ETNodes by how many
+    /// children they have. With this, you can iterate through a list sorted by
+    /// this operation and the first matching entry is the most specific match
+    /// for your basic block. The order provided is total; ETNodes with the
+    /// same number of children are sorted by pointer address.
+    struct VISIBILITY_HIDDEN OrderByDominance {
+      bool operator()(const ETNode *LHS, const ETNode *RHS) const {
+        unsigned LHS_spread = LHS->getDFSNumOut() - LHS->getDFSNumIn();
+        unsigned RHS_spread = RHS->getDFSNumOut() - RHS->getDFSNumIn();
+        if (LHS_spread != RHS_spread) return LHS_spread < RHS_spread;
+        else return LHS < RHS;
+      }
     };
 
-    static bool validPredicate(LatticeVal LV) {
-      return LV > 1 && LV < 7;
-    }
-
-  private:
-    typedef std::map<Value *, Node *> NodeMapType;
-    NodeMapType Nodes;
+    /// An Edge is contained inside a Node making one end of the edge implicit
+    /// and contains a pointer to the other end. The edge contains a lattice
+    /// value specifying the relationship between the two nodes. Further, there
+    /// is an ETNode specifying which subtree of the dominator the edge applies.
+    class VISIBILITY_HIDDEN Edge {
+    public:
+      Edge(unsigned T, LatticeVal V, ETNode *ST)
+        : To(T), LV(V), Subtree(ST) {}
 
-    const InequalityGraph *ConcreteIG;
+      unsigned To;
+      LatticeVal LV;
+      ETNode *Subtree;
+
+      bool operator<(const Edge &edge) const {
+        if (To != edge.To) return To < edge.To;
+        else return OrderByDominance()(Subtree, edge.Subtree);
+      }
+      bool operator<(unsigned to) const {
+        return To < to;
+      }
+    };
 
-  public:
     /// A single node in the InequalityGraph. This stores the canonical Value
     /// for the node, as well as the relationships with the neighbours.
     ///
@@ -148,367 +229,488 @@
     class VISIBILITY_HIDDEN Node {
       friend class InequalityGraph;
 
+      typedef SmallVector<Edge, 4> RelationsType;
+      RelationsType Relations;
+
       Value *Canonical;
 
-      typedef SmallVector<std::pair<Node *, LatticeVal>, 4> RelationsType;
-      RelationsType Relations;
+      // TODO: can this idea improve performance?
+      //friend class std::vector<Node>;
+      //Node(Node &N) { RelationsType.swap(N.RelationsType); }
+
     public:
       typedef RelationsType::iterator       iterator;
       typedef RelationsType::const_iterator const_iterator;
 
+      Node(Value *V) : Canonical(V) {}
+
+    private:
+#ifndef NDEBUG
+    public:
+      virtual void dump() const {
+        dump(*cerr.stream());
+      }
     private:
+      void dump(std::ostream &os) const  {
+        os << *getValue() << ":\n";
+        for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) {
+          static const std::string names[32] =
+            { "000000", "000001", "000002", "000003", "000004", "000005",
+              "000006", "000007", "000008", "000009", "     >", "    >=",
+              "  s>u<", "s>=u<=", "    s>", "   s>=", "000016", "000017",
+              "  s<u>", "s<=u>=", "     <", "    <=", "    s<", "   s<=",
+              "000024", "000025", "    u>", "   u>=", "    u<", "   u<=",
+              "    !=", "000031" };
+          os << "  " << names[NI->LV] << " " << NI->To
+             << "(" << NI->Subtree << ")\n";
+        }
+      }
+#endif
+
+    public:
+      iterator begin()             { return Relations.begin(); }
+      iterator end()               { return Relations.end();   }
+      const_iterator begin() const { return Relations.begin(); }
+      const_iterator end()   const { return Relations.end();   }
+
+      iterator find(unsigned n, ETNode *Subtree) {
+        iterator E = end();
+        for (iterator I = std::lower_bound(begin(), E, n);
+             I != E && I->To == n; ++I) {
+          if (Subtree->DominatedBy(I->Subtree))
+            return I;
+        }
+        return E;
+      }
+
+      const_iterator find(unsigned n, ETNode *Subtree) const {
+        const_iterator E = end();
+        for (const_iterator I = std::lower_bound(begin(), E, n);
+             I != E && I->To == n; ++I) {
+          if (Subtree->DominatedBy(I->Subtree))
+            return I;
+        }
+        return E;
+      }
+
+      Value *getValue() const
+      {
+        return Canonical;
+      }
+
       /// Updates the lattice value for a given node. Create a new entry if
       /// one doesn't exist, otherwise it merges the values. The new lattice
       /// value must not be inconsistent with any previously existing value.
-      void update(Node *N, LatticeVal R) {
-        iterator I = find(N);
+      void update(unsigned n, LatticeVal R, ETNode *Subtree) {
+        assert(validPredicate(R) && "Invalid predicate.");
+        iterator I = find(n, Subtree);
         if (I == end()) {
-          Relations.push_back(std::make_pair(N, R));
+          Edge edge(n, R, Subtree);
+          iterator Insert = std::lower_bound(begin(), end(), edge);
+          Relations.insert(Insert, edge);
         } else {
-          I->second = static_cast<LatticeVal>(I->second & R);
-          assert(validPredicate(I->second) &&
-                 "Invalid union of lattice values.");
+          LatticeVal LV = static_cast<LatticeVal>(I->LV & R);
+          assert(validPredicate(LV) && "Invalid union of lattice values.");
+          if (LV != I->LV) {
+            if (Subtree == I->Subtree)
+              I->LV = LV;
+            else {
+              assert(Subtree->DominatedBy(I->Subtree) &&
+                     "Find returned subtree that doesn't apply.");
+
+              Edge edge(n, R, Subtree);
+              iterator Insert = std::lower_bound(begin(), end(), edge);
+              Relations.insert(Insert, edge);
+            }
+          }
         }
       }
+    };
+
+  private:
+    struct VISIBILITY_HIDDEN NodeMapEdge {
+      Value *V;
+      unsigned index;
+      ETNode *Subtree;
 
-      void assign(Node *N, LatticeVal R) {
-        iterator I = find(N);
-        if (I != end()) I->second = R;
+      NodeMapEdge(Value *V, unsigned index, ETNode *Subtree)
+        : V(V), index(index), Subtree(Subtree) {}
 
-        Relations.push_back(std::make_pair(N, R));
+      bool operator==(const NodeMapEdge &RHS) const {
+        return V == RHS.V &&
+               Subtree == RHS.Subtree;
       }
 
-    public:
-      iterator begin()       { return Relations.begin(); }
-      iterator end()         { return Relations.end();   }
-      iterator find(Node *N) {
-        iterator I = begin();
-        for (iterator E = end(); I != E; ++I)
-          if (I->first == N) break;
-        return I;
-      }
-
-      const_iterator begin()       const { return Relations.begin(); }
-      const_iterator end()         const { return Relations.end();   }
-      const_iterator find(Node *N) const {
-        const_iterator I = begin();
-        for (const_iterator E = end(); I != E; ++I)
-          if (I->first == N) break;
-        return I;
-      }
-
-      unsigned findIndex(Node *N) {
-        unsigned i = 0;
-        iterator I = begin();
-        for (iterator E = end(); I != E; ++I, ++i)
-          if (I->first == N) return i;
-        return (unsigned)-1;
-      }
-
-      void erase(iterator i) { Relations.erase(i); }
-
-      Value *getValue() const { return Canonical; }
-      void setValue(Value *V) { Canonical = V; }
-
-      void addNotEqual(Node *N)     { update(N, NE); }
-      void addLess(Node *N)         { update(N, LT); }
-      void addLessEqual(Node *N)    { update(N, LE); }
-      void addGreater(Node *N)      { update(N, GT); }
-      void addGreaterEqual(Node *N) { update(N, GE); }
-    };
+      bool operator<(const NodeMapEdge &RHS) const {
+        if (V != RHS.V) return V < RHS.V;
+        return OrderByDominance()(Subtree, RHS.Subtree);
+      }
 
-    InequalityGraph() : ConcreteIG(NULL) {}
+      bool operator<(Value *RHS) const {
+        return V < RHS;
+      }
+    };
 
-    InequalityGraph(const InequalityGraph &_IG) {
-#if 0 // disable COW
-      if (_IG.ConcreteIG) ConcreteIG = _IG.ConcreteIG;
-      else ConcreteIG = &_IG;
-#else
-      ConcreteIG = &_IG;
-      materialize();
-#endif
-    }
+    typedef std::vector<NodeMapEdge> NodeMapType;
+    NodeMapType NodeMap;
 
-    ~InequalityGraph();
+    std::vector<Node> Nodes;
 
-  private:
-    void materialize();
+    std::vector<std::pair<ConstantIntegral *, unsigned> > Constants;
+    void initializeConstant(Constant *C, unsigned index) {
+      ConstantIntegral *CI = dyn_cast<ConstantIntegral>(C);
+      if (!CI) return;
+
+      // XXX: instead of O(n) calls to addInequality, just find the 2, 3 or 4
+      // nodes that are nearest less than or greater than (signed or unsigned).
+      for (std::vector<std::pair<ConstantIntegral *, unsigned> >::iterator
+           I = Constants.begin(), E = Constants.end(); I != E; ++I) {
+        ConstantIntegral *Other = I->first;
+        if (CI->getType() == Other->getType()) {
+          unsigned lv = 0;
+
+          if (CI->getZExtValue() < Other->getZExtValue())
+            lv |= ULT_BIT;
+          else
+            lv |= UGT_BIT;
+
+          if (CI->getSExtValue() < Other->getSExtValue())
+            lv |= SLT_BIT;
+          else
+            lv |= SGT_BIT;
+
+          LatticeVal LV = static_cast<LatticeVal>(lv);
+          assert(validPredicate(LV) && "Not a valid predicate.");
+          if (!isRelatedBy(index, I->second, TreeRoot, LV))
+            addInequality(index, I->second, TreeRoot, LV);
+        }
+      }
+      Constants.push_back(std::make_pair(CI, index));
+    }
 
   public:
-    /// If the Value is in the graph, return the canonical form. Otherwise,
-    /// return the original Value.
-    Value *canonicalize(Value *V) const {  
-      if (const Node *N = getNode(V))
-        return N->getValue();
-      else 
-        return V;
+    /// node - returns the node object at a given index retrieved from getNode.
+    /// Index zero is reserved and may not be passed in here. The pointer
+    /// returned is valid until the next call to newNode or getOrInsertNode.
+    Node *node(unsigned index) {
+      assert(index != 0 && "Zero index is reserved for not found.");
+      assert(index <= Nodes.size() && "Index out of range.");
+      return &Nodes[index-1];
     }
 
-    /// Returns the node currently representing Value V, or null if no such
+    /// Returns the node currently representing Value V, or zero if no such
     /// node exists.
-    Node *getNode(Value *V) {
-      materialize();
-
-      NodeMapType::const_iterator I = Nodes.find(V);
-      return (I != Nodes.end()) ? I->second : 0;
+    unsigned getNode(Value *V, ETNode *Subtree) {
+      NodeMapType::iterator E = NodeMap.end();
+      NodeMapEdge Edge(V, 0, Subtree);
+      NodeMapType::iterator I = std::lower_bound(NodeMap.begin(), E, Edge);
+      while (I != E && I->V == V) {
+        if (Subtree->DominatedBy(I->Subtree))
+          return I->index;
+        ++I;
+      }
+      return 0;
+    }
+
+    /// getOrInsertNode - always returns a valid node index, creating a node
+    /// to match the Value if needed.
+    unsigned getOrInsertNode(Value *V, ETNode *Subtree) {
+      if (unsigned n = getNode(V, Subtree))
+        return n;
+      else
+        return newNode(V);
     }
 
