[llvm-commits] CVS: llvm/lib/VMCore/AsmWriter.cpp AutoUpgrade.cpp ConstantFolding.cpp ConstantFolding.h Constants.cpp Function.cpp Instruction.cpp Instructions.cpp IntrinsicInst.cpp Type.cpp Verifier.cpp

Reid Spencer reid at x10sys.com
Sun Nov 26 17:06:26 PST 2006



Changes in directory llvm/lib/VMCore:

AsmWriter.cpp updated: 1.212 -> 1.213
AutoUpgrade.cpp updated: 1.20 -> 1.21
ConstantFolding.cpp updated: 1.99 -> 1.100
ConstantFolding.h updated: 1.48 -> 1.49
Constants.cpp updated: 1.171 -> 1.172
Function.cpp updated: 1.106 -> 1.107
Instruction.cpp updated: 1.58 -> 1.59
Instructions.cpp updated: 1.47 -> 1.48
IntrinsicInst.cpp updated: 1.10 -> 1.11
Type.cpp updated: 1.150 -> 1.151
Verifier.cpp updated: 1.166 -> 1.167
---
Log message:

For PR950: http://llvm.org/PR950 :
The long awaited CAST patch. This introduces 12 new instructions into LLVM
to replace the cast instruction. Corresponding changes throughout LLVM are
provided. This passes llvm-test, llvm/test, and SPEC CPUINT2000 with the
exception of 175.vpr which fails only on a slight floating point output
difference.


---
Diffs of the changes:  (+1190 -189)

 AsmWriter.cpp       |    3 
 AutoUpgrade.cpp     |    8 
 ConstantFolding.cpp |  296 ++++++++++++++++---------
 ConstantFolding.h   |    6 
 Constants.cpp       |  215 +++++++++++++++---
 Function.cpp        |    4 
 Instruction.cpp     |   33 +-
 Instructions.cpp    |  601 ++++++++++++++++++++++++++++++++++++++++++++++++++--
 IntrinsicInst.cpp   |    2 
 Type.cpp            |   36 +--
 Verifier.cpp        |  175 +++++++++++++++
 11 files changed, 1190 insertions(+), 189 deletions(-)


Index: llvm/lib/VMCore/AsmWriter.cpp
diff -u llvm/lib/VMCore/AsmWriter.cpp:1.212 llvm/lib/VMCore/AsmWriter.cpp:1.213
--- llvm/lib/VMCore/AsmWriter.cpp:1.212	Thu Nov  2 14:25:50 2006
+++ llvm/lib/VMCore/AsmWriter.cpp	Sun Nov 26 19:05:10 2006
@@ -541,10 +541,11 @@
         Out << ", ";
     }
 
-    if (CE->getOpcode() == Instruction::Cast) {
+    if (CE->isCast()) {
       Out << " to ";
       printTypeInt(Out, CE->getType(), TypeTable);
     }
+
     Out << ')';
 
   } else {


Index: llvm/lib/VMCore/AutoUpgrade.cpp
diff -u llvm/lib/VMCore/AutoUpgrade.cpp:1.20 llvm/lib/VMCore/AutoUpgrade.cpp:1.21
--- llvm/lib/VMCore/AutoUpgrade.cpp:1.20	Tue May 30 11:34:59 2006
+++ llvm/lib/VMCore/AutoUpgrade.cpp	Sun Nov 26 19:05:10 2006
@@ -206,8 +206,8 @@
   if (Constant *C = dyn_cast<Constant>(Arg)) {
     return ConstantExpr::getCast(C, Ty);
   } else {
-    Value *Cast = new CastInst(Arg, Ty, "autoupgrade_cast", InsertBefore);
-    return Cast;
+    return CastInst::createInferredCast(Arg, Ty, "autoupgrade_cast", 
+                                        InsertBefore);
   }
 }
 
@@ -261,8 +261,8 @@
       Instruction *RetVal = NewCI;
       
       if (F->getReturnType() != NewFn->getReturnType()) {
-        RetVal = new CastInst(NewCI, F->getReturnType(), 
-                              NewCI->getName(), CI);
+        RetVal = 
+          new BitCastInst(NewCI, F->getReturnType(), NewCI->getName(), CI);
         NewCI->moveBefore(RetVal);
       }
       


Index: llvm/lib/VMCore/ConstantFolding.cpp
diff -u llvm/lib/VMCore/ConstantFolding.cpp:1.99 llvm/lib/VMCore/ConstantFolding.cpp:1.100
--- llvm/lib/VMCore/ConstantFolding.cpp:1.99	Wed Nov  8 13:16:44 2006
+++ llvm/lib/VMCore/ConstantFolding.cpp	Sun Nov 26 19:05:10 2006
@@ -507,7 +507,7 @@
   // Casting operators.  ick
 #define DEF_CAST(TYPE, CLASS, CTYPE) \
   static Constant *CastTo##TYPE  (const ConstantInt *V) {    \
-    return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getZExtValue()); \
+    return CLASS::get(Type::TYPE##Ty, (CTYPE)((BuiltinType)V->getZExtValue()));\
   }
 
   DEF_CAST(Bool  , ConstantBool, bool)
@@ -721,15 +721,6 @@
 //===----------------------------------------------------------------------===//
 //                ConstantFold*Instruction Implementations
 //===----------------------------------------------------------------------===//
-//
-// These methods contain the special case hackery required to symbolically
-// evaluate some constant expression cases, and use the ConstantRules class to
-// evaluate normal constants.
-//
-static unsigned getSize(const Type *Ty) {
-  unsigned S = Ty->getPrimitiveSize();
-  return S ? S : 8;  // Treat pointers at 8 bytes
-}
 
 /// CastConstantPacked - Convert the specified ConstantPacked node to the
 /// specified packed type.  At this point, we know that the elements of the
@@ -746,17 +737,20 @@
   if (SrcNumElts == DstNumElts) {
     std::vector<Constant*> Result;
     
-    // If the src and dest elements are both integers, just cast each one
-    // which will do the appropriate bit-convert.
-    if (SrcEltTy->isIntegral() && DstEltTy->isIntegral()) {
+    // If the src and dest elements are both integers, or both floats, we can 
+    // just BitCast each element because the elements are the same size.
+    if ((SrcEltTy->isIntegral() && DstEltTy->isIntegral()) ||
+        (SrcEltTy->isFloatingPoint() && DstEltTy->isFloatingPoint())) {
       for (unsigned i = 0; i != SrcNumElts; ++i)
-        Result.push_back(ConstantExpr::getCast(CP->getOperand(i),
-                                               DstEltTy));
+        Result.push_back(
+          ConstantExpr::getCast(Instruction::BitCast, CP->getOperand(1), 
+                                DstEltTy));
       return ConstantPacked::get(Result);
     }
     
+    // If this is an int-to-fp cast ..
     if (SrcEltTy->isIntegral()) {
-      // Otherwise, this is an int-to-fp cast.
+      // Ensure that it is int-to-fp cast
       assert(DstEltTy->isFloatingPoint());
       if (DstEltTy->getTypeID() == Type::DoubleTyID) {
         for (unsigned i = 0; i != SrcNumElts; ++i) {
@@ -805,34 +799,50 @@
   return 0;
 }
 
+/// This function determines which opcode to use to fold two constant cast 
+/// expressions together. It uses CastInst::isEliminableCastPair to determine
+/// the opcode. Consequently its just a wrapper around that function.
+/// @Determine if it is valid to fold a cast of a cast
+static unsigned
+foldConstantCastPair(
+  unsigned opc,          ///< opcode of the second cast constant expression
+  const ConstantExpr*Op, ///< the first cast constant expression
+  const Type *DstTy      ///< desintation type of the first cast
+) {
+  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
+  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
+  assert(CastInst::isCast(opc) && "Invalid cast opcode");
+  
+  // The the types and opcodes for the two Cast constant expressions
+  const Type *SrcTy = Op->getOperand(0)->getType();
+  const Type *MidTy = Op->getType();
+  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
+  Instruction::CastOps secondOp = Instruction::CastOps(opc);
+
+  // Let CastInst::isEliminableCastPair do the heavy lifting.
+  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
+                                        Type::ULongTy);
+}
 
-Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
+Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
                                             const Type *DestTy) {
-  if (V->getType() == DestTy) return (Constant*)V;
+  const Type *SrcTy = V->getType();
 
-  // Cast of a global address to boolean is always true.
-  if (isa<GlobalValue>(V)) {
-    if (DestTy == Type::BoolTy)
-      // FIXME: When we support 'external weak' references, we have to prevent
-      // this transformation from happening.  This code will need to be updated
-      // to ignore external weak symbols when we support it.
-      return ConstantBool::getTrue();
-  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
-    if (CE->getOpcode() == Instruction::Cast) {
-      Constant *Op = const_cast<Constant*>(CE->getOperand(0));
-      // Try to not produce a cast of a cast, which is almost always redundant.
-      if (!Op->getType()->isFloatingPoint() &&
-          !CE->getType()->isFloatingPoint() &&
-          !DestTy->isFloatingPoint()) {
-        unsigned S1 = getSize(Op->getType()), S2 = getSize(CE->getType());
-        unsigned S3 = getSize(DestTy);
-        if (Op->getType() == DestTy && S3 >= S2)
-          return Op;
-        if (S1 >= S2 && S2 >= S3)
-          return ConstantExpr::getCast(Op, DestTy);
-        if (S1 <= S2 && S2 >= S3 && S1 <= S3)
-          return ConstantExpr::getCast(Op, DestTy);
-      }
+  // Handle some simple cases
+  if (SrcTy == DestTy) 
+    return (Constant*)V; // no-op cast
+
+  if (isa<UndefValue>(V))
+    return UndefValue::get(DestTy);
+
+  // If the cast operand is a constant expression, there's a few things we can
+  // do to try to simplify it.
+  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+    if (CE->isCast()) {
+      // Try hard to fold cast of cast because they are almost always
+      // eliminable.
+      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
+        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
     } else if (CE->getOpcode() == Instruction::GetElementPtr) {
       // If all of the indexes in the GEP are null values, there is no pointer
       // adjustment going on.  We might as well cast the source pointer.
@@ -845,69 +855,132 @@
       if (isAllNull)
         return ConstantExpr::getCast(CE->getOperand(0), DestTy);
     }
-  } else if (isa<UndefValue>(V)) {
-    return UndefValue::get(DestTy);
   }
 
-  // Check to see if we are casting an pointer to an aggregate to a pointer to
-  // the first element.  If so, return the appropriate GEP instruction.
-  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
-    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
-      std::vector<Value*> IdxList;
-      IdxList.push_back(Constant::getNullValue(Type::IntTy));
-      const Type *ElTy = PTy->getElementType();
-      while (ElTy != DPTy->getElementType()) {
-        if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
-          if (STy->getNumElements() == 0) break;
-          ElTy = STy->getElementType(0);
-          IdxList.push_back(Constant::getNullValue(Type::UIntTy));
-        } else if (const SequentialType *STy = dyn_cast<SequentialType>(ElTy)) {
-          if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
-          ElTy = STy->getElementType();
-          IdxList.push_back(IdxList[0]);
-        } else {
-          break;
-        }
-      }
+  // We actually have to do a cast now, but first, we might need to fix up
+  // the value of the operand.
+  switch (opc) {
+  case Instruction::FPTrunc:
+  case Instruction::Trunc:
+  case Instruction::FPExt:
+    break; // floating point input & output, no fixup needed
+  case Instruction::FPToUI: {
+    ConstRules &Rules = ConstRules::get(V, V);
+    V = Rules.castToULong(V); // make sure we get an unsigned value first 
+    break;
+  }
+  case Instruction::FPToSI: {
+    ConstRules &Rules = ConstRules::get(V, V);
+    V = Rules.castToLong(V); // make sure we get a signed value first 
+    break;
+  }
+  case Instruction::IntToPtr: //always treated as unsigned
+  case Instruction::UIToFP:
+  case Instruction::ZExt:
+    // A ZExt always produces an unsigned value so we need to cast the value
+    // now before we try to cast it to the destination type
+    if (isa<ConstantInt>(V))
+      V = ConstantInt::get(SrcTy->getUnsignedVersion(), 
+                           cast<ConstantIntegral>(V)->getZExtValue());
+    break;
+  case Instruction::SIToFP:
+  case Instruction::SExt:
+    // A SExt always produces a signed value so we need to cast the value
+    // now before we try to cast it to the destiniation type.
+    if (isa<ConstantInt>(V))
+      V = ConstantInt::get(SrcTy->getSignedVersion(), 
+                           cast<ConstantIntegral>(V)->getSExtValue());
+    break;
 
-      if (ElTy == DPTy->getElementType())
-        return ConstantExpr::getGetElementPtr(const_cast<Constant*>(V),IdxList);
+  case Instruction::PtrToInt:
+    // Cast of a global address to boolean is always true.
+    if (isa<GlobalValue>(V)) {
+      if (DestTy == Type::BoolTy)
+        // FIXME: When we support 'external weak' references, we have to 
+        // prevent this transformation from happening.  This code will need 
+        // to be updated to ignore external weak symbols when we support it.
+        return ConstantBool::getTrue();
     }
-      
-  // Handle casts from one packed constant to another.  We know that the src and
-  // dest type have the same size.
-  if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
-    if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
-      assert(DestPTy->getElementType()->getPrimitiveSizeInBits() * 
-                 DestPTy->getNumElements()  ==
-             SrcTy->getElementType()->getPrimitiveSizeInBits() * 
-             SrcTy->getNumElements() && "Not cast between same sized vectors!");
-      if (isa<ConstantAggregateZero>(V))
-        return Constant::getNullValue(DestTy);
-      if (isa<UndefValue>(V))
-        return UndefValue::get(DestTy);
-      if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
-        // This is a cast from a ConstantPacked of one type to a ConstantPacked
-        // of another type.  Check to see if all elements of the input are
-        // simple.
-        bool AllSimpleConstants = true;
-        for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
-          if (!isa<ConstantInt>(CP->getOperand(i)) &&
-              !isa<ConstantFP>(CP->getOperand(i))) {
-            AllSimpleConstants = false;
+    break;
+  case Instruction::BitCast:
+    // Check to see if we are casting a pointer to an aggregate to a pointer to
+    // the first element.  If so, return the appropriate GEP instruction.
+    if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
+      if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
+        std::vector<Value*> IdxList;
+        IdxList.push_back(Constant::getNullValue(Type::IntTy));
+        const Type *ElTy = PTy->getElementType();
+        while (ElTy != DPTy->getElementType()) {
+          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
+            if (STy->getNumElements() == 0) break;
+            ElTy = STy->getElementType(0);
+            IdxList.push_back(Constant::getNullValue(Type::UIntTy));
+          } else if (const SequentialType *STy = 
+                     dyn_cast<SequentialType>(ElTy)) {
+            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
+            ElTy = STy->getElementType();
+            IdxList.push_back(IdxList[0]);
+          } else {
             break;
           }
         }
-            
-        // If all of the elements are simple constants, we can fold this.
-        if (AllSimpleConstants)
-          return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
+
+        if (ElTy == DPTy->getElementType())
+          return ConstantExpr::getGetElementPtr(
+              const_cast<Constant*>(V),IdxList);
+      }
+        
+    // Handle casts from one packed constant to another.  We know that the src 
+    // and dest type have the same size (otherwise its an illegal cast).
+    if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
+      if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
+        assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
+               "Not cast between same sized vectors!");
+        // First, check for null and undef
+        if (isa<ConstantAggregateZero>(V))
+          return Constant::getNullValue(DestTy);
+        if (isa<UndefValue>(V))
+          return UndefValue::get(DestTy);
+
+        if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
+          // This is a cast from a ConstantPacked of one type to a 
+          // ConstantPacked of another type.  Check to see if all elements of 
+          // the input are simple.
+          bool AllSimpleConstants = true;
+          for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
+            if (!isa<ConstantInt>(CP->getOperand(i)) &&
+                !isa<ConstantFP>(CP->getOperand(i))) {
+              AllSimpleConstants = false;
+              break;
+            }
+          }
+              
+          // If all of the elements are simple constants, we can fold this.
+          if (AllSimpleConstants)
+            return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
+        }
       }
     }
+
+    // Handle sign conversion for integer no-op casts. We need to cast the
+    // value to the correct signedness before we try to cast it to the
+    // destination type. Be careful to do this only for integer types.
+    if (isa<ConstantIntegral>(V) && SrcTy->isInteger()) {
+      if (SrcTy->isSigned())
+        V = ConstantInt::get(SrcTy->getUnsignedVersion(), 
+                             cast<ConstantIntegral>(V)->getZExtValue());
+       else 
+        V = ConstantInt::get(SrcTy->getSignedVersion(), 
+                             cast<ConstantIntegral>(V)->getSExtValue());
+    }
+    break;
+  default:
+    assert(!"Invalid CE CastInst opcode");
+    break;
   }
 
