[llvm-commits] CVS: llvm/tools/llvm2cpp/CppWriter.cpp CppWriter.h Makefile llvm2cpp.cpp

Reid Spencer reid at x10sys.com
Sun May 28 17:57:34 PDT 2006



Changes in directory llvm/tools/llvm2cpp:

CppWriter.cpp added (r1.1)
CppWriter.h added (r1.1)
Makefile added (r1.1)
llvm2cpp.cpp added (r1.1)
---
Log message:

Initial Commit of llvm2cpp
This is a safekeeping commit. The program is not finished. It currently 
handles modules, types, global variables and function declarations. Blocks
and instructions remain to be done. 


---
Diffs of the changes:  (+2174 -0)

 CppWriter.cpp | 1995 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 CppWriter.h   |   18 
 Makefile      |   23 
 llvm2cpp.cpp  |  138 ++++
 4 files changed, 2174 insertions(+)


Index: llvm/tools/llvm2cpp/CppWriter.cpp
diff -c /dev/null llvm/tools/llvm2cpp/CppWriter.cpp:1.1
*** /dev/null	Sun May 28 19:57:32 2006
--- llvm/tools/llvm2cpp/CppWriter.cpp	Sun May 28 19:57:22 2006
***************
*** 0 ****
--- 1,1995 ----
+ //===-- CppWriter.cpp - Printing LLVM IR as a C++ Source File -------------===//
+ //
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // This file implements the writing of the LLVM IR as a set of C++ calls to the
+ // LLVM IR interface. The input module is assumed to be verified.
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #include "llvm/CallingConv.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/InlineAsm.h"
+ #include "llvm/Instruction.h"
+ #include "llvm/Instructions.h"
+ #include "llvm/Module.h"
+ #include "llvm/SymbolTable.h"
+ #include "llvm/Support/CFG.h"
+ #include "llvm/ADT/StringExtras.h"
+ #include "llvm/ADT/STLExtras.h"
+ #include "llvm/Support/MathExtras.h"
+ #include <algorithm>
+ #include <iostream>
+ 
+ using namespace llvm;
+ 
+ namespace {
+ /// This class provides computation of slot numbers for LLVM Assembly writing.
+ /// @brief LLVM Assembly Writing Slot Computation.
+ class SlotMachine {
+ 
+ /// @name Types
+ /// @{
+ public:
+ 
+   /// @brief A mapping of Values to slot numbers
+   typedef std::map<const Value*, unsigned> ValueMap;
+   typedef std::map<const Type*, unsigned> TypeMap;
+ 
+   /// @brief A plane with next slot number and ValueMap
+   struct ValuePlane {
+     unsigned next_slot;        ///< The next slot number to use
+     ValueMap map;              ///< The map of Value* -> unsigned
+     ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
+   };
+ 
+   struct TypePlane {
+     unsigned next_slot;
+     TypeMap map;
+     TypePlane() { next_slot = 0; }
+     void clear() { map.clear(); next_slot = 0; }
+   };
+ 
+   /// @brief The map of planes by Type
+   typedef std::map<const Type*, ValuePlane> TypedPlanes;
+ 
+ /// @}
+ /// @name Constructors
+ /// @{
+ public:
+   /// @brief Construct from a module
+   SlotMachine(const Module *M );
+ 
+ /// @}
+ /// @name Accessors
+ /// @{
+ public:
+   /// Return the slot number of the specified value in it's type
+   /// plane.  Its an error to ask for something not in the SlotMachine.
+   /// Its an error to ask for a Type*
+   int getSlot(const Value *V);
+   int getSlot(const Type*Ty);
+ 
+   /// Determine if a Value has a slot or not
+   bool hasSlot(const Value* V);
+   bool hasSlot(const Type* Ty);
+ 
+ /// @}
+ /// @name Mutators
+ /// @{
+ public:
+   /// If you'd like to deal with a function instead of just a module, use
+   /// this method to get its data into the SlotMachine.