-    const Node *getNode(Value *V) const {
-      if (ConcreteIG) return ConcreteIG->getNode(V);
+    /// newNode - creates a new node for a given Value and returns the index.
+    unsigned newNode(Value *V) {
+      Nodes.push_back(Node(V));
+
+      NodeMapEdge MapEntry = NodeMapEdge(V, Nodes.size(), TreeRoot);
+      assert(!std::binary_search(NodeMap.begin(), NodeMap.end(), MapEntry) &&
+             "Attempt to create a duplicate Node.");
+      NodeMap.insert(std::lower_bound(NodeMap.begin(), NodeMap.end(),
+                                      MapEntry), MapEntry);
+
+#if 1
+      // This is the missing piece to turn on VRP.
+      if (Constant *C = dyn_cast<Constant>(V))
+        initializeConstant(C, MapEntry.index);
+#endif
 
-      NodeMapType::const_iterator I = Nodes.find(V);
-      return (I != Nodes.end()) ? I->second : 0;
+      return MapEntry.index;
     }
 
-    Node *getOrInsertNode(Value *V) {
-      if (Node *N = getNode(V))
-        return N;
-      else
-        return newNode(V);
+    /// If the Value is in the graph, return the canonical form. Otherwise,
+    /// return the original Value.
+    Value *canonicalize(Value *V, ETNode *Subtree) {
+      if (isa<Constant>(V)) return V;
+
+      if (unsigned n = getNode(V, Subtree))
+        return node(n)->getValue();
+      else 
+        return V;
     }
 
-    Node *newNode(Value *V) {
-      //DOUT << "new node: " << *V << "\n";
-      materialize();
-      Node *&N = Nodes[V];
-      assert(N == 0 && "Node already exists for value.");
-      N = new Node();
-      N->setValue(V);
-      return N;
-    }
-
-    /// Returns true iff the nodes are provably inequal.
-    bool isNotEqual(const Node *N1, const Node *N2) const {
-      if (N1 == N2) return false;
-      for (Node::const_iterator I = N1->begin(), E = N1->end(); I != E; ++I) {
-        if (I->first == N2)
-          return (I->second & EQ_BIT) == 0;
-      }
-      return isLess(N1, N2) || isGreater(N1, N2);
-    }
-
-    /// Returns true iff N1 is provably less than N2.
-    bool isLess(const Node *N1, const Node *N2) const {
-      if (N1 == N2) return false;
-      for (Node::const_iterator I = N2->begin(), E = N2->end(); I != E; ++I) {
-        if (I->first == N1)
-          return I->second == LT;
-      }
-      for (Node::const_iterator I = N2->begin(), E = N2->end(); I != E; ++I) {
-        if ((I->second & (LT_BIT | GT_BIT)) == LT_BIT)
-          if (isLess(N1, I->first)) return true;
-      }
+    /// isRelatedBy - true iff n1 op n2
+    bool isRelatedBy(unsigned n1, unsigned n2, ETNode *Subtree, LatticeVal LV) {
+      if (n1 == n2) return LV & EQ_BIT;
+
+      Node *N1 = node(n1);
+      Node::iterator I = N1->find(n2, Subtree), E = N1->end();
+      if (I != E) return (I->LV & LV) == I->LV;
+
       return false;
     }
 
-    /// Returns true iff N1 is provably less than or equal to N2.
-    bool isLessEqual(const Node *N1, const Node *N2) const {
-      if (N1 == N2) return true;
-      for (Node::const_iterator I = N2->begin(), E = N2->end(); I != E; ++I) {
-        if (I->first == N1)
-          return (I->second & (LT_BIT | GT_BIT)) == LT_BIT;
-      }
-      for (Node::const_iterator I = N2->begin(), E = N2->end(); I != E; ++I) {
-        if ((I->second & (LT_BIT | GT_BIT)) == LT_BIT)
-          if (isLessEqual(N1, I->first)) return true;
+    // The add* methods assume that your input is logically valid and may 
+    // assertion-fail or infinitely loop if you attempt a contradiction.
+
+    void addEquality(unsigned n, Value *V, ETNode *Subtree) {
+      assert(canonicalize(node(n)->getValue(), Subtree) == node(n)->getValue()
+             && "Node's 'canonical' choice isn't best within this subtree.");
+
+      // Suppose that we are given "%x -> node #1 (%y)". The problem is that
+      // we may already have "%z -> node #2 (%x)" somewhere above us in the
+      // graph. We need to find those edges and add "%z -> node #1 (%y)"
+      // to keep the lookups canonical.
+
+      std::vector<Value *> ToRepoint;
+      ToRepoint.push_back(V);
+
+      if (unsigned Conflict = getNode(V, Subtree)) {
+        // XXX: NodeMap.size() exceeds 68000 entries compiling kimwitu++!
+        // This adds 57 seconds to the otherwise 3 second build. Unacceptable.
+        //
+        // IDEA: could we iterate 1..Nodes.size() calling getNode? It's
+        // O(n log n) but kimwitu++ only has about 300 nodes.
+        for (NodeMapType::iterator I = NodeMap.begin(), E = NodeMap.end();
+             I != E; ++I) {
+          if (I->index == Conflict && Subtree->DominatedBy(I->Subtree))
+            ToRepoint.push_back(I->V);
+        }
       }
-      return false;
-    }
 
-    /// Returns true iff N1 is provably greater than N2.
-    bool isGreater(const Node *N1, const Node *N2) const {
-      return isLess(N2, N1);
-    }
+      for (std::vector<Value *>::iterator VI = ToRepoint.begin(),
+           VE = ToRepoint.end(); VI != VE; ++VI) {
+        Value *V = *VI;
+
+        // XXX: review this code. This may be doing too many insertions.
+        NodeMapEdge Edge(V, n, Subtree);
+        NodeMapType::iterator E = NodeMap.end();
+        NodeMapType::iterator I = std::lower_bound(NodeMap.begin(), E, Edge);
+        if (I == E || I->V != V || I->Subtree != Subtree) {
+          // New Value
+          NodeMap.insert(I, Edge);
+        } else if (I != E && I->V == V && I->Subtree == Subtree) {
+          // Update best choice
+          I->index = n;
+        }
 
-    /// Returns true iff N1 is provably greater than or equal to N2.
-    bool isGreaterEqual(const Node *N1, const Node *N2) const {
-      return isLessEqual(N2, N1);
+#ifndef NDEBUG
+        Node *N = node(n);
+        if (isa<Constant>(V)) {
+          if (isa<Constant>(N->getValue())) {
+            assert(V == N->getValue() && "Constant equals different constant?");
+          }
+        }
+#endif
+      }
     }
 
-    // The add* methods assume that your input is logically valid and may 
-    // assertion-fail or infinitely loop if you attempt a contradiction.
+    /// addInequality - Sets n1 op n2.
+    /// It is also an error to call this on an inequality that is already true.
+    void addInequality(unsigned n1, unsigned n2, ETNode *Subtree,
+                       LatticeVal LV1) {
+      assert(n1 != n2 && "A node can't be inequal to itself.");
+
+      if (LV1 != NE)
+        assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) &&
+               "Contradictory inequality.");
+
+      Node *N1 = node(n1);
+      Node *N2 = node(n2);
+
+      // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
+      // add %a < %n2 too. This keeps the graph fully connected.
+      if (LV1 != NE) {
+        // Someone with a head for this sort of logic, please review this.
+        // Given that %x SLTUGT %y and %a SLEUANY %x, what is the relationship
+        // between %a and %y? I believe the below code is correct, but I don't
+        // think it's the most efficient solution.
+
+        unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
+        unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);
+        for (Node::iterator I = N1->begin(), E = N1->end(); I != E; ++I) {
+          if (I->LV != NE && I->To != n2) {
+            ETNode *Local_Subtree = NULL;
+            if (Subtree->DominatedBy(I->Subtree))
+              Local_Subtree = Subtree;
+            else if (I->Subtree->DominatedBy(Subtree))
+              Local_Subtree = I->Subtree;
+
+            if (Local_Subtree) {
+              unsigned new_relationship = 0;
+              LatticeVal ILV = reversePredicate(I->LV);
+              unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT);
+              unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT);
+
+              if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
+                new_relationship |= ILV_s;
+
+              if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
+                new_relationship |= ILV_u;
+
+              if (new_relationship) {
+                if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
+                  new_relationship |= (SLT_BIT|SGT_BIT);
+                if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
+                  new_relationship |= (ULT_BIT|UGT_BIT);
+                if ((LV1 & EQ_BIT) && (ILV & EQ_BIT))
+                  new_relationship |= EQ_BIT;
 
-    void addEqual(Node *N, Value *V) {
-      materialize();
-      Nodes[V] = N;
-    }
+                LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
 
-    void addNotEqual(Node *N1, Node *N2) {
-      assert(N1 != N2 && "A node can't be inequal to itself.");
-      materialize();
-      N1->addNotEqual(N2);
-      N2->addNotEqual(N1);
-    }
+                node(I->To)->update(n2, NewLV, Local_Subtree);
+                N2->update(I->To, reversePredicate(NewLV), Local_Subtree);
+              }
+            }
+          }
+        }
 
-    /// N1 is less than N2.
-    void addLess(Node *N1, Node *N2) {
-      assert(N1 != N2 && !isLess(N2, N1) && "Attempt to create < cycle.");
-      materialize();
-      N2->addLess(N1);
-      N1->addGreater(N2);
-    }
+        for (Node::iterator I = N2->begin(), E = N2->end(); I != E; ++I) {
+          if (I->LV != NE && I->To != n1) {
+            ETNode *Local_Subtree = NULL;
+            if (Subtree->DominatedBy(I->Subtree))
+              Local_Subtree = Subtree;
+            else if (I->Subtree->DominatedBy(Subtree))
+              Local_Subtree = I->Subtree;
+
+            if (Local_Subtree) {
+              unsigned new_relationship = 0;
+              unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
+              unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
+
+              if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
+                new_relationship |= ILV_s;
+
+              if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
+                new_relationship |= ILV_u;
+
+              if (new_relationship) {
+                if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
+                  new_relationship |= (SLT_BIT|SGT_BIT);
+                if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
+                  new_relationship |= (ULT_BIT|UGT_BIT);
+                if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT))
+                  new_relationship |= EQ_BIT;
 
-    /// N1 is less than or equal to N2.
-    void addLessEqual(Node *N1, Node *N2) {
-      assert(N1 != N2 && "Nodes are equal. Use mergeNodes instead.");
-      assert(!isGreater(N1, N2) && "Impossible: Adding x <= y when x > y.");
-      materialize();
-      N2->addLessEqual(N1);
-      N1->addGreaterEqual(N2);
-    }
+                LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
 
-    /// Find the transitive closure starting at a node walking down the edges
-    /// of type Val. Type Inserter must be an inserter that accepts Node *.
-    template <typename Inserter>
-    void transitiveClosure(Node *N, LatticeVal Val, Inserter insert) {
-      for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
-        if (I->second == Val) {
-          *insert = I->first;
-          transitiveClosure(I->first, Val, insert);
+                N1->update(I->To, NewLV, Local_Subtree);
+                node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree);
+              }
+            }
+          }
         }
       }
-    }
 
-    /// Kills off all the nodes in Kill by replicating their properties into
-    /// node N. The elements of Kill must be unique. After merging, N's new
-    /// canonical value is NewCanonical. Type C must be a container of Node *.
-    template <typename C>
-    void mergeNodes(Node *N, C &Kill, Value *NewCanonical);
+      N1->update(n2, LV1, Subtree);
+      N2->update(n1, reversePredicate(LV1), Subtree);
+    }
 