+  // Okay, no more folding possible, time to cast
   ConstRules &Rules = ConstRules::get(V, V);
-
   switch (DestTy->getTypeID()) {
   case Type::BoolTyID:    return Rules.castToBool(V);
   case Type::UByteTyID:   return Rules.castToUByte(V);
@@ -922,6 +995,7 @@
   case Type::DoubleTyID:  return Rules.castToDouble(V);
   case Type::PointerTyID:
     return Rules.castToPointer(V, cast<PointerType>(DestTy));
+  // what about packed ?
   default: return 0;
   }
 }
@@ -1049,15 +1123,22 @@
 static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
   if (C1 == C2) return 0;
 
-  // Ok, we found a different index.  Are either of the operands
-  // ConstantExprs?  If so, we can't do anything with them.
+  // Ok, we found a different index.  Are either of the operands ConstantExprs?
+  // If so, we can't do anything with them.
   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
     return -2; // don't know!
 
   // Ok, we have two differing integer indices.  Sign extend them to be the same
   // type.  Long is always big enough, so we use it.
-  C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
-  C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
+  if (C1->getType() != Type::LongTy && C1->getType() != Type::ULongTy)
+    C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
+  else
+    C1 = ConstantExpr::getBitCast(C1, Type::LongTy);
+  if (C2->getType() != Type::LongTy && C1->getType() != Type::ULongTy)
+    C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
+  else
+    C2 = ConstantExpr::getBitCast(C2, Type::LongTy);
+
   if (C1 == C2) return 0;  // Are they just differing types?
 
   // If the type being indexed over is really just a zero sized type, there is
@@ -1141,7 +1222,19 @@
     Constant *CE1Op0 = CE1->getOperand(0);
 
     switch (CE1->getOpcode()) {
-    case Instruction::Cast:
+    case Instruction::Trunc:
+    case Instruction::FPTrunc:
+    case Instruction::FPExt:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+      break; // We don't do anything with floating point.
+    case Instruction::ZExt:
+    case Instruction::SExt:
+    case Instruction::UIToFP:
+    case Instruction::SIToFP:
+    case Instruction::PtrToInt:
+    case Instruction::IntToPtr:
+    case Instruction::BitCast:
       // If the cast is not actually changing bits, and the second operand is a
       // null pointer, do the comparison with the pre-casted value.
       if (V2->isNullValue() &&
@@ -1154,8 +1247,7 @@
       // important for things like "seteq (cast 4 to int*), (cast 5 to int*)",
       // which happens a lot in compilers with tagged integers.
       if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
-        if (isa<PointerType>(CE1->getType()) && 
-            CE2->getOpcode() == Instruction::Cast &&
+        if (isa<PointerType>(CE1->getType()) && CE2->isCast() &&
             CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
             CE1->getOperand(0)->getType()->isIntegral()) {
           return evaluateRelation(CE1->getOperand(0), CE2->getOperand(0));
@@ -1423,8 +1515,7 @@
         if (cast<ConstantIntegral>(V2)->isAllOnesValue())
           return const_cast<Constant*>(V1);                       // X & -1 == X
         if (V2->isNullValue()) return const_cast<Constant*>(V2);  // X & 0 == 0
-        if (CE1->getOpcode() == Instruction::Cast &&
-            isa<GlobalValue>(CE1->getOperand(0))) {
+        if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
           GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
 
           // Functions are at least 4-byte aligned.  If and'ing the address of a
@@ -1566,8 +1657,7 @@
     //                        long 0, long 0)
     // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
     //
-    if (CE->getOpcode() == Instruction::Cast && IdxList.size() > 1 &&
-        Idx0->isNullValue())
+    if (CE->isCast() && IdxList.size() > 1 && Idx0->isNullValue())
       if (const PointerType *SPT =
           dyn_cast<PointerType>(CE->getOperand(0)->getType()))
         if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))


Index: llvm/lib/VMCore/ConstantFolding.h
diff -u llvm/lib/VMCore/ConstantFolding.h:1.48 llvm/lib/VMCore/ConstantFolding.h:1.49
--- llvm/lib/VMCore/ConstantFolding.h:1.48	Fri Apr  7 20:18:18 2006
+++ llvm/lib/VMCore/ConstantFolding.h	Sun Nov 26 19:05:10 2006
@@ -27,7 +27,11 @@
   class Type;
 
   // Constant fold various types of instruction...
-  Constant *ConstantFoldCastInstruction(const Constant *V, const Type *DestTy);
+  Constant *ConstantFoldCastInstruction(
+    unsigned opcode,     ///< The opcode of the cast
+    const Constant *V,   ///< The source constant
+    const Type *DestTy   ///< The destination type
+  );
   Constant *ConstantFoldSelectInstruction(const Constant *Cond,
                                           const Constant *V1,
                                           const Constant *V2);


Index: llvm/lib/VMCore/Constants.cpp
diff -u llvm/lib/VMCore/Constants.cpp:1.171 llvm/lib/VMCore/Constants.cpp:1.172
--- llvm/lib/VMCore/Constants.cpp:1.171	Fri Nov 17 02:03:48 2006
+++ llvm/lib/VMCore/Constants.cpp	Sun Nov 26 19:05:10 2006
@@ -427,6 +427,14 @@
 };
 }
 
+
+// Utility function for determining if a ConstantExpr is a CastOp or not. This
+// can't be inline because we don't want to #include Instruction.h into
+// Constant.h
+bool ConstantExpr::isCast() const {
+  return Instruction::isCast(getOpcode());
+}
+
 /// ConstantExpr::get* - Return some common constants without having to
 /// specify the full Instruction::OPCODE identifier.
 ///
@@ -507,8 +515,8 @@
 
 /// getWithOperandReplaced - Return a constant expression identical to this
 /// one, but with the specified operand set to the specified value.
-Constant *ConstantExpr::getWithOperandReplaced(unsigned OpNo,
-                                               Constant *Op) const {
+Constant *
+ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
   assert(OpNo < getNumOperands() && "Operand num is out of range!");
   assert(Op->getType() == getOperand(OpNo)->getType() &&
          "Replacing operand with value of different type!");
@@ -517,8 +525,19 @@
   
   Constant *Op0, *Op1, *Op2;
   switch (getOpcode()) {
-  case Instruction::Cast:
-    return ConstantExpr::getCast(Op, getType());
+  case Instruction::Trunc:
+  case Instruction::ZExt:
+  case Instruction::SExt:
+  case Instruction::FPTrunc:
+  case Instruction::FPExt:
+  case Instruction::UIToFP:
+  case Instruction::SIToFP:
+  case Instruction::FPToUI:
+  case Instruction::FPToSI:
+  case Instruction::PtrToInt:
+  case Instruction::IntToPtr:
+  case Instruction::BitCast:
+    return ConstantExpr::getCast(getOpcode(), Op, getType());
   case Instruction::Select:
     Op0 = (OpNo == 0) ? Op : getOperand(0);
     Op1 = (OpNo == 1) ? Op : getOperand(1);
@@ -571,8 +590,19 @@
     return const_cast<ConstantExpr*>(this);
 