+   void incorporateFunction(const Function *F) {
+     TheFunction = F;
+     FunctionProcessed = false;
+   }
+ 
+   /// After calling incorporateFunction, use this method to remove the
+   /// most recently incorporated function from the SlotMachine. This
+   /// will reset the state of the machine back to just the module contents.
+   void purgeFunction();
+ 
+ /// @}
+ /// @name Implementation Details
+ /// @{
+ private:
+   /// Values can be crammed into here at will. If they haven't
+   /// been inserted already, they get inserted, otherwise they are ignored.
+   /// Either way, the slot number for the Value* is returned.
+   unsigned createSlot(const Value *V);
+   unsigned createSlot(const Type* Ty);
+ 
+   /// Insert a value into the value table. Return the slot number
+   /// that it now occupies.  BadThings(TM) will happen if you insert a
+   /// Value that's already been inserted.
+   unsigned insertValue( const Value *V );
+   unsigned insertValue( const Type* Ty);
+ 
+   /// Add all of the module level global variables (and their initializers)
+   /// and function declarations, but not the contents of those functions.
+   void processModule();
+ 
+   /// Add all of the functions arguments, basic blocks, and instructions
+   void processFunction();
+ 
+   SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
+   void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
+ 
+ /// @}
+ /// @name Data
+ /// @{
+ public:
+ 
+   /// @brief The module for which we are holding slot numbers
+   const Module* TheModule;
+ 
+   /// @brief The function for which we are holding slot numbers
+   const Function* TheFunction;
+   bool FunctionProcessed;
+ 
+   /// @brief The TypePlanes map for the module level data
+   TypedPlanes mMap;
+   TypePlane mTypes;
+ 
+   /// @brief The TypePlanes map for the function level data
+   TypedPlanes fMap;
+   TypePlane fTypes;
+ 
+ /// @}
+ 
+ };
+ 
+ typedef std::vector<const Type*> TypeList;
+ typedef std::map<const Type*,std::string> TypeMap;
+ typedef std::map<const Value*,std::string> ValueMap;
+ 
+ void WriteAsOperandInternal(std::ostream &Out, const Value *V,
+                                    bool PrintName, TypeMap &TypeTable,
+                                    SlotMachine *Machine);
+ 
+ void WriteAsOperandInternal(std::ostream &Out, const Type *T,
+                                    bool PrintName, TypeMap& TypeTable,
+                                    SlotMachine *Machine);
+ 
+ const Module *getModuleFromVal(const Value *V) {
+   if (const Argument *MA = dyn_cast<Argument>(V))
+     return MA->getParent() ? MA->getParent()->getParent() : 0;
+   else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
+     return BB->getParent() ? BB->getParent()->getParent() : 0;
+   else if (const Instruction *I = dyn_cast<Instruction>(V)) {
+     const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
+     return M ? M->getParent() : 0;
+   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
+     return GV->getParent();
+   return 0;
+ }
+ 
+ // getLLVMName - Turn the specified string into an 'LLVM name', which is either
+ // prefixed with % (if the string only contains simple characters) or is
+ // surrounded with ""'s (if it has special chars in it).
+ std::string getLLVMName(const std::string &Name,
+                                bool prefixName = true) {
+   assert(!Name.empty() && "Cannot get empty name!");
+ 
+   // First character cannot start with a number...
+   if (Name[0] >= '0' && Name[0] <= '9')
+     return "\"" + Name + "\"";
+ 
+   // Scan to see if we have any characters that are not on the "white list"
+   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
+     char C = Name[i];
+     assert(C != '"' && "Illegal character in LLVM value name!");
+     if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
+         C != '-' && C != '.' && C != '_')
+       return "\"" + Name + "\"";
+   }
+ 
+   // If we get here, then the identifier is legal to use as a "VarID".