     /// Removes a Value from the graph, but does not delete any nodes. As this
     /// method does not delete Nodes, V may not be the canonical choice for
-    /// any node.
+    /// a node with any relationships. It is invalid to call newNode on a Value
+    /// that has been removed.
     void remove(Value *V) {
-      materialize();
-
-      for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E;) {
-        NodeMapType::iterator J = I++;
-        assert(J->second->getValue() != V && "Can't delete canonical choice.");
-        if (J->first == V) Nodes.erase(J);
+      for (unsigned i = 0; i < NodeMap.size();) {
+        NodeMapType::iterator I = NodeMap.begin()+i;
+        assert((node(I->index)->getValue() != V || node(I->index)->begin() ==
+                node(I->index)->end()) && "Tried to delete in-use node.");
+        if (I->V == V) {
+#ifndef NDEBUG
+          if (node(I->index)->getValue() == V)
+            node(I->index)->Canonical = NULL;
+#endif
+          NodeMap.erase(I);
+        } else ++i;
       }
     }
 
 #ifndef NDEBUG
-    void debug(std::ostream &os) const {
+    virtual void dump() {
+      dump(*cerr.stream());
+    }
+
+    void dump(std::ostream &os) {
     std::set<Node *> VisitedNodes;
-    for (NodeMapType::const_iterator I = Nodes.begin(), E = Nodes.end();
+    for (NodeMapType::const_iterator I = NodeMap.begin(), E = NodeMap.end();
          I != E; ++I) {
-      Node *N = I->second;
-      os << *I->first << " == " << *N->getValue() << "\n";
+      Node *N = node(I->index);
+      os << *I->V << " == " << I->index << "(" << I->Subtree << ")\n";
       if (VisitedNodes.insert(N).second) {
-        os << *N->getValue() << ":\n";
-        for (Node::const_iterator NI = N->begin(), NE = N->end();
-             NI != NE; ++NI) {
-          static const std::string names[8] =
-              { "00", "01", " <", "<=", " >", ">=", "!=", "07" };
-          os << "  " << names[NI->second] << " "
-             << *NI->first->getValue() << "\n";
-        }
+        os << I->index << ". ";
+        if (!N->getValue()) os << "(deleted node)\n";
+        else N->dump(os);
       }
     }
   }
 #endif
   };
 
-  InequalityGraph::~InequalityGraph() {
-    if (ConcreteIG) return;
-
-    std::vector<Node *> Remove;
-    for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end();
-         I != E; ++I) {
-      if (I->first == I->second->getValue())
-        Remove.push_back(I->second);
-    }
-    for (std::vector<Node *>::iterator I = Remove.begin(), E = Remove.end();
-         I != E; ++I) {
-      delete *I;
-    }
-  }
-
-  template <typename C>
-  void InequalityGraph::mergeNodes(Node *N, C &Kill, Value *NewCanonical) {
-    materialize();
-
-    // Merge the relationships from the members of Kill into N.
-    for (typename C::iterator KI = Kill.begin(), KE = Kill.end();
-         KI != KE; ++KI) {
-
-      for (Node::iterator I = (*KI)->begin(), E = (*KI)->end(); I != E; ++I) {
-        if (I->first == N) continue;
-
-        Node::iterator NI = N->find(I->first);
-        if (NI == N->end()) {
-          N->Relations.push_back(std::make_pair(I->first, I->second));
-        } else {
-          unsigned char LV = NI->second & I->second;
-          if (LV == EQ_BIT) {
-
-            assert(std::find(Kill.begin(), Kill.end(), I->first) != Kill.end()
-                    && "Lost EQ property.");
-            N->erase(NI);
-          } else {
-            NI->second = static_cast<LatticeVal>(LV);
-            assert(InequalityGraph::validPredicate(NI->second) &&
-                   "Invalid union of lattice values.");
-          }
-        }
+  /// UnreachableBlocks keeps tracks of blocks that are for one reason or
+  /// another discovered to be unreachable. This is used to cull the graph when
+  /// analyzing instructions, and to mark blocks with the "unreachable"
+  /// terminator instruction after the function has executed.
+  class VISIBILITY_HIDDEN UnreachableBlocks {
+  private:
+    std::vector<BasicBlock *> DeadBlocks;
 
-        // All edges are reciprocal; every Node that Kill points to also
-        // contains a pointer to Kill. Replace those with pointers with N.
-        unsigned iter = I->first->findIndex(*KI);
-        assert(iter != (unsigned)-1 && "Edge not reciprocal.");
-        I->first->assign(N, (I->first->begin()+iter)->second);
-        I->first->erase(I->first->begin()+iter);
-      }
+  public:
+    /// mark - mark a block as dead
+    void mark(BasicBlock *BB) {
+      std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
+      std::vector<BasicBlock *>::iterator I =
+        std::lower_bound(DeadBlocks.begin(), E, BB);
 
-      // Removing references from N to Kill.
-      Node::iterator NI = N->find(*KI);
-      if (NI != N->end()) {
-        N->erase(NI); // breaks reciprocity until Kill is deleted.
-      }
+      if (I == E || *I != BB) DeadBlocks.insert(I, BB);
     }
 
-    N->setValue(NewCanonical);
+    /// isDead - returns whether a block is known to be dead already
+    bool isDead(BasicBlock *BB) {
+      std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
+      std::vector<BasicBlock *>::iterator I =
+        std::lower_bound(DeadBlocks.begin(), E, BB);
 
-    // Update value mapping to point to the merged node.
-    for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end();
-         I != E; ++I) {
-      if (std::find(Kill.begin(), Kill.end(), I->second) != Kill.end())
-        I->second = N;
+      return I != E && *I == BB;
     }
 
-    for (typename C::iterator KI = Kill.begin(), KE = Kill.end();
-         KI != KE; ++KI) {
-      delete *KI;
-    }
-  }
+    /// kill - replace the dead blocks' terminator with an UnreachableInst.
+    bool kill() {
+      bool modified = false;
+      for (std::vector<BasicBlock *>::iterator I = DeadBlocks.begin(),
+           E = DeadBlocks.end(); I != E; ++I) {
+        BasicBlock *BB = *I;
 
-  void InequalityGraph::materialize() {
-    if (!ConcreteIG) return;
-    const InequalityGraph *IG = ConcreteIG;
-    ConcreteIG = NULL;
-
-    for (NodeMapType::const_iterator I = IG->Nodes.begin(),
-         E = IG->Nodes.end(); I != E; ++I) {
-      if (I->first == I->second->getValue()) {
-        Node *N = newNode(I->first);
-        N->Relations.reserve(N->Relations.size());
-      }
-    }
-    for (NodeMapType::const_iterator I = IG->Nodes.begin(),
-         E = IG->Nodes.end(); I != E; ++I) {
-      if (I->first != I->second->getValue()) {
-        Nodes[I->first] = getNode(I->second->getValue());
-      } else {
-        Node *Old = I->second;
-        Node *N = getNode(I->first);
-        for (Node::const_iterator NI = Old->begin(), NE = Old->end();
-             NI != NE; ++NI) {
-          N->assign(getNode(NI->first->getValue()), NI->second);
+        DOUT << "unreachable block: " << BB->getName() << "\n";
+
+        for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
+             SI != SE; ++SI) {
+          BasicBlock *Succ = *SI;
+          Succ->removePredecessor(BB);
         }
+
+        TerminatorInst *TI = BB->getTerminator();
+        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
+        TI->eraseFromParent();
+        new UnreachableInst(BB);
+        ++NumBlocks;
+        modified = true;
       }
+      DeadBlocks.clear();
+      return modified;
     }
-  }
+  };
 
   /// VRPSolver keeps track of how changes to one variable affect other
   /// variables, and forwards changes along to the InequalityGraph. It
@@ -516,34 +718,34 @@
   /// @brief VRPSolver calculates inferences from a new relationship.
   class VISIBILITY_HIDDEN VRPSolver {
   private:
-    std::deque<Instruction *> WorkList;
+    struct Operation {
+      Value *LHS, *RHS;
+      ICmpInst::Predicate Op;
+
+      Instruction *Context;
+    };
+    std::deque<Operation> WorkList;
 
     InequalityGraph &IG;
-    const InequalityGraph &cIG;
+    UnreachableBlocks &UB;
     ETForest *Forest;
     ETNode *Top;
+    BasicBlock *TopBB;
+    Instruction *TopInst;
+    bool &modified;
 
     typedef InequalityGraph::Node Node;
 
-    /// Returns true if V1 is a better canonical value than V2.
-    bool compare(Value *V1, Value *V2) const {
-      if (isa<Constant>(V1))
-        return !isa<Constant>(V2);
-      else if (isa<Constant>(V2))
-        return false;
-      else if (isa<Argument>(V1))
-        return !isa<Argument>(V2);
-      else if (isa<Argument>(V2))
-        return false;
-
-      Instruction *I1 = dyn_cast<Instruction>(V1);
-      Instruction *I2 = dyn_cast<Instruction>(V2);
-
-      if (!I1 || !I2) return false;
-
+    /// IdomI - Determines whether one Instruction dominates another.
+    bool IdomI(Instruction *I1, Instruction *I2) const {
       BasicBlock *BB1 = I1->getParent(),
                  *BB2 = I2->getParent();
       if (BB1 == BB2) {
+        if (isa<TerminatorInst>(I1)) return false;
+        if (isa<TerminatorInst>(I2)) return true;
+        if (isa<PHINode>(I1) && !isa<PHINode>(I2)) return true;
+        if (!isa<PHINode>(I1) && isa<PHINode>(I2)) return false;
+
         for (BasicBlock::const_iterator I = BB1->begin(), E = BB1->end();
              I != E; ++I) {
           if (&*I == I1) return true;
@@ -556,647 +758,628 @@
       return false;
     }
 
-    void addToWorklist(Instruction *I) {
-      //DOUT << "addToWorklist: " << *I << "\n";
-
-      if (!isa<BinaryOperator>(I) && !isa<SelectInst>(I) && !isa<CmpInst>(I)) 
-        return;
+    /// Returns true if V1 is a better canonical value than V2.
+    bool compare(Value *V1, Value *V2) const {
+      if (isa<Constant>(V1))
+        return !isa<Constant>(V2);
+      else if (isa<Constant>(V2))
+        return false;
+      else if (isa<Argument>(V1))
+        return !isa<Argument>(V2);
+      else if (isa<Argument>(V2))
+        return false;
 
-      const Type *Ty = I->getType();
-      if (Ty == Type::VoidTy || Ty->isFPOrFPVector()) return;
+      Instruction *I1 = dyn_cast<Instruction>(V1);
+      Instruction *I2 = dyn_cast<Instruction>(V2);
 
-      if (isInstructionTriviallyDead(I)) return;
+      if (!I1 || !I2)
+        return V1->getNumUses() < V2->getNumUses();
 
-      WorkList.push_back(I);
+      return IdomI(I1, I2);
     }
 
-    void addRecursive(Value *V) {
-      //DOUT << "addRecursive: " << *V << "\n";
-
-      Instruction *I = dyn_cast<Instruction>(V);
-      if (I)
-        addToWorklist(I);
-      else if (!isa<Argument>(V))
-        return;
-
-      //DOUT << "addRecursive uses...\n";
-      for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
-           UI != UE; ++UI) {
-        // Use must be either be dominated by Top, or dominate Top.
-        if (Instruction *Inst = dyn_cast<Instruction>(*UI)) {
-          ETNode *INode = Forest->getNodeForBlock(Inst->getParent());
-          if (INode->DominatedBy(Top) || Top->DominatedBy(INode))
-            addToWorklist(Inst);
-        }
-      }
-
-      if (I) {
-        //DOUT << "addRecursive ops...\n";
-        for (User::op_iterator OI = I->op_begin(), OE = I->op_end();
-             OI != OE; ++OI) {
-          if (Instruction *Inst = dyn_cast<Instruction>(*OI))
-            addToWorklist(Inst);
-        }
+    // below - true if the Instruction is dominated by the current context
+    // block or instruction
+    bool below(Instruction *I) {
+      if (TopInst)
+        return IdomI(TopInst, I);
+      else {
+        ETNode *Node = Forest->getNodeForBlock(I->getParent());
+        return Node == Top || Node->DominatedBy(Top);
       }
-      //DOUT << "exit addRecursive (" << *V << ").\n";
     }
 