   switch (getOpcode()) {
-  case Instruction::Cast:
-    return ConstantExpr::getCast(Ops[0], getType());
+  case Instruction::Trunc:
+  case Instruction::ZExt:
+  case Instruction::SExt:
+  case Instruction::FPTrunc:
+  case Instruction::FPExt:
+  case Instruction::UIToFP:
+  case Instruction::SIToFP:
+  case Instruction::FPToUI:
+  case Instruction::FPToSI:
+  case Instruction::PtrToInt:
+  case Instruction::IntToPtr:
+  case Instruction::BitCast:
+    return ConstantExpr::getCast(getOpcode(), Ops[0], getType());
   case Instruction::Select:
     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
   case Instruction::InsertElement:
@@ -1317,8 +1347,8 @@
   template<>
   struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
     static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
-      if (V.first == Instruction::Cast)
-        return new UnaryConstantExpr(Instruction::Cast, V.second[0], Ty);
+      if (Instruction::isCast(V.first))
+        return new UnaryConstantExpr(V.first, V.second[0], Ty);
       if ((V.first >= Instruction::BinaryOpsBegin &&
            V.first < Instruction::BinaryOpsEnd) ||
           V.first == Instruction::Shl           || 
@@ -1348,8 +1378,20 @@
     static void convert(ConstantExpr *OldC, const Type *NewTy) {
       Constant *New;
       switch (OldC->getOpcode()) {
-      case Instruction::Cast:
-        New = ConstantExpr::getCast(OldC->getOperand(0), NewTy);
+      case Instruction::Trunc:
+      case Instruction::ZExt:
+      case Instruction::SExt:
+      case Instruction::FPTrunc:
+      case Instruction::FPExt:
+      case Instruction::UIToFP:
+      case Instruction::SIToFP:
+      case Instruction::FPToUI:
+      case Instruction::FPToSI:
+      case Instruction::PtrToInt:
+      case Instruction::IntToPtr:
+      case Instruction::BitCast:
+        New = ConstantExpr::getCast(
+            OldC->getOpcode(), OldC->getOperand(0), NewTy);
         break;
       case Instruction::Select:
         New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
@@ -1394,40 +1436,143 @@
 static ManagedStatic<ValueMap<ExprMapKeyType, Type,
                               ConstantExpr> > ExprConstants;
 
-Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
+/// This is a utility function to handle folding of casts and lookup of the
+/// cast in the ExprConstants map. It is usedby the various get* methods below.
+static inline Constant *getFoldedCast(
+  Instruction::CastOps opc, Constant *C, const Type *Ty) {
   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
-
-  if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
-    return FC;          // Fold a few common cases...
+  // Fold a few common cases
+  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
+    return FC;
 
   // Look up the constant in the table first to ensure uniqueness
   std::vector<Constant*> argVec(1, C);
-  ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
+  ExprMapKeyType Key = std::make_pair(opc, argVec);
   return ExprConstants->getOrCreate(Ty, Key);
 }
 
-Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
-  assert(C->getType()->isIntegral() && Ty->isIntegral() &&
-         C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
-         "This is an illegal sign extension!");
-  if (C->getType() != Type::BoolTy) {
-    C = ConstantExpr::getCast(C, C->getType()->getSignedVersion());
-    return ConstantExpr::getCast(C, Ty);
-  } else {
-    if (C == ConstantBool::getTrue())
-      return ConstantIntegral::getAllOnesValue(Ty);
-    else
-      return ConstantIntegral::getNullValue(Ty);
+Constant *ConstantExpr::getCast( Constant *C, const Type *Ty ) {
+  // Note: we can't inline this because it requires the Instructions.h header
+  return getCast(CastInst::getCastOpcode(C, Ty), C, Ty);
+}
+
+Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
+  Instruction::CastOps opc = Instruction::CastOps(oc);
+  assert(Instruction::isCast(opc) && "opcode out of range");
+  assert(C && Ty && "Null arguments to getCast");
+  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
+
+  switch (opc) {
+    default:
+      assert(0 && "Invalid cast opcode");
+      break;
+    case Instruction::Trunc:    return getTrunc(C, Ty);
+    case Instruction::ZExt:     return getZeroExtend(C, Ty);
+    case Instruction::SExt:     return getSignExtend(C, Ty);
+    case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
+    case Instruction::FPExt:    return getFPExtend(C, Ty);
+    case Instruction::UIToFP:   return getUIToFP(C, Ty);
+    case Instruction::SIToFP:   return getSIToFP(C, Ty);
+    case Instruction::FPToUI:   return getFPToUI(C, Ty);
+    case Instruction::FPToSI:   return getFPToSI(C, Ty);
+    case Instruction::PtrToInt: return getPtrToInt(C, Ty);
+    case Instruction::IntToPtr: return getIntToPtr(C, Ty);
+    case Instruction::BitCast:  return getBitCast(C, Ty);
   }
+  return 0;
+}
+
+Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
+  assert(C->getType()->isInteger() && "Trunc operand must be integer");
+  assert(Ty->isIntegral() && "Trunc produces only integral");
+  assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
+         "SrcTy must be larger than DestTy for Trunc!");
+
+  return getFoldedCast(Instruction::Trunc, C, Ty);
+}
+
+Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
+  assert(C->getType()->isIntegral() && "SEXt operand must be integral");
+  assert(Ty->isInteger() && "SExt produces only integer");
+  assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+         "SrcTy must be smaller than DestTy for SExt!");
+
+  return getFoldedCast(Instruction::SExt, C, Ty);
 }
 
 Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) {
-  assert(C->getType()->isIntegral() && Ty->isIntegral() &&
-         C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
-         "This is an illegal zero extension!");
-  if (C->getType() != Type::BoolTy)
-    C = ConstantExpr::getCast(C, C->getType()->getUnsignedVersion());
-  return ConstantExpr::getCast(C, Ty);
+  assert(C->getType()->isIntegral() && "ZEXt operand must be integral");
+  assert(Ty->isInteger() && "ZExt produces only integer");
+  assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+         "SrcTy must be smaller than DestTy for ZExt!");
+
+  return getFoldedCast(Instruction::ZExt, C, Ty);
+}
+
+Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
+  assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+         C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&&
+         "This is an illegal floating point truncation!");
+  return getFoldedCast(Instruction::FPTrunc, C, Ty);
+}
+
+Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
+  assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
+         C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&&
+         "This is an illegal floating point extension!");
+  return getFoldedCast(Instruction::FPExt, C, Ty);
+}
+
+Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
+  assert(C->getType()->isIntegral() && Ty->isFloatingPoint() &&
+         "This is an illegal uint to floating point cast!");
+  return getFoldedCast(Instruction::UIToFP, C, Ty);
+}
+
+Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
+  assert(C->getType()->isIntegral() && Ty->isFloatingPoint() &&
+         "This is an illegal sint to floating point cast!");
+  return getFoldedCast(Instruction::SIToFP, C, Ty);
+}
+
+Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
+  assert(C->getType()->isFloatingPoint() && Ty->isIntegral() &&
+         "This is an illegal floating point to uint cast!");
+  return getFoldedCast(Instruction::FPToUI, C, Ty);
+}
+
+Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
+  assert(C->getType()->isFloatingPoint() && Ty->isIntegral() &&
+         "This is an illegal floating point to sint cast!");
+  return getFoldedCast(Instruction::FPToSI, C, Ty);
+}
+
+Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
+  assert(isa<PointerType>(C->getType()) && "PtrToInt source must be pointer");
+  assert(DstTy->isIntegral() && "PtrToInt destination must be integral");
+  return getFoldedCast(Instruction::PtrToInt, C, DstTy);
+}
+
+Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
+  assert(C->getType()->isIntegral() && "IntToPtr source must be integral");
+  assert(isa<PointerType>(DstTy) && "IntToPtr destination must be a pointer");
+  return getFoldedCast(Instruction::IntToPtr, C, DstTy);
+}
+
+Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
+  // BitCast implies a no-op cast of type only. No bits change.  However, you 
+  // can't cast pointers to anything but pointers.
+  const Type *SrcTy = C->getType();
+  assert((isa<PointerType>(SrcTy) == isa<PointerType>(DstTy)) &&
+         "Bitcast cannot cast pointer to non-pointer and vice versa");
+
+  // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr
+  // or nonptr->ptr). For all the other types, the cast is okay if source and 
+  // destination bit widths are identical.
+  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+  unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
+  assert(SrcBitSize == DstBitSize && "Bitcast requies types of same width");
+  return getFoldedCast(Instruction::BitCast, C, DstTy);
 }
 