+   if (prefixName)
+     return "%"+Name;
+   else
+     return Name;
+ }
+ 
+ 
+ /// fillTypeNameTable - If the module has a symbol table, take all global types
+ /// and stuff their names into the TypeNames map.
+ ///
+ void fillTypeNameTable(const Module *M, TypeMap& TypeNames) {
+   if (!M) return;
+   const SymbolTable &ST = M->getSymbolTable();
+   SymbolTable::type_const_iterator TI = ST.type_begin();
+   for (; TI != ST.type_end(); ++TI ) {
+     // As a heuristic, don't insert pointer to primitive types, because
+     // they are used too often to have a single useful name.
+     //
+     const Type *Ty = cast<Type>(TI->second);
+     if (!isa<PointerType>(Ty) ||
+         !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
+         isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
+       TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
+   }
+ }
+ 
+ void calcTypeName(const Type *Ty,
+                          std::vector<const Type *> &TypeStack,
+                          TypeMap& TypeNames,
+                          std::string & Result){
+   if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
+     Result += Ty->getDescription();  // Base case
+     return;
+   }
+ 
+   // Check to see if the type is named.
+   TypeMap::iterator I = TypeNames.find(Ty);
+   if (I != TypeNames.end()) {
+     Result += I->second;
+     return;
+   }
+ 
+   if (isa<OpaqueType>(Ty)) {
+     Result += "opaque";
+     return;
+   }
+ 
+   // Check to see if the Type is already on the stack...
+   unsigned Slot = 0, CurSize = TypeStack.size();
+   while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
+ 
+   // This is another base case for the recursion.  In this case, we know
+   // that we have looped back to a type that we have previously visited.
+   // Generate the appropriate upreference to handle this.
+   if (Slot < CurSize) {
+     Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
+     return;
+   }
+ 
+   TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
+ 
+   switch (Ty->getTypeID()) {
+   case Type::FunctionTyID: {
+     const FunctionType *FTy = cast<FunctionType>(Ty);
+     calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
+     Result += " (";
+     for (FunctionType::param_iterator I = FTy->param_begin(),
+            E = FTy->param_end(); I != E; ++I) {
+       if (I != FTy->param_begin())
+         Result += ", ";
+       calcTypeName(*I, TypeStack, TypeNames, Result);
+     }
+     if (FTy->isVarArg()) {
+       if (FTy->getNumParams()) Result += ", ";
+       Result += "...";
+     }
+     Result += ")";
+     break;
+   }
+   case Type::StructTyID: {
+     const StructType *STy = cast<StructType>(Ty);
+     Result += "{ ";
+     for (StructType::element_iterator I = STy->element_begin(),
+            E = STy->element_end(); I != E; ++I) {
+       if (I != STy->element_begin())
+         Result += ", ";
+       calcTypeName(*I, TypeStack, TypeNames, Result);
+     }
+     Result += " }";
+     break;
+   }
+   case Type::PointerTyID:
+     calcTypeName(cast<PointerType>(Ty)->getElementType(),
+                           TypeStack, TypeNames, Result);
+     Result += "*";
+     break;
+   case Type::ArrayTyID: {
+     const ArrayType *ATy = cast<ArrayType>(Ty);
+     Result += "[" + utostr(ATy->getNumElements()) + " x ";
+     calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
+     Result += "]";
+     break;
+   }
+   case Type::PackedTyID: {
+     const PackedType *PTy = cast<PackedType>(Ty);
+     Result += "<" + utostr(PTy->getNumElements()) + " x ";
+     calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
+     Result += ">";
+     break;
+   }
+   case Type::OpaqueTyID:
+     Result += "opaque";
+     break;
+   default:
+     Result += "<unrecognized-type>";
+   }
+ 
+   TypeStack.pop_back();       // Remove self from stack...
+   return;
+ }
+ 
+ 
+ /// printTypeInt - The internal guts of printing out a type that has a
+ /// potentially named portion.