-  public:
-    VRPSolver(InequalityGraph &IG, ETForest *Forest, BasicBlock *TopBB)
-      : IG(IG), cIG(IG), Forest(Forest), Top(Forest->getNodeForBlock(TopBB)) {}
+    bool makeEqual(Value *V1, Value *V2) {
+      DOUT << "makeEqual(" << *V1 << ", " << *V2 << ")\n";
 
-    bool isEqual(Value *V1, Value *V2) const {
       if (V1 == V2) return true;
-      if (const Node *N1 = cIG.getNode(V1))
-        return N1 == cIG.getNode(V2);
-      return false;
-    }
 
-    bool isNotEqual(Value *V1, Value *V2) const {
-      if (V1 == V2) return false;
-      if (const Node *N1 = cIG.getNode(V1))
-        if (const Node *N2 = cIG.getNode(V2))
-          return cIG.isNotEqual(N1, N2);
-      return false;
-    }
+      if (isa<Constant>(V1) && isa<Constant>(V2))
+        return false;
 
-    bool isLess(Value *V1, Value *V2) const {
-      if (V1 == V2) return false;
-      if (const Node *N1 = cIG.getNode(V1))
-        if (const Node *N2 = cIG.getNode(V2))
-          return cIG.isLess(N1, N2);
-      return false;
-    }
+      unsigned n1 = IG.getNode(V1, Top), n2 = IG.getNode(V2, Top);
 
-    bool isLessEqual(Value *V1, Value *V2) const {
-      if (V1 == V2) return true;
-      if (const Node *N1 = cIG.getNode(V1))
-        if (const Node *N2 = cIG.getNode(V2))
-          return cIG.isLessEqual(N1, N2);
-      return false;
-    }
+      if (n1 && n2) {
+        if (n1 == n2) return true;
+        if (IG.isRelatedBy(n1, n2, Top, NE)) return false;
+      }
 
-    bool isGreater(Value *V1, Value *V2) const {
-      if (V1 == V2) return false;
-      if (const Node *N1 = cIG.getNode(V1))
-        if (const Node *N2 = cIG.getNode(V2))
-          return cIG.isGreater(N1, N2);
-      return false;
-    }
+      if (n1) assert(V1 == IG.node(n1)->getValue() && "Value isn't canonical.");
+      if (n2) assert(V2 == IG.node(n2)->getValue() && "Value isn't canonical.");
 
-    bool isGreaterEqual(Value *V1, Value *V2) const {
-      if (V1 == V2) return true;
-      if (const Node *N1 = IG.getNode(V1))
-        if (const Node *N2 = IG.getNode(V2))
-          return cIG.isGreaterEqual(N1, N2);
-      return false;
-    }
+      if (compare(V2, V1)) { std::swap(V1, V2); std::swap(n1, n2); }
+
+      assert(!isa<Constant>(V2) && "Tried to remove a constant.");
+
+      SetVector<unsigned> Remove;
+      if (n2) Remove.insert(n2);
+
+      if (n1 && n2) {
+        // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z.
+        // We can't just merge %x and %y because the relationship with %z would
+        // be EQ and that's invalid. What we're doing is looking for any nodes
+        // %z such that %x <= %z and %y >= %z, and vice versa.
+        //
+        // Also handle %a <= %b and %c <= %a when adding %b <= %c.
 
-    // All of the add* functions return true if the InequalityGraph represents
-    // the property, and false if there is a logical contradiction. On false,
-    // you may no longer perform any queries on the InequalityGraph.
-
-    bool addEqual(Value *V1, Value *V2) {
-      //DOUT << "addEqual(" << *V1 << ", " << *V2 << ")\n";
-      if (isEqual(V1, V2)) return true;
-
-      const Node *cN1 = cIG.getNode(V1), *cN2 = cIG.getNode(V2);
-
-      if (cN1 && cN2 && cIG.isNotEqual(cN1, cN2))
-          return false;
-
-      if (compare(V2, V1)) { std::swap(V1, V2); std::swap(cN1, cN2); }
-
-      if (cN1) {
-        if (ConstantBool *CB = dyn_cast<ConstantBool>(V1)) {
-          Node *N1 = IG.getNode(V1);
-           
-          // When "addEqual" is performed and the new value is a ConstantBool,
-          // iterate through the NE set and fix them up to be EQ of the
-          // opposite bool.
-
-          for (Node::iterator I = N1->begin(), E = N1->end(); I != E; ++I)
-            if ((I->second & 1) == 0) {
-              assert(N1 != I->first && "Node related to itself?");
-              addEqual(I->first->getValue(),
-                       ConstantBool::get(!CB->getValue()));
+        Node *N1 = IG.node(n1);
+        Node::iterator end = N1->end();
+        for (unsigned i = 0; i < Remove.size(); ++i) {
+          Node *N = IG.node(Remove[i]);
+          Value *V = N->getValue();
+          for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
+            if (I->LV & EQ_BIT) {
+              if (Top == I->Subtree || Top->DominatedBy(I->Subtree)) {
+                Node::iterator NI = N1->find(I->To, Top);
+                if (NI != end) {
+                  if (!(NI->LV & EQ_BIT)) return false;
+                  if (isRelatedBy(V, IG.node(NI->To)->getValue(),
+                                  ICmpInst::ICMP_NE))
+                    return false;
+                  Remove.insert(NI->To);
+                }
+              }
             }
+          }
         }
-      }
 
-      if (!cN2) {
-        if (Instruction *I2 = dyn_cast<Instruction>(V2)) {
-          ETNode *Node_I2 = Forest->getNodeForBlock(I2->getParent());
-          if (Top != Node_I2 && Node_I2->DominatedBy(Top)) {
-            Value *V = V1;
-            if (cN1 && compare(V1, cN1->getValue())) V = cN1->getValue();
-            //DOUT << "Simply removing " << *I2
-            //     << ", replacing with " << *V << "\n";
-            I2->replaceAllUsesWith(V);
-            // leave it dead; it'll get erased later.
-            ++NumSimple;
-            addRecursive(V1);
-            return true;
+        // See if one of the nodes about to be removed is actually a better
+        // canonical choice than n1.
+        unsigned orig_n1 = n1;
+        std::vector<unsigned>::iterator DontRemove = Remove.end();
+        for (std::vector<unsigned>::iterator I = Remove.begin()+1 /* skip n2 */,
+             E = Remove.end(); I != E; ++I) {
+          unsigned n = *I;
+          Value *V = IG.node(n)->getValue();
+          if (compare(V, V1)) {
+            V1 = V;
+            n1 = n;
+            DontRemove = I;
           }
         }
+        if (DontRemove != Remove.end()) {
+          unsigned n = *DontRemove;
+          Remove.remove(n);
+          Remove.insert(orig_n1);
+        }
       }
 
-      Node *N1 = IG.getNode(V1), *N2 = IG.getNode(V2);
+      // We'd like to allow makeEqual on two values to perform a simple
+      // substitution without every creating nodes in the IG whenever possible.
+      //
+      // The first iteration through this loop operates on V2 before going
+      // through the Remove list and operating on those too. If all of the
+      // iterations performed simple replacements then we exit early.
+      bool exitEarly = true;
+      unsigned i = 0;
+      for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
+        if (i) R = IG.node(Remove[i])->getValue(); // skip n2.
+
+        // Try to replace the whole instruction. If we can, we're done.
+        Instruction *I2 = dyn_cast<Instruction>(R);
+        if (I2 && below(I2)) {
+          std::vector<Instruction *> ToNotify;
+          for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
+               UI != UE;) {
+            Use &TheUse = UI.getUse();
+            ++UI;
+            if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser()))
+              ToNotify.push_back(I);
+          }
 
-      if ( N1 && !N2) {
-        IG.addEqual(N1, V2);
-        if (compare(V1, N1->getValue())) N1->setValue(V1);
-      }
-      if (!N1 &&  N2) {
-        IG.addEqual(N2, V1);
-        if (compare(V1, N2->getValue())) N2->setValue(V1);
-      }
-      if ( N1 &&  N2) {
-        // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z.
-        // We can't just merge %x and %y because the relationship with %z would
-        // be EQ and that's invalid; they need to be the same Node.
-        //
-        // What we're doing is looking for any chain of nodes reaching %z such
-        // that %x <= %z and %y >= %z, and vice versa. The cool part is that
-        // every node in between is also equal because of the squeeze principle.
-
-        std::vector<Node *> N1_GE, N2_LE, N1_LE, N2_GE;
-        IG.transitiveClosure(N1, InequalityGraph::GE, back_inserter(N1_GE));
-        std::sort(N1_GE.begin(), N1_GE.end());
-        N1_GE.erase(std::unique(N1_GE.begin(), N1_GE.end()), N1_GE.end());
-        IG.transitiveClosure(N2, InequalityGraph::LE, back_inserter(N2_LE));
-        std::sort(N1_LE.begin(), N1_LE.end());
-        N1_LE.erase(std::unique(N1_LE.begin(), N1_LE.end()), N1_LE.end());
-        IG.transitiveClosure(N1, InequalityGraph::LE, back_inserter(N1_LE));
-        std::sort(N2_GE.begin(), N2_GE.end());
-        N2_GE.erase(std::unique(N2_GE.begin(), N2_GE.end()), N2_GE.end());
-        std::unique(N2_GE.begin(), N2_GE.end());
-        IG.transitiveClosure(N2, InequalityGraph::GE, back_inserter(N2_GE));
-        std::sort(N2_LE.begin(), N2_LE.end());
-        N2_LE.erase(std::unique(N2_LE.begin(), N2_LE.end()), N2_LE.end());
-
-        std::vector<Node *> Set1, Set2;
-        std::set_intersection(N1_GE.begin(), N1_GE.end(),
-                              N2_LE.begin(), N2_LE.end(),
-                              back_inserter(Set1));
-        std::set_intersection(N1_LE.begin(), N1_LE.end(),
-                              N2_GE.begin(), N2_GE.end(),
-                              back_inserter(Set2));
-
-        std::vector<Node *> Equal;
-        std::set_union(Set1.begin(), Set1.end(), Set2.begin(), Set2.end(),
-                       back_inserter(Equal));
+          DOUT << "Simply removing " << *I2
+               << ", replacing with " << *V1 << "\n";
+          I2->replaceAllUsesWith(V1);
+          // leave it dead; it'll get erased later.
+          ++NumInstruction;
+          modified = true;
 
-        Value *Best = N1->getValue();
-        if (compare(N2->getValue(), Best)) Best = N2->getValue();
+          for (std::vector<Instruction *>::iterator II = ToNotify.begin(),
+               IE = ToNotify.end(); II != IE; ++II) {
+            opsToDef(*II);
+          }
 
-        for (std::vector<Node *>::iterator I = Equal.begin(), E = Equal.end();
-             I != E; ++I) {
-          Value *V = (*I)->getValue();
-          if (compare(V, Best)) Best = V;
+          continue;
         }
 
-        Equal.push_back(N2);
-        IG.mergeNodes(N1, Equal, Best);
-      }
-      if (!N1 && !N2) IG.addEqual(IG.newNode(V1), V2);
-
-      addRecursive(V1);
-      addRecursive(V2);
+        // Otherwise, replace all dominated uses.
+        for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
+             UI != UE;) {
+          Use &TheUse = UI.getUse();
+          ++UI;
+          if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
+            if (below(I)) {
+              TheUse.set(V1);
+              modified = true;
+              ++NumVarsReplaced;
+              opsToDef(I);
+            }
+          }
+        }
 
-      return true;
-    }
+        // If that killed the instruction, stop here.
+        if (I2 && isInstructionTriviallyDead(I2)) {
+          DOUT << "Killed all uses of " << *I2
+               << ", replacing with " << *V1 << "\n";
+          continue;
+        }
 