 Constant *ConstantExpr::getSizeOf(const Type *Ty) {
@@ -1858,9 +2003,9 @@
       Indices.push_back(Val);
     }
     Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
-  } else if (getOpcode() == Instruction::Cast) {
+  } else if (isCast()) {
     assert(getOperand(0) == From && "Cast only has one use!");
-    Replacement = ConstantExpr::getCast(To, getType());
+    Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
   } else if (getOpcode() == Instruction::Select) {
     Constant *C1 = getOperand(0);
     Constant *C2 = getOperand(1);


Index: llvm/lib/VMCore/Function.cpp
diff -u llvm/lib/VMCore/Function.cpp:1.106 llvm/lib/VMCore/Function.cpp:1.107
--- llvm/lib/VMCore/Function.cpp:1.106	Thu Nov  2 02:23:44 2006
+++ llvm/lib/VMCore/Function.cpp	Sun Nov 26 19:05:10 2006
@@ -226,7 +226,7 @@
 
 Value *IntrinsicInst::StripPointerCasts(Value *Ptr) {
   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
-    if (CE->getOpcode() == Instruction::Cast) {
+    if (CE->getOpcode() == Instruction::BitCast) {
       if (isa<PointerType>(CE->getOperand(0)->getType()))
         return StripPointerCasts(CE->getOperand(0));
     } else if (CE->getOpcode() == Instruction::GetElementPtr) {
@@ -238,7 +238,7 @@
     return Ptr;
   }
 
-  if (CastInst *CI = dyn_cast<CastInst>(Ptr)) {
+  if (BitCastInst *CI = dyn_cast<BitCastInst>(Ptr)) {
     if (isa<PointerType>(CI->getOperand(0)->getType()))
       return StripPointerCasts(CI->getOperand(0));
   } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {


Index: llvm/lib/VMCore/Instruction.cpp
diff -u llvm/lib/VMCore/Instruction.cpp:1.58 llvm/lib/VMCore/Instruction.cpp:1.59
--- llvm/lib/VMCore/Instruction.cpp:1.58	Sun Nov 19 19:22:35 2006
+++ llvm/lib/VMCore/Instruction.cpp	Sun Nov 26 19:05:10 2006
@@ -122,18 +122,31 @@
   case Store:         return "store";
   case GetElementPtr: return "getelementptr";
 
+  // Convert instructions...
+  case Trunc:     return "trunc";
+  case ZExt:      return "zext";
+  case SExt:      return "sext";
+  case FPTrunc:   return "fptrunc";
+  case FPExt:     return "fpext";
+  case FPToUI:    return "fptoui";
+  case FPToSI:    return "fptosi";
+  case UIToFP:    return "uitofp";
+  case SIToFP:    return "sitofp";
+  case IntToPtr:  return "inttoptr";
+  case PtrToInt:  return "ptrtoint";
+  case BitCast:   return "bitcast";
+
   // Other instructions...
-  case PHI:     return "phi";
-  case Cast:    return "cast";
-  case Select:  return "select";
-  case Call:    return "call";
-  case Shl:     return "shl";
-  case LShr:     return "lshr";
-  case AShr:     return "ashr";
-  case VAArg:   return "va_arg";
+  case PHI:            return "phi";
+  case Select:         return "select";
+  case Call:           return "call";
+  case Shl:            return "shl";
+  case LShr:           return "lshr";
+  case AShr:           return "ashr";
+  case VAArg:          return "va_arg";
   case ExtractElement: return "extractelement";
-  case InsertElement: return "insertelement";
-  case ShuffleVector: return "shufflevector";
+  case InsertElement:  return "insertelement";
+  case ShuffleVector:  return "shufflevector";
 
   default: return "<Invalid operator> ";
   }


Index: llvm/lib/VMCore/Instructions.cpp
diff -u llvm/lib/VMCore/Instructions.cpp:1.47 llvm/lib/VMCore/Instructions.cpp:1.48
--- llvm/lib/VMCore/Instructions.cpp:1.47	Sun Nov 19 19:22:35 2006
+++ llvm/lib/VMCore/Instructions.cpp	Sun Nov 26 19:05:10 2006
@@ -1226,18 +1226,571 @@
 //                                CastInst Class
 //===----------------------------------------------------------------------===//
 
-/// isTruncIntCast - Return true if this is a truncating integer cast
-/// instruction, e.g. a cast from long to uint.
-bool CastInst::isTruncIntCast() const {
-  // The dest type has to be integral, the input has to be integer.
-  if (!getType()->isIntegral() || !getOperand(0)->getType()->isInteger())
+// Just determine if this cast only deals with integral->integral conversion.
+bool CastInst::isIntegerCast() const {
+  switch (getOpcode()) {
+    default: return false;
+    case Instruction::ZExt:
+    case Instruction::SExt:
+    case Instruction::Trunc:
+      return true;
+    case Instruction::BitCast:
+      return getOperand(0)->getType()->isIntegral() && getType()->isIntegral();
+  }
+}
+
+bool CastInst::isLosslessCast() const {
+  // Only BitCast can be lossless, exit fast if we're not BitCast
+  if (getOpcode() != Instruction::BitCast)
     return false;
 