+ ///
+ std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,TypeMap&TypeNames){
+   // Primitive types always print out their description, regardless of whether
+   // they have been named or not.
+   //
+   if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
+     return Out << Ty->getDescription();
+ 
+   // Check to see if the type is named.
+   TypeMap::iterator I = TypeNames.find(Ty);
+   if (I != TypeNames.end()) return Out << I->second;
+ 
+   // Otherwise we have a type that has not been named but is a derived type.
+   // Carefully recurse the type hierarchy to print out any contained symbolic
+   // names.
+   //
+   std::vector<const Type *> TypeStack;
+   std::string TypeName;
+   calcTypeName(Ty, TypeStack, TypeNames, TypeName);
+   TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
+   return (Out << TypeName);
+ }
+ 
+ 
+ /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
+ /// type, iff there is an entry in the modules symbol table for the specified
+ /// type or one of it's component types. This is slower than a simple x << Type
+ ///
+ std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
+                                       const Module *M) {
+   Out << ' ';
+ 
+   // If they want us to print out a type, attempt to make it symbolic if there
+   // is a symbol table in the module...
+   if (M) {
+     TypeMap TypeNames;
+     fillTypeNameTable(M, TypeNames);
+ 
+     return printTypeInt(Out, Ty, TypeNames);
+   } else {
+     return Out << Ty->getDescription();
+   }
+ }
+ 
+ // PrintEscapedString - Print each character of the specified string, escaping
+ // it if it is not printable or if it is an escape char.
+ void PrintEscapedString(const std::string &Str, std::ostream &Out) {
+   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
+     unsigned char C = Str[i];
+     if (isprint(C) && C != '"' && C != '\\') {
+       Out << C;
+     } else {
+       Out << '\\'
+           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
+           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
+     }
+   }
+ }
+ 
+ /// @brief Internal constant writer.
+ void WriteConstantInternal(std::ostream &Out, const Constant *CV,
+                              bool PrintName,
+                              TypeMap& TypeTable,
+                              SlotMachine *Machine) {
+   const int IndentSize = 4;
+   static std::string Indent = "\n";
+   if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+     Out << (CB == ConstantBool::True ? "true" : "false");
+   } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
+     Out << CI->getValue();
+   } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
+     Out << CI->getValue();
+   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+     // We would like to output the FP constant value in exponential notation,
+     // but we cannot do this if doing so will lose precision.  Check here to
+     // make sure that we only output it in exponential format if we can parse
+     // the value back and get the same value.
+     //
+     std::string StrVal = ftostr(CFP->getValue());
+ 
+     // Check to make sure that the stringized number is not some string like
+     // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
+     // the string matches the "[-+]?[0-9]" regex.
+     //
+     if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+         ((StrVal[0] == '-' || StrVal[0] == '+') &&
+          (StrVal[1] >= '0' && StrVal[1] <= '9')))
+       // Reparse stringized version!
+       if (atof(StrVal.c_str()) == CFP->getValue()) {
+         Out << StrVal;
+         return;
+       }
+ 
+     // Otherwise we could not reparse it to exactly the same value, so we must
+     // output the string in hexadecimal format!
+     assert(sizeof(double) == sizeof(uint64_t) &&
+            "assuming that double is 64 bits!");
+     Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
+ 
+   } else if (isa<ConstantAggregateZero>(CV)) {
+     Out << "zeroinitializer";
+   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+     // As a special case, print the array as a string if it is an array of
+     // ubytes or an array of sbytes with positive values.
+     //
+     const Type *ETy = CA->getType()->getElementType();
+     if (CA->isString()) {
+       Out << "c\"";
+       PrintEscapedString(CA->getAsString(), Out);
+       Out << "\"";
+ 
+     } else {                // Cannot output in string format...