-    bool addNotEqual(Value *V1, Value *V2) {
-      //DOUT << "addNotEqual(" << *V1 << ", " << *V2 << ")\n");
-      if (isNotEqual(V1, V2)) return true;
+        // If we make it to here, then we will need to create a node for N1.
+        // Otherwise, we can skip out early!
+        exitEarly = false;
+      }
+
+      if (exitEarly) return true;
+
+      // Create N1.
+      // XXX: this should call newNode, but instead the node might be created
+      // in isRelatedBy. That's also a fixme.
+      if (!n1) n1 = IG.getOrInsertNode(V1, Top);
+
+      // Migrate relationships from removed nodes to N1.
+      Node *N1 = IG.node(n1);
+      for (std::vector<unsigned>::iterator I = Remove.begin(), E = Remove.end();
+           I != E; ++I) {
+        unsigned n = *I;
+        Node *N = IG.node(n);
+        for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) {
+          if (Top == NI->Subtree || NI->Subtree->DominatedBy(Top)) {
+            if (NI->To == n1) {
+              assert((NI->LV & EQ_BIT) && "Node inequal to itself.");
+              continue;
+            }
+            if (Remove.count(NI->To))
+              continue;
 
-      // Never permit %x NE true/false.
-      if (ConstantBool *B1 = dyn_cast<ConstantBool>(V1)) {
-        return addEqual(ConstantBool::get(!B1->getValue()), V2);
-      } else if (ConstantBool *B2 = dyn_cast<ConstantBool>(V2)) {
-        return addEqual(V1, ConstantBool::get(!B2->getValue()));
+            IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top);
+            N1->update(NI->To, NI->LV, Top);
+          }
+        }
       }
 
-      Node *N1 = IG.getOrInsertNode(V1),
-           *N2 = IG.getOrInsertNode(V2);
-
-      if (N1 == N2) return false;
-
-      IG.addNotEqual(N1, N2);
+      // Point V2 (and all items in Remove) to N1.
+      if (!n2)
+        IG.addEquality(n1, V2, Top);
+      else {
+        for (std::vector<unsigned>::iterator I = Remove.begin(),
+             E = Remove.end(); I != E; ++I) {
+          IG.addEquality(n1, IG.node(*I)->getValue(), Top);
+        }
+      }
 
-      addRecursive(V1);
-      addRecursive(V2);
+      // If !Remove.empty() then V2 = Remove[0]->getValue().
+      // Even when Remove is empty, we still want to process V2.
+      i = 0;
+      for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
+        if (i) R = IG.node(Remove[i])->getValue(); // skip n2.
+
+        if (Instruction *I2 = dyn_cast<Instruction>(R)) defToOps(I2);
+        for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end();
+             UI != UE;) {
+          Use &TheUse = UI.getUse();
+          ++UI;
+          if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
+            opsToDef(I);
+          }
+        }
+      }
 
       return true;
     }
 
-    /// Set V1 less than V2.
-    bool addLess(Value *V1, Value *V2) {
-      if (isLess(V1, V2)) return true;
-      if (isGreaterEqual(V1, V2)) return false;
-
-      Node *N1 = IG.getOrInsertNode(V1), *N2 = IG.getOrInsertNode(V2);
+    /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value
+    /// Requires that the lattice value be valid; does not accept ICMP_EQ.
+    static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) {
+      switch (Pred) {
+        case ICmpInst::ICMP_EQ:
+          assert(!"No matching lattice value.");
+          return static_cast<LatticeVal>(EQ_BIT);
+        default:
+          assert(!"Invalid 'icmp' predicate.");
+        case ICmpInst::ICMP_NE:
+          return NE;
+        case ICmpInst::ICMP_UGT:
+          return SNEUGT;
+        case ICmpInst::ICMP_UGE:
+          return SANYUGE;
+        case ICmpInst::ICMP_ULT:
+          return SNEULT;
+        case ICmpInst::ICMP_ULE:
+          return SANYULE;
+        case ICmpInst::ICMP_SGT:
+          return SGTUNE;
+        case ICmpInst::ICMP_SGE:
+          return SGEUANY;
+        case ICmpInst::ICMP_SLT:
+          return SLTUNE;
+        case ICmpInst::ICMP_SLE:
+          return SLEUANY;
+      }
+    }
 
-      if (N1 == N2) return false;
+  public:
+    VRPSolver(InequalityGraph &IG, UnreachableBlocks &UB, ETForest *Forest,
+              bool &modified, BasicBlock *TopBB)
+      : IG(IG),
+        UB(UB),
+        Forest(Forest),
+        Top(Forest->getNodeForBlock(TopBB)),
+        TopBB(TopBB),
+        TopInst(NULL),
+        modified(modified) {}
+
+    VRPSolver(InequalityGraph &IG, UnreachableBlocks &UB, ETForest *Forest,
+              bool &modified, Instruction *TopInst)
+      : IG(IG),
+        UB(UB),
+        Forest(Forest),
+        TopInst(TopInst),
+        modified(modified)
+    {
+      TopBB = TopInst->getParent();
+      Top = Forest->getNodeForBlock(TopBB);
+    }
+
+    bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const {
+      if (Constant *C1 = dyn_cast<Constant>(V1))
+        if (Constant *C2 = dyn_cast<Constant>(V2))
+          return ConstantExpr::getCompare(Pred, C1, C2) ==
+                 ConstantBool::getTrue();
+
+      // XXX: this is lousy. If we're passed a Constant, then we might miss
+      // some relationships if it isn't in the IG because the relationships
+      // added by initializeConstant are missing.
+      if (isa<Constant>(V1)) IG.getOrInsertNode(V1, Top);
+      if (isa<Constant>(V2)) IG.getOrInsertNode(V2, Top);
+
+      if (unsigned n1 = IG.getNode(V1, Top))
+        if (unsigned n2 = IG.getNode(V2, Top)) {
+          if (n1 == n2) return Pred == ICmpInst::ICMP_EQ ||
+                               Pred == ICmpInst::ICMP_ULE ||
+                               Pred == ICmpInst::ICMP_UGE ||
+                               Pred == ICmpInst::ICMP_SLE ||
+                               Pred == ICmpInst::ICMP_SGE;
+          if (Pred == ICmpInst::ICMP_EQ) return false;
+          return IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred));
+        }
 
-      IG.addLess(N1, N2);
+      return false;
+    }
 
-      addRecursive(V1);
-      addRecursive(V2);
+    /// add - adds a new property to the work queue
+    void add(Value *V1, Value *V2, ICmpInst::Predicate Pred,
+             Instruction *I = NULL) {
+      DOUT << "adding " << *V1 << " " << Pred << " " << *V2;
+      if (I) DOUT << " context: " << *I;
+      else DOUT << " default context";
+      DOUT << "\n";
+
+      WorkList.push_back(Operation());
+      Operation &O = WorkList.back();
+      O.LHS = V1, O.RHS = V2, O.Op = Pred, O.Context = I;
+    }
+
+    /// defToOps - Given an instruction definition that we've learned something
+    /// new about, find any new relationships between its operands.
+    void defToOps(Instruction *I) {
+      Instruction *NewContext = below(I) ? I : TopInst;
+      Value *Canonical = IG.canonicalize(I, Top);
+
+      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+        const Type *Ty = BO->getType();
+        assert(!Ty->isFPOrFPVector() && "Float in work queue!");
+
+        Value *Op0 = IG.canonicalize(BO->getOperand(0), Top);
+        Value *Op1 = IG.canonicalize(BO->getOperand(1), Top);
+
+        // TODO: "and bool true, %x" EQ %y then %x EQ %y.
+
+        switch (BO->getOpcode()) {
+          case Instruction::And: {
+            // "and int %a, %b"  EQ -1   then %a EQ -1   and %b EQ -1
+            // "and bool %a, %b" EQ true then %a EQ true and %b EQ true
+            ConstantIntegral *CI = ConstantIntegral::getAllOnesValue(Ty);
+            if (Canonical == CI) {
+              add(CI, Op0, ICmpInst::ICMP_EQ, NewContext);
+              add(CI, Op1, ICmpInst::ICMP_EQ, NewContext);
+            }
+          } break;
+          case Instruction::Or: {
+            // "or int %a, %b"  EQ 0     then %a EQ 0     and %b EQ 0
+            // "or bool %a, %b" EQ false then %a EQ false and %b EQ false
+            Constant *Zero = Constant::getNullValue(Ty);
+            if (Canonical == Zero) {
+              add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext);
+              add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext);
+            }
+          } break;
+          case Instruction::Xor: {
+            // "xor bool true,  %a" EQ true  then %a EQ false
+            // "xor bool true,  %a" EQ false then %a EQ true
+            // "xor bool false, %a" EQ true  then %a EQ true
+            // "xor bool false, %a" EQ false then %a EQ false
+            // "xor int %c, %a" EQ %c then %a EQ 0
+            // "xor int %c, %a" NE %c then %a NE 0
+            // 1. Repeat all of the above, with order of operands reversed.
+            Value *LHS = Op0;
+            Value *RHS = Op1;
+            if (!isa<Constant>(LHS)) std::swap(LHS, RHS);
+
+            if (ConstantBool *CB = dyn_cast<ConstantBool>(Canonical)) {
+              if (ConstantBool *A = dyn_cast<ConstantBool>(LHS))
+                add(RHS, ConstantBool::get(A->getValue() ^ CB->getValue()),
+                                           ICmpInst::ICMP_EQ, NewContext);
+            }
+            if (Canonical == LHS) {
+              if (isa<ConstantIntegral>(Canonical))
+                add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ,
+                    NewContext);
+            } else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) {
+              add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_NE,
+                  NewContext);
+            }
+          } break;
+          default:
+            break;
+        }
+      } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
+        // "icmp ult int %a, int %y" EQ true then %a u< y
+        // etc.
+
+        if (Canonical == ConstantBool::getTrue()) {
+          add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(),
+              NewContext);
+        } else if (Canonical == ConstantBool::getFalse()) {
+          add(IC->getOperand(0), IC->getOperand(1),
+              ICmpInst::getInversePredicate(IC->getPredicate()), NewContext);
+        }
+      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+        if (I->getType()->isFPOrFPVector()) return;
 
-      return true;
+        // Given: "%a = select bool %x, int %b, int %c"
+        // %a EQ %b and %b NE %c then %x EQ true
+        // %a EQ %c and %b NE %c then %x EQ false
+
+        Value *True  = SI->getTrueValue();
+        Value *False = SI->getFalseValue();
+        if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) {
+          if (Canonical == IG.canonicalize(True, Top) ||
+              isRelatedBy(Canonical, False, ICmpInst::ICMP_NE))
+            add(SI->getCondition(), ConstantBool::getTrue(),
+                ICmpInst::ICMP_EQ, NewContext);
+          else if (Canonical == IG.canonicalize(False, Top) ||
+                   isRelatedBy(I, True, ICmpInst::ICMP_NE))
+            add(SI->getCondition(), ConstantBool::getFalse(),
+                ICmpInst::ICMP_EQ, NewContext);
+        }
+      }
+      // TODO: CastInst "%a = cast ... %b" where %a is EQ or NE a constant.
     }
 
-    /// Set V1 less than or equal to V2.
-    bool addLessEqual(Value *V1, Value *V2) {
-      if (isLessEqual(V1, V2)) return true;
-      if (V1 == V2) return true;
+    /// opsToDef - A new relationship was discovered involving one of this
+    /// instruction's operands. Find any new relationship involving the
+    /// definition.
+    void opsToDef(Instruction *I) {
+      Instruction *NewContext = below(I) ? I : TopInst;
+
+      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+        Value *Op0 = IG.canonicalize(BO->getOperand(0), Top);
+        Value *Op1 = IG.canonicalize(BO->getOperand(1), Top);
+
+        if (ConstantIntegral *CI0 = dyn_cast<ConstantIntegral>(Op0))
+          if (ConstantIntegral *CI1 = dyn_cast<ConstantIntegral>(Op1)) {
+            add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1),
+                ICmpInst::ICMP_EQ, NewContext);
+            return;
+          }
 