-  // Has to be large to smaller.
-  return getOperand(0)->getType()->getPrimitiveSizeInBits() >
-         getType()->getPrimitiveSizeInBits();
+  // Identity cast is always lossless
+  const Type* SrcTy = getOperand(0)->getType();
+  const Type* DstTy = getType();
+  if (SrcTy == DstTy)
+    return true;
+  
+  // The remaining possibilities are lossless if the typeID of the source type
+  // matches the type ID of the destination in size and fundamental type. This 
+  // prevents things like int -> ptr, int -> float, packed -> int, mismatched 
+  // packed types of the same size, and etc.
+  switch (SrcTy->getTypeID()) {
+  case Type::UByteTyID:   return DstTy == Type::SByteTy;
+  case Type::SByteTyID:   return DstTy == Type::UByteTy;
+  case Type::UShortTyID:  return DstTy == Type::ShortTy;
+  case Type::ShortTyID:   return DstTy == Type::UShortTy;
+  case Type::UIntTyID:    return DstTy == Type::IntTy;
+  case Type::IntTyID:     return DstTy == Type::UIntTy;
+  case Type::ULongTyID:   return DstTy == Type::LongTy;
+  case Type::LongTyID:    return DstTy == Type::ULongTy;
+  case Type::PointerTyID: return isa<PointerType>(DstTy);
+  default:
+    break;
+  }
+  return false;  // Other types have no identity values
+}
+
+/// This function determines if the CastInst does not require any bits to be
+/// changed in order to effect the cast. Essentially, it identifies cases where
+/// no code gen is necessary for the cast, hence the name no-op cast.  For 
+/// example, the following are all no-op casts:
+/// # bitcast uint %X, int
+/// # bitcast uint* %x, sbyte*
+/// # bitcast packed< 2 x int > %x, packed< 4 x short> 
+/// # ptrtoint uint* %x, uint     ; on 32-bit plaforms only
+/// @brief Determine if a cast is a no-op.
+bool CastInst::isNoopCast(const Type *IntPtrTy) const {
+  switch (getOpcode()) {
+    default:
+      assert(!"Invalid CastOp");
+    case Instruction::Trunc:
+    case Instruction::ZExt:
+    case Instruction::SExt: 
+    case Instruction::FPTrunc:
+    case Instruction::FPExt:
+    case Instruction::UIToFP:
+    case Instruction::SIToFP:
+    case Instruction::FPToUI:
+    case Instruction::FPToSI:
+      return false; // These always modify bits
+    case Instruction::BitCast:
+      return true;  // BitCast never modifies bits.
+    case Instruction::PtrToInt:
+      return IntPtrTy->getPrimitiveSizeInBits() ==
+            getType()->getPrimitiveSizeInBits();
+    case Instruction::IntToPtr:
+      return IntPtrTy->getPrimitiveSizeInBits() ==
+             getOperand(0)->getType()->getPrimitiveSizeInBits();
+  }
+}
+
+/// This function determines if a pair of casts can be eliminated and what 
+/// opcode should be used in the elimination. This assumes that there are two 
+/// instructions like this:
+/// *  %F = firstOpcode SrcTy %x to MidTy
+/// *  %S = secondOpcode MidTy %F to DstTy
+/// The function returns a resultOpcode so these two casts can be replaced with:
+/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
+/// If no such cast is permited, the function returns 0.
+unsigned CastInst::isEliminableCastPair(
+  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
+  const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
+{
+  // Define the 144 possibilities for these two cast instructions. The values
+  // in this matrix determine what to do in a given situation and select the
+  // case in the switch below.  The rows correspond to firstOp, the columns 
+  // correspond to secondOp.  In looking at the table below, keep in  mind
+  // the following cast properties:
+  //
+  //          Size Compare       Source               Destination
+  // Operator  Src ? Size   Type       Sign         Type       Sign
+  // -------- ------------ -------------------   ---------------------
+  // TRUNC         >       Integer      Any        Integral     Any
+  // ZEXT          <       Integral   Unsigned     Integer      Any
+  // SEXT          <       Integral    Signed      Integer      Any
+  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
+  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed 
+  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a   
+  // SITOFP       n/a      Integral    Signed      FloatPt      n/a   
+  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a   
+  // FPEXT         <       FloatPt      n/a        FloatPt      n/a   
+  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
+  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
+  // BITCONVERT    =       FirstClass   n/a       FirstClass    n/a   
+  // 
+  const unsigned numCastOps = 
+    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
+  static const uint8_t CastResults[numCastOps][numCastOps] = {
+    // T        F  F  U  S  F  F  P  I  B   -+
+    // R  Z  S  P  P  I  I  T  P  2  N  T    |
+    // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
+    // N  X  X  U  S  F  F  N  X  N  2  V    |
+    // C  T  T  I  I  P  P  C  T  T  P  T   -+
+    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
+    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
+    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
+    {  0, 1, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
+    {  0, 0, 1,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
+    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
+    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
+    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
+    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
+    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
+    { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
+    {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
+  };
+
+  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
+                            [secondOp-Instruction::CastOpsBegin];
+  switch (ElimCase) {
+    case 0: 
+      // categorically disallowed
+      return 0;
+    case 1: 
+      // allowed, use first cast's opcode
+      return firstOp;
+    case 2: 
+      // allowed, use second cast's opcode
+      return secondOp;
+    case 3: 
+      // no-op cast in second op implies firstOp as long as the DestTy 
+      // is integer
+      if (DstTy->isInteger())
+        return firstOp;
+      return 0;
+    case 4:
+      // no-op cast in second op implies firstOp as long as the DestTy
+      // is floating point
+      if (DstTy->isFloatingPoint())
+        return firstOp;
+      return 0;
+    case 5: 
+      // no-op cast in first op implies secondOp as long as the SrcTy
+      // is an integer
+      if (SrcTy->isInteger())
+        return secondOp;
+      return 0;
+    case 6:
+      // no-op cast in first op implies secondOp as long as the SrcTy
+      // is a floating point
+      if (SrcTy->isFloatingPoint())
+        return secondOp;
+      return 0;
+    case 7: { 
+      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
+      unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
+      unsigned MidSize = MidTy->getPrimitiveSizeInBits();
+      if (MidSize >= PtrSize)
+        return Instruction::BitCast;
+      return 0;
+    }
+    case 8: {
+      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
+      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
+      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
+      unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
+      unsigned DstSize = DstTy->getPrimitiveSizeInBits();
+      if (SrcSize == DstSize)
+        return Instruction::BitCast;
+      else if (SrcSize < DstSize)
+        return firstOp;
+      return secondOp;
+    }
+    case 9: // zext, sext -> zext, because sext can't sign extend after zext
+      return Instruction::ZExt;
+    case 10:
+      // fpext followed by ftrunc is allowed if the bit size returned to is
+      // the same as the original, in which case its just a bitcast
+      if (SrcTy == DstTy)
+        return Instruction::BitCast;
+      return 0; // If the types are not the same we can't eliminate it.
+    case 11:
+      // bitcast followed by ptrtoint is allowed as long as the bitcast
+      // is a pointer to pointer cast.
+      if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
+        return secondOp;
+      return 0;
+    case 12:
+      // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
+      if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
+        return firstOp;
+      return 0;
+    case 13: {
+      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
+      unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
+      unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
+      unsigned DstSize = DstTy->getPrimitiveSizeInBits();
+      if (SrcSize <= PtrSize && SrcSize == DstSize)
+        return Instruction::BitCast;
+      return 0;
+    }
+    case 99: 
+      // cast combination can't happen (error in input). This is for all cases
+      // where the MidTy is not the same for the two cast instructions.
+      assert(!"Invalid Cast Combination");
+      return 0;
+    default:
+      assert(!"Error in CastResults table!!!");
+      return 0;
+  }
+  return 0;
 }
 
+CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty, 
+  const std::string &Name, Instruction *InsertBefore) {
+  // Construct and return the appropriate CastInst subclass
+  switch (op) {
+    case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
+    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
+    case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
+    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
+    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
+    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
+    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
+    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
+    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
+    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
+    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
+    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
+    default:
+      assert(!"Invalid opcode provided");
+  }
+  return 0;
+}
+
+CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty,
+  const std::string &Name, BasicBlock *InsertAtEnd) {
+  // Construct and return the appropriate CastInst subclass
+  switch (op) {
+    case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
+    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
+    case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
+    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
+    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
+    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
+    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
+    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
+    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
+    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
+    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
+    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
+    default:
+      assert(!"Invalid opcode provided");
+  }
+  return 0;
+}
+
+// Provide a way to get a "cast" where the cast opcode is inferred from the 
+// types and size of the operand. This, basically, is a parallel of the 
+// logic in the checkCast function below.  This axiom should hold:
+//   checkCast( getCastOpcode(Val, Ty), Val, Ty)
+// should not assert in checkCast. In other words, this produces a "correct"
+// casting opcode for the arguments passed to it.
+Instruction::CastOps
+CastInst::getCastOpcode(const Value *Src, const Type *DestTy) {
+  // Get the bit sizes, we'll need these
+  const Type *SrcTy = Src->getType();
+  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr/packed
+  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/packed
+
+  // Run through the possibilities ...
+  if (DestTy->isIntegral()) {                       // Casting to integral
+    if (SrcTy->isIntegral()) {                      // Casting from integral
+      if (DestBits < SrcBits)
+        return Trunc;                               // int -> smaller int
+      else if (DestBits > SrcBits) {                // its an extension
+        if (SrcTy->isSigned())
+          return SExt;                              // signed -> SEXT
+        else
+          return ZExt;                              // unsigned -> ZEXT
+      } else {
+        return BitCast;                             // Same size, No-op cast
+      }
+    } else if (SrcTy->isFloatingPoint()) {          // Casting from floating pt
+      if (DestTy->isSigned()) 
+        return FPToSI;                              // FP -> sint
+      else
+        return FPToUI;                              // FP -> uint 
+    } else if (const PackedType *PTy = dyn_cast<PackedType>(SrcTy)) {
+      assert(DestBits == PTy->getBitWidth() &&
+               "Casting packed to integer of different width");
+      return BitCast;                             // Same size, no-op cast
+    } else {
+      assert(isa<PointerType>(SrcTy) &&
+             "Casting from a value that is not first-class type");
+      return PtrToInt;                              // ptr -> int
+    }
+  } else if (DestTy->isFloatingPoint()) {           // Casting to floating pt
+    if (SrcTy->isIntegral()) {                      // Casting from integral
+      if (SrcTy->isSigned())
+        return SIToFP;                              // sint -> FP
+      else
+        return UIToFP;                              // uint -> FP
+    } else if (SrcTy->isFloatingPoint()) {          // Casting from floating pt
+      if (DestBits < SrcBits) {
+        return FPTrunc;                             // FP -> smaller FP
+      } else if (DestBits > SrcBits) {
+        return FPExt;                               // FP -> larger FP
+      } else  {
+        return BitCast;                             // same size, no-op cast
+      }
+    } else if (const PackedType *PTy = dyn_cast<PackedType>(SrcTy)) {
+      assert(DestBits == PTy->getBitWidth() &&
+             "Casting packed to floating point of different width");
+        return BitCast;                             // same size, no-op cast
+    } else {
+      assert(0 && "Casting pointer or non-first class to float");
+    }
+  } else if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
+    if (const PackedType *SrcPTy = dyn_cast<PackedType>(SrcTy)) {
+      assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
+             "Casting packed to packed of different widths");
+      return BitCast;                             // packed -> packed
+    } else if (DestPTy->getBitWidth() == SrcBits) {
+      return BitCast;                               // float/int -> packed
+    } else {
+      assert(!"Illegal cast to packed (wrong type or size)");
+    }
+  } else if (isa<PointerType>(DestTy)) {
+    if (isa<PointerType>(SrcTy)) {
+      return BitCast;                               // ptr -> ptr
+    } else if (SrcTy->isIntegral()) {
+      return IntToPtr;                              // int -> ptr
+    } else {
+      assert(!"Casting pointer to other than pointer or int");
+    }
+  } else {
+    assert(!"Casting to type that is not first-class");
+  }
+
+  // If we fall through to here we probably hit an assertion cast above
+  // and assertions are not turned on. Anything we return is an error, so
+  // BitCast is as good a choice as any.
+  return BitCast;
+}
+
+//===----------------------------------------------------------------------===//
+//                    CastInst SubClass Constructors
+//===----------------------------------------------------------------------===//
+
+/// Check that the construction parameters for a CastInst are correct. This
+/// could be broken out into the separate constructors but it is useful to have
+/// it in one place and to eliminate the redundant code for getting the sizes
+/// of the types involved.
+static bool 
+checkCast(Instruction::CastOps op, Value *S, const Type *DstTy) {
+
+  // Check for type sanity on the arguments
+  const Type *SrcTy = S->getType();
+  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
+    return false;
+
+  // Get the size of the types in bits, we'll need this later
+  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+  unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
+
+  // Switch on the opcode provided
+  switch (op) {
+  default: return false; // This is an input error
+  case Instruction::Trunc:
+    return SrcTy->isInteger() && DstTy->isIntegral() && SrcBitSize > DstBitSize;
+  case Instruction::ZExt:
+    return SrcTy->isIntegral() && DstTy->isInteger() && SrcBitSize < DstBitSize;
+  case Instruction::SExt: 
+    return SrcTy->isIntegral() && DstTy->isInteger() && SrcBitSize < DstBitSize;
+  case Instruction::FPTrunc:
+    return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() && 
+      SrcBitSize > DstBitSize;
+  case Instruction::FPExt:
+    return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() && 
+      SrcBitSize < DstBitSize;
+  case Instruction::UIToFP:
+    return SrcTy->isIntegral() && DstTy->isFloatingPoint();
+  case Instruction::SIToFP:
+    return SrcTy->isIntegral() && DstTy->isFloatingPoint();
+  case Instruction::FPToUI:
+    return SrcTy->isFloatingPoint() && DstTy->isIntegral();
+  case Instruction::FPToSI:
+    return SrcTy->isFloatingPoint() && DstTy->isIntegral();
+  case Instruction::PtrToInt:
+    return isa<PointerType>(SrcTy) && DstTy->isIntegral();
+  case Instruction::IntToPtr:
+    return SrcTy->isIntegral() && isa<PointerType>(DstTy);
+  case Instruction::BitCast:
+    // BitCast implies a no-op cast of type only. No bits change.
+    // However, you can't cast pointers to anything but pointers.
+    if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
+      return false;
+
+    // Now we know we're not dealing with a pointer/non-poiner mismatch. In all
+    // these cases, the cast is okay if the source and destination bit widths
+    // are identical.
+    return SrcBitSize == DstBitSize;
+  }
+}
+
+TruncInst::TruncInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal Trunc");
+}
+
+TruncInst::TruncInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal Trunc");
+}
+
+ZExtInst::ZExtInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+)  : CastInst(Ty, ZExt, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal ZExt");
+}
+
+ZExtInst::ZExtInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal ZExt");
+}
+SExtInst::SExtInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, SExt, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal SExt");
+}
+
+SExtInst::SExtInst::SExtInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal SExt");
+}
+
+FPTruncInst::FPTruncInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal FPTrunc");
+}
+
+FPTruncInst::FPTruncInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal FPTrunc");
+}
+
+FPExtInst::FPExtInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPExt, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal FPExt");
+}
+
+FPExtInst::FPExtInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal FPExt");
+}
+
+UIToFPInst::UIToFPInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal UIToFP");
+}
+
+UIToFPInst::UIToFPInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal UIToFP");
+}
+
+SIToFPInst::SIToFPInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal SIToFP");
+}
+
+SIToFPInst::SIToFPInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal SIToFP");
+}
+
+FPToUIInst::FPToUIInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal FPToUI");
+}
+
+FPToUIInst::FPToUIInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal FPToUI");
+}
+
+FPToSIInst::FPToSIInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal FPToSI");
+}
+
+FPToSIInst::FPToSIInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal FPToSI");
+}
+
+PtrToIntInst::PtrToIntInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal PtrToInt");
+}
+
+PtrToIntInst::PtrToIntInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal PtrToInt");
+}
+
+IntToPtrInst::IntToPtrInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal IntToPtr");
+}
+
+IntToPtrInst::IntToPtrInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal IntToPtr");
+}
+
+BitCastInst::BitCastInst(
+  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
+) : CastInst(Ty, BitCast, S, Name, InsertBefore) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal BitCast");
+}
+
+BitCastInst::BitCastInst(
+  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
+) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { 
+  assert(checkCast(getOpcode(), S, Ty) && "Illegal BitCast");
+}
 
 //===----------------------------------------------------------------------===//
 //                             SetCondInst Class
@@ -1608,16 +2161,28 @@
                 Ops[0], Ops[1]);
 }
 
-MallocInst *MallocInst::clone() const { return new MallocInst(*this); }
-AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); }
-FreeInst   *FreeInst::clone()   const { return new FreeInst(getOperand(0)); }
-LoadInst   *LoadInst::clone()   const { return new LoadInst(*this); }
-StoreInst  *StoreInst::clone()  const { return new StoreInst(*this); }
-CastInst   *CastInst::clone()   const { return new CastInst(*this); }
-CallInst   *CallInst::clone()   const { return new CallInst(*this); }
-ShiftInst  *ShiftInst::clone()  const { return new ShiftInst(*this); }
-SelectInst *SelectInst::clone() const { return new SelectInst(*this); }
-VAArgInst  *VAArgInst::clone()  const { return new VAArgInst(*this); }
+MallocInst *MallocInst::clone()   const { return new MallocInst(*this); }
+AllocaInst *AllocaInst::clone()   const { return new AllocaInst(*this); }
+FreeInst   *FreeInst::clone()     const { return new FreeInst(getOperand(0)); }
+LoadInst   *LoadInst::clone()     const { return new LoadInst(*this); }
+StoreInst  *StoreInst::clone()    const { return new StoreInst(*this); }
+CastInst   *TruncInst::clone()    const { return new TruncInst(*this); }
+CastInst   *ZExtInst::clone()     const { return new ZExtInst(*this); }
+CastInst   *SExtInst::clone()     const { return new SExtInst(*this); }
+CastInst   *FPTruncInst::clone()  const { return new FPTruncInst(*this); }
+CastInst   *FPExtInst::clone()    const { return new FPExtInst(*this); }
+CastInst   *UIToFPInst::clone()   const { return new UIToFPInst(*this); }
+CastInst   *SIToFPInst::clone()   const { return new SIToFPInst(*this); }
+CastInst   *FPToUIInst::clone()   const { return new FPToUIInst(*this); }
+CastInst   *FPToSIInst::clone()   const { return new FPToSIInst(*this); }
+CastInst   *PtrToIntInst::clone() const { return new PtrToIntInst(*this); }
+CastInst   *IntToPtrInst::clone() const { return new IntToPtrInst(*this); }
+CastInst   *BitCastInst::clone()  const { return new BitCastInst(*this); }
+CallInst   *CallInst::clone()     const { return new CallInst(*this); }
+ShiftInst  *ShiftInst::clone()    const { return new ShiftInst(*this); }
+SelectInst *SelectInst::clone()   const { return new SelectInst(*this); }
+VAArgInst  *VAArgInst::clone()    const { return new VAArgInst(*this); }
+
 ExtractElementInst *ExtractElementInst::clone() const {
   return new ExtractElementInst(*this);
 }