+       Out << '[';
+       if (CA->getNumOperands()) {
+         Out << ' ';
+         printTypeInt(Out, ETy, TypeTable);
+         WriteAsOperandInternal(Out, CA->getOperand(0),
+                                PrintName, TypeTable, Machine);
+         for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
+           Out << ", ";
+           printTypeInt(Out, ETy, TypeTable);
+           WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
+                                  TypeTable, Machine);
+         }
+       }
+       Out << " ]";
+     }
+   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+     Out << '{';
+     unsigned N = CS->getNumOperands();
+     if (N) {
+       if (N > 2) {
+         Indent += std::string(IndentSize, ' ');
+         Out << Indent;
+       } else {
+         Out << ' ';
+       }
+       printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
+ 
+       WriteAsOperandInternal(Out, CS->getOperand(0),
+                              PrintName, TypeTable, Machine);
+ 
+       for (unsigned i = 1; i < N; i++) {
+         Out << ", ";
+         if (N > 2) Out << Indent;
+         printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
+ 
+         WriteAsOperandInternal(Out, CS->getOperand(i),
+                                PrintName, TypeTable, Machine);
+       }
+       if (N > 2) Indent.resize(Indent.size() - IndentSize);
+     }
+  
+     Out << " }";
+   } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
+       const Type *ETy = CP->getType()->getElementType();
+       assert(CP->getNumOperands() > 0 &&
+              "Number of operands for a PackedConst must be > 0");
+       Out << '<';
+       Out << ' ';
+       printTypeInt(Out, ETy, TypeTable);
+       WriteAsOperandInternal(Out, CP->getOperand(0),
+                              PrintName, TypeTable, Machine);
+       for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
+           Out << ", ";
+           printTypeInt(Out, ETy, TypeTable);
+           WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
+                                  TypeTable, Machine);
+       }
+       Out << " >";
+   } else if (isa<ConstantPointerNull>(CV)) {
+     Out << "null";
+ 
+   } else if (isa<UndefValue>(CV)) {
+     Out << "undef";
+ 
+   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+     Out << CE->getOpcodeName() << " (";
+ 
+     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
+       printTypeInt(Out, (*OI)->getType(), TypeTable);
+       WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
+       if (OI+1 != CE->op_end())
+         Out << ", ";
+     }
+ 
+     if (CE->getOpcode() == Instruction::Cast) {
+       Out << " to ";
+       printTypeInt(Out, CE->getType(), TypeTable);
+     }
+     Out << ')';
+ 
+   } else {
+     Out << "<placeholder or erroneous Constant>";
+   }
+ }
+ 
+ 
+ /// WriteAsOperand - Write the name of the specified value out to the specified
+ /// ostream.  This can be useful when you just want to print int %reg126, not
+ /// the whole instruction that generated it.
+ ///
+ void WriteAsOperandInternal(std::ostream &Out, const Value *V,
+                                    bool PrintName, TypeMap& TypeTable,
+                                    SlotMachine *Machine) {
+   Out << ' ';
+   if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
+     Out << getLLVMName(V->getName());
+   else {
+     const Constant *CV = dyn_cast<Constant>(V);
+     if (CV && !isa<GlobalValue>(CV)) {
+       WriteConstantInternal(Out, CV, PrintName, TypeTable, Machine);
+     } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+       Out << "asm ";
+       if (IA->hasSideEffects())
+         Out << "sideeffect ";
+       Out << '"';
+       PrintEscapedString(IA->getAsmString(), Out);
+       Out << "\", \"";
+       PrintEscapedString(IA->getConstraintString(), Out);
+       Out << '"';
+     } else {
+       int Slot = Machine->getSlot(V);
+       if (Slot != -1)
+         Out << '%' << Slot;
+       else
+         Out << "<badref>";
+     }
+   }
+ }
+ 
+ /// WriteAsOperand - Write the name of the specified value out to the specified
+ /// ostream.  This can be useful when you just want to print int %reg126, not
+ /// the whole instruction that generated it.