-      if (isLessEqual(V2, V1))
-        return addEqual(V1, V2);
+        // "%y = and bool true, %x" then %x EQ %y.
+        // "%y = or bool false, %x" then %x EQ %y.
+        if (BO->getOpcode() == Instruction::Or) {
+          Constant *Zero = Constant::getNullValue(BO->getType());
+          if (Op0 == Zero) {
+            add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
+            return;
+          } else if (Op1 == Zero) {
+            add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
+            return;
+          }
+        } else if (BO->getOpcode() == Instruction::And) {
+          Constant *AllOnes = ConstantIntegral::getAllOnesValue(BO->getType());
+          if (Op0 == AllOnes) {
+            add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
+            return;
+          } else if (Op1 == AllOnes) {
+            add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
+            return;
+          }
+        }
 
-      if (isGreater(V1, V2)) return false;
+        // "%x = add int %y, %z" and %x EQ %y then %z EQ 0
+        // "%x = mul int %y, %z" and %x EQ %y then %z EQ 1
+        // 1. Repeat all of the above, with order of operands reversed.
+        // "%x = udiv int %y, %z" and %x EQ %y then %z EQ 1
+
+        Value *Known = Op0, *Unknown = Op1;
+        if (Known != BO) std::swap(Known, Unknown);
+        if (Known == BO) {
+          const Type *Ty = BO->getType();
+          assert(!Ty->isFPOrFPVector() && "Float in work queue!");
 
-      Node *N1 = IG.getOrInsertNode(V1),
-           *N2 = IG.getOrInsertNode(V2);
+          switch (BO->getOpcode()) {
+            default: break;
+            case Instruction::Xor:
+            case Instruction::Or:
+            case Instruction::Add:
+            case Instruction::Sub:
+              add(Unknown, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ, NewContext);
+              break;
+            case Instruction::UDiv:
+            case Instruction::SDiv:
+              if (Unknown == Op0) break; // otherwise, fallthrough
+            case Instruction::And:
+            case Instruction::Mul:
+              Constant *One = NULL;
+              if (isa<ConstantInt>(Unknown))
+                One = ConstantInt::get(Ty, 1);
+              else if (isa<ConstantBool>(Unknown))
+                One = ConstantBool::getTrue();
 
-      if (N1 == N2) return true;
+              if (One) add(Unknown, One, ICmpInst::ICMP_EQ, NewContext);
+              break;
+          }
+        }
 
-      IG.addLessEqual(N1, N2);
+        // TODO: "%a = add int %b, 1" and %b > %z then %a >= %z.
 
-      addRecursive(V1);
-      addRecursive(V2);
+      } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
+        // "%a = icmp ult %b, %c" and %b u< %c  then %a EQ true
+        // "%a = icmp ult %b, %c" and %b u>= %c then %a EQ false
+        // etc.
+
+        Value *Op0 = IG.canonicalize(IC->getOperand(0), Top);
+        Value *Op1 = IG.canonicalize(IC->getOperand(1), Top);
+
+        ICmpInst::Predicate Pred = IC->getPredicate();
+        if (isRelatedBy(Op0, Op1, Pred)) {
+          add(IC, ConstantBool::getTrue(), ICmpInst::ICMP_EQ, NewContext);
+        } else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred))) {
+          add(IC, ConstantBool::getFalse(), ICmpInst::ICMP_EQ, NewContext);
+        }
 
-      return true;
+        // TODO: make the predicate more strict, if possible.
+
+      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+        // Given: "%a = select bool %x, int %b, int %c"
+        // %x EQ true  then %a EQ %b
+        // %x EQ false then %a EQ %c
+        // %b EQ %c then %a EQ %b
+
+        Value *Canonical = IG.canonicalize(SI->getCondition(), Top);
+        if (Canonical == ConstantBool::getTrue()) {
+          add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
+        } else if (Canonical == ConstantBool::getFalse()) {
+          add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext);
+        } else if (IG.canonicalize(SI->getTrueValue(), Top) ==
+                   IG.canonicalize(SI->getFalseValue(), Top)) {
+          add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
+        }
+      }
+      // TODO: CastInst "%a = cast ... %b" where %b is EQ or NE a constant.
     }
 
+    /// solve - process the work queue
+    /// Return false if a logical contradiction occurs.
     void solve() {
-      DOUT << "WorkList entry, size: " << WorkList.size() << "\n";
+      //DOUT << "WorkList entry, size: " << WorkList.size() << "\n";
       while (!WorkList.empty()) {
-        DOUT << "WorkList size: " << WorkList.size() << "\n";
-
-        Instruction *I = WorkList.front();
-        WorkList.pop_front();
+        //DOUT << "WorkList size: " << WorkList.size() << "\n";
 
-        Value *Canonical = cIG.canonicalize(I);
-        const Type *Ty = I->getType();
-
-        //DOUT << "solving: " << *I << "\n";
-        //DEBUG(IG.debug(*cerr.stream()));
-
-        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
-          Value *Op0 = cIG.canonicalize(BO->getOperand(0)),
-                *Op1 = cIG.canonicalize(BO->getOperand(1));
-
-          ConstantIntegral *CI1 = dyn_cast<ConstantIntegral>(Op0),
-                           *CI2 = dyn_cast<ConstantIntegral>(Op1);
+        Operation &O = WorkList.front();
+        if (O.Context) {
+          TopInst = O.Context;
+          Top = Forest->getNodeForBlock(TopInst->getParent());
+        }
+        O.LHS = IG.canonicalize(O.LHS, Top);
+        O.RHS = IG.canonicalize(O.RHS, Top);
 
-          if (CI1 && CI2)
-            addEqual(BO, ConstantExpr::get(BO->getOpcode(), CI1, CI2));
+        assert(O.LHS == IG.canonicalize(O.LHS, Top) && "Canonicalize isn't.");
+        assert(O.RHS == IG.canonicalize(O.RHS, Top) && "Canonicalize isn't.");
 
-          switch (BO->getOpcode()) {
-            case Instruction::And: {
-              // "and int %a, %b"  EQ -1   then %a EQ -1   and %b EQ -1
-              // "and bool %a, %b" EQ true then %a EQ true and %b EQ true
-              ConstantIntegral *CI = ConstantIntegral::getAllOnesValue(Ty);
-              if (Canonical == CI) {
-                addEqual(CI, Op0);
-                addEqual(CI, Op1);
-              }
-            } break;
-            case Instruction::Or: {
-              // "or int %a, %b"  EQ 0     then %a EQ 0     and %b EQ 0
-              // "or bool %a, %b" EQ false then %a EQ false and %b EQ false
-              Constant *Zero = Constant::getNullValue(Ty);
-              if (Canonical == Zero) {
-                addEqual(Zero, Op0);
-                addEqual(Zero, Op1);
-              }
-            } break;
-            case Instruction::Xor: {
-              // "xor bool true,  %a" EQ true  then %a EQ false
-              // "xor bool true,  %a" EQ false then %a EQ true
-              // "xor bool false, %a" EQ true  then %a EQ true
-              // "xor bool false, %a" EQ false then %a EQ false
-              // "xor int %c, %a" EQ %c then %a EQ 0
-              // "xor int %c, %a" NE %c then %a NE 0
-              // 1. Repeat all of the above, with order of operands reversed.
-              Value *LHS = Op0, *RHS = Op1;
-              if (!isa<Constant>(LHS)) std::swap(LHS, RHS);
-
-              if (ConstantBool *CB = dyn_cast<ConstantBool>(Canonical)) {
-                if (ConstantBool *A = dyn_cast<ConstantBool>(LHS))
-                  addEqual(RHS, ConstantBool::get(A->getValue() ^
-                                                  CB->getValue()));
-              }
-              if (Canonical == LHS) {
-                if (isa<ConstantIntegral>(Canonical))
-                  addEqual(RHS, Constant::getNullValue(Ty));
-              } else if (isNotEqual(LHS, Canonical)) {
-                addNotEqual(RHS, Constant::getNullValue(Ty));
-              }
-            } break;
-            default:
-              break;
-          }
+        DOUT << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS;
+        if (O.Context) DOUT << " context: " << *O.Context;
+        else DOUT << " default context";
+        DOUT << "\n";
+
+        DEBUG(IG.dump());
+
+        // TODO: actually check the constants and add to UB.
+        if (isa<Constant>(O.LHS) && isa<Constant>(O.RHS)) {
+          WorkList.pop_front();
+          continue;
+        }
 
-          // "%x = add int %y, %z" and %x EQ %y then %z EQ 0
-          // "%x = mul int %y, %z" and %x EQ %y then %z EQ 1
-          // 1. Repeat all of the above, with order of operands reversed.
-          // "%x = fdiv float %y, %z" and %x EQ %y then %z EQ 1
-          Value *Known = Op0, *Unknown = Op1;
-          if (Known != BO) std::swap(Known, Unknown);
-          if (Known == BO) {
-            switch (BO->getOpcode()) {
-              default: break;
-              case Instruction::Xor:
-              case Instruction::Or:
-              case Instruction::Add:
-              case Instruction::Sub:
-                if (!Ty->isFloatingPoint())
-                  addEqual(Unknown, Constant::getNullValue(Ty));
-                break;
-              case Instruction::UDiv:
-              case Instruction::SDiv:
-              case Instruction::FDiv:
-                if (Unknown == Op0) break; // otherwise, fallthrough
-              case Instruction::And:
-              case Instruction::Mul:
-                Constant *One = NULL;
-                if (isa<ConstantInt>(Unknown))
-                  One = ConstantInt::get(Ty, 1);
-                else if (isa<ConstantFP>(Unknown))
-                  One = ConstantFP::get(Ty, 1);
-                else if (isa<ConstantBool>(Unknown))
-                  One = ConstantBool::getTrue();
+        if (O.Op == ICmpInst::ICMP_EQ) {
+          if (!makeEqual(O.LHS, O.RHS))
+            UB.mark(TopBB);
+        } else {
+          LatticeVal LV = cmpInstToLattice(O.Op);
 
-                if (One) addEqual(Unknown, One);
-                break;
+          if ((LV & EQ_BIT) &&
+              isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) {
+            if (!makeEqual(O.LHS, O.RHS))
+              UB.mark(TopBB);
+          } else {
+            if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){
+              DOUT << "inequality contradiction!\n";
+              WorkList.pop_front();
+              continue;
             }
-          }
-        } else if (FCmpInst *CI = dyn_cast<FCmpInst>(I)) {
-          Value *Op0 = cIG.canonicalize(CI->getOperand(0)),
-                *Op1 = cIG.canonicalize(CI->getOperand(1));
-
-          ConstantFP *CI1 = dyn_cast<ConstantFP>(Op0),
-                     *CI2 = dyn_cast<ConstantFP>(Op1);
-
-          if (CI1 && CI2)
-            addEqual(CI, ConstantExpr::getFCmp(CI->getPredicate(), CI1, CI2));
-
-          switch (CI->getPredicate()) {
-            case FCmpInst::FCMP_OEQ:
-            case FCmpInst::FCMP_UEQ:
-              // "eq int %a, %b" EQ true  then %a EQ %b
-              // "eq int %a, %b" EQ false then %a NE %b
-              if (Canonical == ConstantBool::getTrue())
-                addEqual(Op0, Op1);
-              else if (Canonical == ConstantBool::getFalse())
-                addNotEqual(Op0, Op1);
-
-              // %a EQ %b then "eq int %a, %b" EQ true
-              // %a NE %b then "eq int %a, %b" EQ false
-              if (isEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-              else if (isNotEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
 