Index: llvm/lib/VMCore/IntrinsicInst.cpp
diff -u llvm/lib/VMCore/IntrinsicInst.cpp:1.10 llvm/lib/VMCore/IntrinsicInst.cpp:1.11
--- llvm/lib/VMCore/IntrinsicInst.cpp:1.10	Wed Oct  4 18:06:26 2006
+++ llvm/lib/VMCore/IntrinsicInst.cpp	Sun Nov 26 19:05:10 2006
@@ -37,7 +37,7 @@
 
 static Value *CastOperand(Value *C) {
   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
-    if (CE->getOpcode() == Instruction::Cast)
+    if (CE->isCast())
       return CE->getOperand(0);
   return NULL;
 }


Index: llvm/lib/VMCore/Type.cpp
diff -u llvm/lib/VMCore/Type.cpp:1.150 llvm/lib/VMCore/Type.cpp:1.151
--- llvm/lib/VMCore/Type.cpp:1.150	Fri Nov 17 02:03:48 2006
+++ llvm/lib/VMCore/Type.cpp	Sun Nov 26 19:05:10 2006
@@ -98,24 +98,27 @@
   return cast<PackedType>(this)->getElementType()->isFloatingPoint();
 }
 
-
-// isLosslesslyConvertibleTo - Return true if this type can be converted to
+// canLosslesllyBitCastTo - Return true if this type can be converted to
 // 'Ty' without any reinterpretation of bits.  For example, uint to int.
 //
-bool Type::isLosslesslyConvertibleTo(const Type *Ty) const {
-  if (this == Ty) return true;
-  
-  // Packed type conversions are always bitwise.
-  if (isa<PackedType>(this) && isa<PackedType>(Ty))
+bool Type::canLosslesslyBitCastTo(const Type *Ty) const {
+  // Identity cast means no change so return true
+  if (this == Ty) 
     return true;
   
-  if ((!isPrimitiveType()    && !isa<PointerType>(this)) ||
-      (!isa<PointerType>(Ty) && !Ty->isPrimitiveType())) return false;
-
-  if (getTypeID() == Ty->getTypeID())
-    return true;  // Handles identity cast, and cast of differing pointer types
+  // They are not convertible unless they are at least first class types
+  if (!this->isFirstClassType() || !Ty->isFirstClassType())
+    return false;
 
-  // Now we know that they are two differing primitive or pointer types
+  // Packed -> Packed conversions are always lossless if the two packed types
+  // have the same size, otherwise not.
+  if (const PackedType *thisPTy = dyn_cast<PackedType>(this))
+    if (const PackedType *thatPTy = dyn_cast<PackedType>(Ty))
+      return thisPTy->getBitWidth() == thatPTy->getBitWidth();
+
+  // At this point we have only various mismatches of the first class types
+  // remaining and ptr->ptr. Just select the lossless conversions. Everything
+  // else is not lossless.
   switch (getTypeID()) {
   case Type::UByteTyID:   return Ty == Type::SByteTy;
   case Type::SByteTyID:   return Ty == Type::UByteTy;
@@ -127,8 +130,9 @@
   case Type::LongTyID:    return Ty == Type::ULongTy;
   case Type::PointerTyID: return isa<PointerType>(Ty);
   default:
-    return false;  // Other types have no identity values
+    break;
   }
+  return false;  // Other types have no identity values
 }
 
 /// getUnsignedVersion - If this is an integer type, return the unsigned
@@ -200,6 +204,10 @@
   case Type::LongTyID:
   case Type::ULongTyID:
   case Type::DoubleTyID: return 64;
+  case Type::PackedTyID: {
+    const PackedType *PTy = cast<PackedType>(this);
+    return PTy->getBitWidth();
+  }
   default: return 0;
   }
 }


Index: llvm/lib/VMCore/Verifier.cpp
diff -u llvm/lib/VMCore/Verifier.cpp:1.166 llvm/lib/VMCore/Verifier.cpp:1.167
--- llvm/lib/VMCore/Verifier.cpp:1.166	Sun Nov 19 19:22:35 2006
+++ llvm/lib/VMCore/Verifier.cpp	Sun Nov 26 19:05:10 2006
@@ -177,6 +177,18 @@
     void visitGlobalVariable(GlobalVariable &GV);
     void visitFunction(Function &F);
     void visitBasicBlock(BasicBlock &BB);
+    void visitTruncInst(TruncInst &I);
+    void visitZExtInst(ZExtInst &I);
+    void visitSExtInst(SExtInst &I);
+    void visitFPTruncInst(FPTruncInst &I);
+    void visitFPExtInst(FPExtInst &I);
+    void visitFPToUIInst(FPToUIInst &I);
+    void visitFPToSIInst(FPToSIInst &I);
+    void visitUIToFPInst(UIToFPInst &I);
+    void visitSIToFPInst(SIToFPInst &I);
+    void visitIntToPtrInst(IntToPtrInst &I);
+    void visitPtrToIntInst(PtrToIntInst &I);
+    void visitBitCastInst(BitCastInst &I);
     void visitPHINode(PHINode &PN);
     void visitBinaryOperator(BinaryOperator &B);
     void visitICmpInst(ICmpInst &IC);
@@ -467,6 +479,169 @@
   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
 }
 
+void Verifier::visitTruncInst(TruncInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  // Get the size of the types in bits, we'll need this later
+  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+  Assert1(SrcTy->isIntegral(), "Trunc only operates on integer", &I);
+  Assert1(DestTy->isIntegral(),"Trunc only produces integral", &I);
+  Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitZExtInst(ZExtInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  // Get the size of the types in bits, we'll need this later
+  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+  Assert1(SrcTy->isIntegral(),"ZExt only operates on integral", &I);
+  Assert1(DestTy->isInteger(),"ZExt only produces an integer", &I);
+  Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitSExtInst(SExtInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  // Get the size of the types in bits, we'll need this later
+  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+  Assert1(SrcTy->isIntegral(),"SExt only operates on integral", &I);
+  Assert1(DestTy->isInteger(),"SExt only produces an integer", &I);
+  Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitFPTruncInst(FPTruncInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+  // Get the size of the types in bits, we'll need this later
+  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+  Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
+  Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
+  Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitFPExtInst(FPExtInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  // Get the size of the types in bits, we'll need this later
+  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+  Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
+  Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
+  Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitUIToFPInst(UIToFPInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  Assert1(SrcTy->isIntegral(),"UInt2FP source must be integral", &I);
+  Assert1(DestTy->isFloatingPoint(),"UInt2FP result must be FP", &I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitSIToFPInst(SIToFPInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  Assert1(SrcTy->isIntegral(),"SInt2FP source must be integral", &I);
+  Assert1(DestTy->isFloatingPoint(),"SInt2FP result must be FP", &I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitFPToUIInst(FPToUIInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  Assert1(SrcTy->isFloatingPoint(),"FP2UInt source must be FP", &I);
+  Assert1(DestTy->isIntegral(),"FP2UInt result must be integral", &I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitFPToSIInst(FPToSIInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  Assert1(SrcTy->isFloatingPoint(),"FPToSI source must be FP", &I);
+  Assert1(DestTy->isIntegral(),"FP2ToI result must be integral", &I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
+  Assert1(DestTy->isIntegral(), "PtrToInt result must be integral", &I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  Assert1(SrcTy->isIntegral(), "IntToPtr source must be an integral", &I);
+  Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
+
+  visitInstruction(I);
+}
+
+void Verifier::visitBitCastInst(BitCastInst &I) {
+  // Get the source and destination types
+  const Type *SrcTy = I.getOperand(0)->getType();
+  const Type *DestTy = I.getType();
+
+  // Get the size of the types in bits, we'll need this later
+  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
+  unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
+
+  // BitCast implies a no-op cast of type only. No bits change.
+  // However, you can't cast pointers to anything but pointers.
+  Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
+          "Bitcast requires both operands to be pointer or neither", &I);
+  Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
+
+  visitInstruction(I);
+}
+
 /// visitPHINode - Ensure that a PHI node is well formed.
 ///
 void Verifier::visitPHINode(PHINode &PN) {






More information about the llvm-commits mailing list