+ ///
+ std::ostream &WriteAsOperand(std::ostream &Out, const Value *V,
+                                    bool PrintType, bool PrintName,
+                                    const Module *Context) {
+   TypeMap TypeNames;
+   if (Context == 0) Context = getModuleFromVal(V);
+ 
+   if (Context)
+     fillTypeNameTable(Context, TypeNames);
+ 
+   if (PrintType)
+     printTypeInt(Out, V->getType(), TypeNames);
+ 
+   WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
+   return Out;
+ }
+ 
+ /// WriteAsOperandInternal - Write the name of the specified value out to
+ /// the specified ostream.  This can be useful when you just want to print
+ /// int %reg126, not the whole instruction that generated it.
+ ///
+ void WriteAsOperandInternal(std::ostream &Out, const Type *T,
+                                    bool PrintName, TypeMap& TypeTable,
+                                    SlotMachine *Machine) {
+   Out << ' ';
+   int Slot = Machine->getSlot(T);
+   if (Slot != -1)
+     Out << '%' << Slot;
+   else
+     Out << "<badref>";
+ }
+ 
+ /// WriteAsOperand - Write the name of the specified value out to the specified
+ /// ostream.  This can be useful when you just want to print int %reg126, not
+ /// the whole instruction that generated it.
+ ///
+ std::ostream &WriteAsOperand(std::ostream &Out, const Type *Ty,
+                                    bool PrintType, bool PrintName,
+                                    const Module *Context) {
+   TypeMap TypeNames;
+   assert(Context != 0 && "Can't write types as operand without module context");
+ 
+   fillTypeNameTable(Context, TypeNames);
+ 
+   // if (PrintType)
+     // printTypeInt(Out, V->getType(), TypeNames);
+ 
+   printTypeInt(Out, Ty, TypeNames);
+ 
+   WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
+   return Out;
+ }
+ 
+ class CppWriter {
+   std::ostream &Out;
+   SlotMachine &Machine;
+   const Module *TheModule;
+   unsigned long uniqueNum;
+   TypeMap TypeNames;
+   ValueMap ValueNames;
+   TypeMap UnresolvedTypes;
+   TypeList TypeStack;
+ 
+ public:
+   inline CppWriter(std::ostream &o, SlotMachine &Mac, const Module *M)
+     : Out(o), Machine(Mac), TheModule(M), uniqueNum(0), TypeNames(),
+       ValueNames(), UnresolvedTypes(), TypeStack() { }
+ 
+   inline void write(const Module *M)         { printModule(M);      }
+   inline void write(const GlobalVariable *G) { printGlobal(G);      }
+   inline void write(const Function *F)       { printFunction(F);    }
+   inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
+   inline void write(const Instruction *I)    { printInstruction(*I); }
+   inline void write(const Constant *CPV)     { printConstant(CPV);  }
+   inline void write(const Type *Ty)          { printType(Ty);       }
+ 
+   void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
+ 
+   const Module* getModule() { return TheModule; }
+ 
+ private:
+   void printModule(const Module *M);
+   void printTypes(const Module* M);
+   void printConstants(const Module* M);
+   void printConstant(const Constant *CPV);
+   void printGlobal(const GlobalVariable *GV);
+   void printFunction(const Function *F);
+   void printArgument(const Argument *FA);
+   void printBasicBlock(const BasicBlock *BB);
+   void printInstruction(const Instruction &I);
+   void printSymbolTable(const SymbolTable &ST);
+   void printLinkageType(GlobalValue::LinkageTypes LT);
+   void printCallingConv(unsigned cc);
+ 
+ 
+   // printType - Go to extreme measures to attempt to print out a short,
+   // symbolic version of a type name.
+   //
+   std::ostream &printType(const Type *Ty) {
+     return printTypeInt(Out, Ty, TypeNames);
+   }
+ 
+   // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
+   // without considering any symbolic types that we may have equal to it.
+   //
+   std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
+ 
+   // printInfoComment - Print a little comment after the instruction indicating
+   // which slot it occupies.