-              break;
-            case FCmpInst::FCMP_ONE:
-            case FCmpInst::FCMP_UNE:
-              // "ne int %a, %b" EQ true  then %a NE %b
-              // "ne int %a, %b" EQ false then %a EQ %b
-              if (Canonical == ConstantBool::getTrue())
-                addNotEqual(Op0, Op1);
-              else if (Canonical == ConstantBool::getFalse())
-                addEqual(Op0, Op1);
-
-              // %a EQ %b then "ne int %a, %b" EQ false
-              // %a NE %b then "ne int %a, %b" EQ true
-              if (isEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
-              else if (isNotEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-
-              break;
-            case FCmpInst::FCMP_ULT:
-            case FCmpInst::FCMP_OLT:
-              // "lt int %a, %b" EQ true  then %a LT %b
-              // "lt int %a, %b" EQ false then %b LE %a
-              if (Canonical == ConstantBool::getTrue())
-                addLess(Op0, Op1);
-              else if (Canonical == ConstantBool::getFalse())
-                addLessEqual(Op1, Op0);
-
-              // %a LT %b then "lt int %a, %b" EQ true
-              // %a GE %b then "lt int %a, %b" EQ false
-              if (isLess(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-              else if (isGreaterEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
-
-              break;
-            case FCmpInst::FCMP_ULE:
-            case FCmpInst::FCMP_OLE:
-              // "le int %a, %b" EQ true  then %a LE %b
-              // "le int %a, %b" EQ false then %b LT %a
-              if (Canonical == ConstantBool::getTrue())
-                addLessEqual(Op0, Op1);
-              else if (Canonical == ConstantBool::getFalse())
-                addLess(Op1, Op0);
-
-              // %a LE %b then "le int %a, %b" EQ true
-              // %a GT %b then "le int %a, %b" EQ false
-              if (isLessEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-              else if (isGreater(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
-
-              break;
-            case FCmpInst::FCMP_UGT:
-            case FCmpInst::FCMP_OGT:
-              // "gt int %a, %b" EQ true  then %b LT %a
-              // "gt int %a, %b" EQ false then %a LE %b
-              if (Canonical == ConstantBool::getTrue())
-                addLess(Op1, Op0);
-              else if (Canonical == ConstantBool::getFalse())
-                addLessEqual(Op0, Op1);
-
-              // %a GT %b then "gt int %a, %b" EQ true
-              // %a LE %b then "gt int %a, %b" EQ false
-              if (isGreater(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-              else if (isLessEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
-
-              break;
-            case FCmpInst::FCMP_UGE:
-            case FCmpInst::FCMP_OGE:
-              // "ge int %a, %b" EQ true  then %b LE %a
-              // "ge int %a, %b" EQ false then %a LT %b
-              if (Canonical == ConstantBool::getTrue())
-                addLessEqual(Op1, Op0);
-              else if (Canonical == ConstantBool::getFalse())
-                addLess(Op0, Op1);
-
-              // %a GE %b then "ge int %a, %b" EQ true
-              // %a LT %b then "lt int %a, %b" EQ false
-              if (isGreaterEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-              else if (isLess(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
-
-              break;
-            default:
-              break;
-          }
-
-          // "%x = add int %y, %z" and %x EQ %y then %z EQ 0
-          // "%x = mul int %y, %z" and %x EQ %y then %z EQ 1
-          // 1. Repeat all of the above, with order of operands reversed.
-          // "%x = fdiv float %y, %z" and %x EQ %y then %z EQ 1
-          Value *Known = Op0, *Unknown = Op1;
-          if (Known != BO) std::swap(Known, Unknown);
-        } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) {
-          Value *Op0 = cIG.canonicalize(CI->getOperand(0)),
-                *Op1 = cIG.canonicalize(CI->getOperand(1));
-
-          ConstantIntegral *CI1 = dyn_cast<ConstantIntegral>(Op0),
-                           *CI2 = dyn_cast<ConstantIntegral>(Op1);
-
-          if (CI1 && CI2)
-            addEqual(CI, ConstantExpr::getICmp(CI->getPredicate(), CI1, CI2));
-
-          switch (CI->getPredicate()) {
-            case ICmpInst::ICMP_EQ:
-              // "eq int %a, %b" EQ true  then %a EQ %b
-              // "eq int %a, %b" EQ false then %a NE %b
-              if (Canonical == ConstantBool::getTrue())
-                addEqual(Op0, Op1);
-              else if (Canonical == ConstantBool::getFalse())
-                addNotEqual(Op0, Op1);
-
-              // %a EQ %b then "eq int %a, %b" EQ true
-              // %a NE %b then "eq int %a, %b" EQ false
-              if (isEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-              else if (isNotEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
-
-              break;
-            case ICmpInst::ICMP_NE:
-              // "ne int %a, %b" EQ true  then %a NE %b
-              // "ne int %a, %b" EQ false then %a EQ %b
-              if (Canonical == ConstantBool::getTrue())
-                addNotEqual(Op0, Op1);
-              else if (Canonical == ConstantBool::getFalse())
-                addEqual(Op0, Op1);
-
-              // %a EQ %b then "ne int %a, %b" EQ false
-              // %a NE %b then "ne int %a, %b" EQ true
-              if (isEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
-              else if (isNotEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
+            unsigned n1 = IG.getOrInsertNode(O.LHS, Top);
+            unsigned n2 = IG.getOrInsertNode(O.RHS, Top);
 
-              break;
-            case ICmpInst::ICMP_ULT:
-            case ICmpInst::ICMP_SLT:
-              // "lt int %a, %b" EQ true  then %a LT %b
-              // "lt int %a, %b" EQ false then %b LE %a
-              if (Canonical == ConstantBool::getTrue())
-                addLess(Op0, Op1);
-              else if (Canonical == ConstantBool::getFalse())
-                addLessEqual(Op1, Op0);
-
-              // %a LT %b then "lt int %a, %b" EQ true
-              // %a GE %b then "lt int %a, %b" EQ false
-              if (isLess(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-              else if (isGreaterEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
+            if (n1 == n2) {
+              if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE &&
+                  O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE)
+                UB.mark(TopBB);
 
-              break;
-            case ICmpInst::ICMP_ULE:
-            case ICmpInst::ICMP_SLE:
-              // "le int %a, %b" EQ true  then %a LE %b
-              // "le int %a, %b" EQ false then %b LT %a
-              if (Canonical == ConstantBool::getTrue())
-                addLessEqual(Op0, Op1);
-              else if (Canonical == ConstantBool::getFalse())
-                addLess(Op1, Op0);
-
-              // %a LE %b then "le int %a, %b" EQ true
-              // %a GT %b then "le int %a, %b" EQ false
-              if (isLessEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-              else if (isGreater(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
+              WorkList.pop_front();
+              continue;
+            }
 
-              break;
-            case ICmpInst::ICMP_UGT:
-            case ICmpInst::ICMP_SGT:
-              // "gt int %a, %b" EQ true  then %b LT %a
-              // "gt int %a, %b" EQ false then %a LE %b
-              if (Canonical == ConstantBool::getTrue())
-                addLess(Op1, Op0);
-              else if (Canonical == ConstantBool::getFalse())
-                addLessEqual(Op0, Op1);
-
-              // %a GT %b then "gt int %a, %b" EQ true
-              // %a LE %b then "gt int %a, %b" EQ false
-              if (isGreater(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-              else if (isLessEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
+            if (IG.isRelatedBy(n1, n2, Top, LV)) {
+              WorkList.pop_front();
+              continue;
+            }
 
-              break;
-            case ICmpInst::ICMP_UGE:
-            case ICmpInst::ICMP_SGE:
-              // "ge int %a, %b" EQ true  then %b LE %a
-              // "ge int %a, %b" EQ false then %a LT %b
-              if (Canonical == ConstantBool::getTrue())
-                addLessEqual(Op1, Op0);
-              else if (Canonical == ConstantBool::getFalse())
-                addLess(Op0, Op1);
-
-              // %a GE %b then "ge int %a, %b" EQ true
-              // %a LT %b then "lt int %a, %b" EQ false
-              if (isGreaterEqual(Op0, Op1))
-                addEqual(CI, ConstantBool::getTrue());
-              else if (isLess(Op0, Op1))
-                addEqual(CI, ConstantBool::getFalse());
+            IG.addInequality(n1, n2, Top, LV);
 
-              break;
-            default:
-              break;
+            if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) defToOps(I1);
+            if (isa<Instruction>(O.LHS) || isa<Argument>(O.LHS)) {
+              for (Value::use_iterator UI = O.LHS->use_begin(),
+                   UE = O.LHS->use_end(); UI != UE;) {
+                Use &TheUse = UI.getUse();
+                ++UI;
+                if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
+                  opsToDef(I);
+                }
+              }
+            }
+            if (Instruction *I2 = dyn_cast<Instruction>(O.RHS)) defToOps(I2);
+            if (isa<Instruction>(O.RHS) || isa<Argument>(O.RHS)) {
+              for (Value::use_iterator UI = O.RHS->use_begin(),
+                   UE = O.RHS->use_end(); UI != UE;) {
+                Use &TheUse = UI.getUse();
+                ++UI;
+                if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
+                  opsToDef(I);
+                }
+              }
+            }
           }
-
-          // "%x = add int %y, %z" and %x EQ %y then %z EQ 0
-          // "%x = mul int %y, %z" and %x EQ %y then %z EQ 1
-          // 1. Repeat all of the above, with order of operands reversed.
-          // "%x = fdiv float %y, %z" and %x EQ %y then %z EQ 1
-          Value *Known = Op0, *Unknown = Op1;
-          if (Known != BO) std::swap(Known, Unknown);
-        } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
-          // Given: "%a = select bool %x, int %b, int %c"
-          // %a EQ %b then %x EQ true
-          // %a EQ %c then %x EQ false
-          if (isEqual(I, SI->getTrueValue()) ||
-              isNotEqual(I, SI->getFalseValue()))
-            addEqual(SI->getCondition(), ConstantBool::getTrue());
-          else if (isEqual(I, SI->getFalseValue()) ||
-                   isNotEqual(I, SI->getTrueValue()))
-            addEqual(SI->getCondition(), ConstantBool::getFalse());
-
-          // %x EQ true  then %a EQ %b
-          // %x EQ false then %a NE %b
-          if (isEqual(SI->getCondition(), ConstantBool::getTrue()))
-            addEqual(SI, SI->getTrueValue());
-          else if (isEqual(SI->getCondition(), ConstantBool::getFalse()))
-            addEqual(SI, SI->getFalseValue());
         }
+        WorkList.pop_front();
       }
     }
   };
@@ -1209,16 +1392,10 @@
     DominatorTree *DT;
     ETForest *Forest;
     bool modified;
+    InequalityGraph *IG;
+    UnreachableBlocks UB;
 
-    class State {
-    public:
-      BasicBlock *ToVisit;
-      InequalityGraph *IG;
-
-      State(BasicBlock *BB, InequalityGraph *IG) : ToVisit(BB), IG(IG) {}
-    };
-
-    std::vector<State> WorkList;
+    std::vector<DominatorTree::Node *> WorkList;
 
   public:
     bool runOnFunction(Function &F);
@@ -1227,8 +1404,6 @@
       AU.addRequiredID(BreakCriticalEdgesID);
       AU.addRequired<DominatorTree>();
       AU.addRequired<ETForest>();
-      AU.setPreservesCFG();
-      AU.addPreservedID(BreakCriticalEdgesID);
     }
 
   private:
@@ -1241,12 +1416,14 @@
     class VISIBILITY_HIDDEN Forwards : public InstVisitor<Forwards> {
       friend class InstVisitor<Forwards>;
       PredicateSimplifier *PS;
+      DominatorTree::Node *DTNode;
 
     public:
       InequalityGraph &IG;
+      UnreachableBlocks &UB;
 