+   void printInfoComment(const Value &V);
+ 
+   std::string getCppName(const Type* val);
+   std::string getCppName(const Value* val);
+   inline void printCppName(const Value* val);
+   inline void printCppName(const Type* val);
+   bool isOnStack(const Type*) const;
+   inline void printTypeDef(const Type* Ty);
+   bool printTypeDefInternal(const Type* Ty);
+ };
+ 
+ std::string
+ CppWriter::getCppName(const Value* val) {
+   std::string name;
+   ValueMap::iterator I = ValueNames.find(val);
+   if (I != ValueNames.end()) {
+     name = I->second;
+   } else {
+     const char* prefix;
+     switch (val->getType()->getTypeID()) {
+       case Type::VoidTyID:     prefix = "void_"; break;
+       case Type::BoolTyID:     prefix = "bool_"; break; 
+       case Type::UByteTyID:    prefix = "ubyte_"; break;
+       case Type::SByteTyID:    prefix = "sbyte_"; break;
+       case Type::UShortTyID:   prefix = "ushort_"; break;
+       case Type::ShortTyID:    prefix = "short_"; break;
+       case Type::UIntTyID:     prefix = "uint_"; break;
+       case Type::IntTyID:      prefix = "int_"; break;
+       case Type::ULongTyID:    prefix = "ulong_"; break;
+       case Type::LongTyID:     prefix = "long_"; break;
+       case Type::FloatTyID:    prefix = "float_"; break;
+       case Type::DoubleTyID:   prefix = "double_"; break;
+       case Type::LabelTyID:    prefix = "label_"; break;
+       case Type::FunctionTyID: prefix = "func_"; break;
+       case Type::StructTyID:   prefix = "struct_"; break;
+       case Type::ArrayTyID:    prefix = "array_"; break;
+       case Type::PointerTyID:  prefix = "ptr_"; break;
+       case Type::PackedTyID:   prefix = "packed_"; break;
+       default:                 prefix = "other_"; break;
+     }
+     name = ValueNames[val] = std::string(prefix) +
+         (val->hasName() ? val->getName() : utostr(uniqueNum++));
+   }
+   return name;
+ }
+ 
+ void
+ CppWriter::printCppName(const Value* val) {
+   PrintEscapedString(getCppName(val),Out);
+ }
+ 
+ void
+ CppWriter::printCppName(const Type* Ty)
+ {
+   PrintEscapedString(getCppName(Ty),Out);
+ }
+ 
+ // Gets the C++ name for a type. Returns true if we already saw the type,
+ // false otherwise.
+ //
+ inline const std::string* 
+ findTypeName(const SymbolTable& ST, const Type* Ty)
+ {
+   SymbolTable::type_const_iterator TI = ST.type_begin();
+   SymbolTable::type_const_iterator TE = ST.type_end();
+   for (;TI != TE; ++TI)
+     if (TI->second == Ty)
+       return &(TI->first);
+   return 0;
+ }
+ 
+ std::string
+ CppWriter::getCppName(const Type* Ty)
+ {
+   // First, handle the primitive types .. easy
+   if (Ty->isPrimitiveType()) {
+     switch (Ty->getTypeID()) {
+       case Type::VoidTyID:     return "Type::VoidTy";
+       case Type::BoolTyID:     return "Type::BoolTy"; 
+       case Type::UByteTyID:    return "Type::UByteTy";
+       case Type::SByteTyID:    return "Type::SByteTy";
+       case Type::UShortTyID:   return "Type::UShortTy";
+       case Type::ShortTyID:    return "Type::ShortTy";
+       case Type::UIntTyID:     return "Type::UIntTy";
+       case Type::IntTyID:      return "Type::IntTy";
+       case Type::ULongTyID:    return "Type::ULongTy";
+       case Type::LongTyID:     return "Type::LongTy";
+       case Type::FloatTyID:    return "Type::FloatTy";
+       case Type::DoubleTyID:   return "Type::DoubleTy";
+       case Type::LabelTyID:    return "Type::LabelTy";
+       default:
+         assert(!"Can't get here");
+         break;
+     }
+     return "Type::VoidTy"; // shouldn't be returned, but make it sensible
+   }
+ 