-      Forwards(PredicateSimplifier *PS, InequalityGraph &IG)
-        : PS(PS), IG(IG) {}
+      Forwards(PredicateSimplifier *PS, DominatorTree::Node *DTNode)
+        : PS(PS), DTNode(DTNode), IG(*PS->IG), UB(PS->UB) {}
 
       void visitTerminatorInst(TerminatorInst &TI);
       void visitBranchInst(BranchInst &BI);
@@ -1257,53 +1434,55 @@
       void visitStoreInst(StoreInst &SI);
 
       void visitBinaryOperator(BinaryOperator &BO);
-      void visitCmpInst(CmpInst &CI) {}
     };
 
     // Used by terminator instructions to proceed from the current basic
     // block to the next. Verifies that "current" dominates "next",
     // then calls visitBasicBlock.
-    void proceedToSuccessors(const InequalityGraph &IG, BasicBlock *BBCurrent) {
-      DominatorTree::Node *Current = DT->getNode(BBCurrent);
+    void proceedToSuccessors(DominatorTree::Node *Current) {
       for (DominatorTree::Node::iterator I = Current->begin(),
            E = Current->end(); I != E; ++I) {
-        //visitBasicBlock((*I)->getBlock(), IG);
-        WorkList.push_back(State((*I)->getBlock(), new InequalityGraph(IG)));
+        WorkList.push_back(*I);
       }
     }
 
-    void proceedToSuccessor(InequalityGraph *NextIG, BasicBlock *Next) {
-      //visitBasicBlock(Next, NextIG);
-      WorkList.push_back(State(Next, NextIG));
+    void proceedToSuccessor(DominatorTree::Node *Next) {
+      WorkList.push_back(Next);
     }
 
     // Visits each instruction in the basic block.
-    void visitBasicBlock(BasicBlock *BB, InequalityGraph &IG) {
-      DOUT << "Entering Basic Block: " << BB->getName() << "\n";
+    void visitBasicBlock(DominatorTree::Node *Node) {
+      BasicBlock *BB = Node->getBlock();
+      ETNode *ET = Forest->getNodeForBlock(BB);
+      DOUT << "Entering Basic Block: " << BB->getName() << " (" << ET << ")\n";
       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
-        visitInstruction(I++, IG);
+        visitInstruction(I++, Node, ET);
       }
     }
 
     // Tries to simplify each Instruction and add new properties to
     // the PropertySet.
-    void visitInstruction(Instruction *I, InequalityGraph &IG) {
+    void visitInstruction(Instruction *I, DominatorTree::Node *DT, ETNode *ET) {
       DOUT << "Considering instruction " << *I << "\n";
-      DEBUG(IG.debug(*cerr.stream()));
+      DEBUG(IG->dump());
 
-      // Sometimes instructions are made dead due to earlier analysis.
+      // Sometimes instructions are killed in earlier analysis.
       if (isInstructionTriviallyDead(I)) {
+        ++NumSimple;
+        modified = true;
+        IG->remove(I);
         I->eraseFromParent();
         return;
       }
 
       // Try to replace the whole instruction.
-      Value *V = IG.canonicalize(I);
+      Value *V = IG->canonicalize(I, ET);
+      assert(V == I && "Late instruction canonicalization.");
       if (V != I) {
         modified = true;
         ++NumInstruction;
         DOUT << "Removing " << *I << ", replacing with " << *V << "\n";
-        IG.remove(I);
+        IG->remove(I);
         I->replaceAllUsesWith(V);
         I->eraseFromParent();
         return;
@@ -1312,7 +1491,8 @@
       // Try to substitute operands.
       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
         Value *Oper = I->getOperand(i);
-        Value *V = IG.canonicalize(Oper);
+        Value *V = IG->canonicalize(Oper, ET);
+        assert(V == Oper && "Late operand canonicalization.");
         if (V != Oper) {
           modified = true;
           ++NumVarsReplaced;
@@ -1322,10 +1502,10 @@
         }
       }
 
-      //DOUT << "push (%" << I->getParent()->getName() << ")\n";
-      Forwards visit(this, IG);
+      DOUT << "push (%" << I->getParent()->getName() << ")\n";
+      Forwards visit(this, DT);
       visit.visit(*I);
-      //DOUT << "pop (%" << I->getParent()->getName() << ")\n";
+      DOUT << "pop (%" << I->getParent()->getName() << ")\n";
     }
   };
 
@@ -1333,64 +1513,68 @@
     DT = &getAnalysis<DominatorTree>();
     Forest = &getAnalysis<ETForest>();
 
+    Forest->updateDFSNumbers(); // XXX: should only act when numbers are out of date
+
     DOUT << "Entering Function: " << F.getName() << "\n";
 
     modified = false;
-    WorkList.push_back(State(DT->getRoot(), new InequalityGraph()));
+    BasicBlock *RootBlock = &F.getEntryBlock();
+    IG = new InequalityGraph(Forest->getNodeForBlock(RootBlock));
+    WorkList.push_back(DT->getRootNode());
 
     do {
-      State S = WorkList.back();
+      DominatorTree::Node *DTNode = WorkList.back();
       WorkList.pop_back();
-      visitBasicBlock(S.ToVisit, *S.IG);
-      delete S.IG;
+      if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode);
     } while (!WorkList.empty());
 
-    //DEBUG(F.viewCFG());
+    delete IG;
+
+    modified |= UB.kill();
 
     return modified;
   }
 
   void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) {
-    PS->proceedToSuccessors(IG, TI.getParent());
+    PS->proceedToSuccessors(DTNode);
   }
 
   void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) {
-    BasicBlock *BB = BI.getParent();
-
     if (BI.isUnconditional()) {
-      PS->proceedToSuccessors(IG, BB);
+      PS->proceedToSuccessors(DTNode);
       return;
     }
 
     Value *Condition = BI.getCondition();
-    BasicBlock *TrueDest  = BI.getSuccessor(0),
-               *FalseDest = BI.getSuccessor(1);
+    BasicBlock *TrueDest  = BI.getSuccessor(0);
+    BasicBlock *FalseDest = BI.getSuccessor(1);
 
-    if (isa<ConstantBool>(Condition) || TrueDest == FalseDest) {
-      PS->proceedToSuccessors(IG, BB);
+    if (isa<Constant>(Condition) || TrueDest == FalseDest) {
+      PS->proceedToSuccessors(DTNode);
       return;
     }
 
-    DominatorTree::Node *Node = PS->DT->getNode(BB);
-    for (DominatorTree::Node::iterator I = Node->begin(), E = Node->end();
+    for (DominatorTree::Node::iterator I = DTNode->begin(), E = DTNode->end();
          I != E; ++I) {
       BasicBlock *Dest = (*I)->getBlock();
-      InequalityGraph *DestProperties = new InequalityGraph(IG);
-      VRPSolver Solver(*DestProperties, PS->Forest, Dest);
+      DOUT << "Branch thinking about %" << Dest->getName()
+           << "(" << PS->Forest->getNodeForBlock(Dest) << ")\n";
 
       if (Dest == TrueDest) {
-        DOUT << "(" << BB->getName() << ") true set:\n";
-        if (!Solver.addEqual(ConstantBool::getTrue(), Condition)) continue;
-        Solver.solve();
-        DEBUG(DestProperties->debug(*cerr.stream()));
+        DOUT << "(" << DTNode->getBlock()->getName() << ") true set:\n";
+        VRPSolver VRP(IG, UB, PS->Forest, PS->modified, Dest);
+        VRP.add(ConstantBool::getTrue(), Condition, ICmpInst::ICMP_EQ);
+        VRP.solve();
+        DEBUG(IG.dump());
       } else if (Dest == FalseDest) {
-        DOUT << "(" << BB->getName() << ") false set:\n";
-        if (!Solver.addEqual(ConstantBool::getFalse(), Condition)) continue;
-        Solver.solve();
-        DEBUG(DestProperties->debug(*cerr.stream()));
+        DOUT << "(" << DTNode->getBlock()->getName() << ") false set:\n";
+        VRPSolver VRP(IG, UB, PS->Forest, PS->modified, Dest);
+        VRP.add(ConstantBool::getFalse(), Condition, ICmpInst::ICMP_EQ);
+        VRP.solve();
+        DEBUG(IG.dump());
       }
 
-      PS->proceedToSuccessor(DestProperties, Dest);
+      PS->proceedToSuccessor(*I);
     }
   }
 
@@ -1399,31 +1583,30 @@
 
     // Set the EQProperty in each of the cases BBs, and the NEProperties
     // in the default BB.
-    // InequalityGraph DefaultProperties(IG);
 
-    DominatorTree::Node *Node = PS->DT->getNode(SI.getParent());
-    for (DominatorTree::Node::iterator I = Node->begin(), E = Node->end();
+    for (DominatorTree::Node::iterator I = DTNode->begin(), E = DTNode->end();
          I != E; ++I) {
       BasicBlock *BB = (*I)->getBlock();
+      DOUT << "Switch thinking about BB %" << BB->getName()
+           << "(" << PS->Forest->getNodeForBlock(BB) << ")\n";
 
-      InequalityGraph *BBProperties = new InequalityGraph(IG);
-      VRPSolver Solver(*BBProperties, PS->Forest, BB);
+      VRPSolver VRP(IG, UB, PS->Forest, PS->modified, BB);
       if (BB == SI.getDefaultDest()) {
         for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i)
           if (SI.getSuccessor(i) != BB)
-            if (!Solver.addNotEqual(Condition, SI.getCaseValue(i))) continue;
-        Solver.solve();
+            VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE);
+        VRP.solve();
       } else if (ConstantInt *CI = SI.findCaseDest(BB)) {
-        if (!Solver.addEqual(Condition, CI)) continue;
-        Solver.solve();
+        VRP.add(Condition, CI, ICmpInst::ICMP_EQ);
+        VRP.solve();
       }
-      PS->proceedToSuccessor(BBProperties, BB);
+      PS->proceedToSuccessor(*I);
     }
   }
 
   void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) {
-    VRPSolver VRP(IG, PS->Forest, AI.getParent());
-    VRP.addNotEqual(Constant::getNullValue(AI.getType()), &AI);
+    VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &AI);
+    VRP.add(Constant::getNullValue(AI.getType()), &AI, ICmpInst::ICMP_NE);
     VRP.solve();
   }
 
@@ -1432,8 +1615,8 @@
     // avoid "load uint* null" -> null NE null.
     if (isa<Constant>(Ptr)) return;
 
-    VRPSolver VRP(IG, PS->Forest, LI.getParent());
-    VRP.addNotEqual(Constant::getNullValue(Ptr->getType()), Ptr);
+    VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &LI);
+    VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE);
     VRP.solve();
   }
 
@@ -1441,8 +1624,8 @@
     Value *Ptr = SI.getPointerOperand();
     if (isa<Constant>(Ptr)) return;
 
-    VRPSolver VRP(IG, PS->Forest, SI.getParent());
-    VRP.addNotEqual(Constant::getNullValue(Ptr->getType()), Ptr);
+    VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &SI);
+    VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE);
     VRP.solve();
   }
 
@@ -1452,13 +1635,12 @@
     switch (ops) {
     case Instruction::URem:
     case Instruction::SRem:
-    case Instruction::FRem:
     case Instruction::UDiv:
-    case Instruction::SDiv:
-    case Instruction::FDiv: {
+    case Instruction::SDiv: {
       Value *Divisor = BO.getOperand(1);
-      VRPSolver VRP(IG, PS->Forest, BO.getParent());
-      VRP.addNotEqual(Constant::getNullValue(Divisor->getType()), Divisor);
+      VRPSolver VRP(IG, UB, PS->Forest, PS->modified, &BO);
+      VRP.add(Constant::getNullValue(Divisor->getType()), Divisor,
+              ICmpInst::ICMP_NE);
       VRP.solve();
       break;
     }
@@ -1467,7 +1649,6 @@
     }
   }
 
-
   RegisterPass<PredicateSimplifier> X("predsimplify",
                                       "Predicate Simplifier");
 }






More information about the llvm-commits mailing list