+   // Now, see if we've seen the type before and return that
+   TypeMap::iterator I = TypeNames.find(Ty);
+   if (I != TypeNames.end())
+     return I->second;
+ 
+   // Okay, let's build a new name for this type. Start with a prefix
+   const char* prefix = 0;
+   switch (Ty->getTypeID()) {
+     case Type::FunctionTyID:    prefix = "FuncTy_"; break;
+     case Type::StructTyID:      prefix = "StructTy_"; break;
+     case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
+     case Type::PointerTyID:     prefix = "PointerTy_"; break;
+     case Type::OpaqueTyID:      prefix = "OpaqueTy_"; break;
+     case Type::PackedTyID:      prefix = "PackedTy_"; break;
+     default:                    prefix = "OtherTy_"; break; // prevent breakage
+   }
+ 
+   // See if the type has a name in the symboltable and build accordingly
+   const std::string* tName = findTypeName(TheModule->getSymbolTable(), Ty);
+   std::string name;
+   if (tName) 
+     name = std::string(prefix) + *tName;
+   else
+     name = std::string(prefix) + utostr(uniqueNum++);
+ 
+   // Save the name
+   return TypeNames[Ty] = name;
+ }
+ 
+ /// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
+ /// without considering any symbolic types that we may have equal to it.
+ ///
+ std::ostream &CppWriter::printTypeAtLeastOneLevel(const Type *Ty) {
+   if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
+     printType(FTy->getReturnType()) << " (";
+     for (FunctionType::param_iterator I = FTy->param_begin(),
+            E = FTy->param_end(); I != E; ++I) {
+       if (I != FTy->param_begin())
+         Out << ", ";
+       printType(*I);
+     }
+     if (FTy->isVarArg()) {
+       if (FTy->getNumParams()) Out << ", ";
+       Out << "...";
+     }
+     Out << ')';
+   } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+     Out << "{ ";
+     for (StructType::element_iterator I = STy->element_begin(),
+            E = STy->element_end(); I != E; ++I) {
+       if (I != STy->element_begin())
+         Out << ", ";
+       printType(*I);
+     }
+     Out << " }";
+   } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
+     printType(PTy->getElementType()) << '*';
+   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+     Out << '[' << ATy->getNumElements() << " x ";
+     printType(ATy->getElementType()) << ']';
+   } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
+     Out << '<' << PTy->getNumElements() << " x ";
+     printType(PTy->getElementType()) << '>';
+   }
+   else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
+     Out << "opaque";
+   } else {
+     if (!Ty->isPrimitiveType())
+       Out << "<unknown derived type>";
+     printType(Ty);
+   }
+   return Out;
+ }
+ 
+ 
+ void CppWriter::writeOperand(const Value *Operand, bool PrintType,
+                                   bool PrintName) {
+   if (Operand != 0) {
+     if (PrintType) { Out << ' '; printType(Operand->getType()); }
+     WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
+   } else {
+     Out << "<null operand!>";
+   }
+ }
+ 
+ 
+ void CppWriter::printModule(const Module *M) {
+   Out << "\n// Module Construction\n";
+   Out << "Module* mod = new Module(\"";
+   PrintEscapedString(M->getModuleIdentifier(),Out);
+   Out << "\");\n";
+   Out << "mod->setEndianness(";
+   switch (M->getEndianness()) {
+     case Module::LittleEndian: Out << "Module::LittleEndian);\n"; break;
+     case Module::BigEndian:    Out << "Module::BigEndian);\n";    break;
+     case Module::AnyEndianness:Out << "Module::AnyEndianness);\n";  break;
+   }
+   Out << "mod->setPointerSize(";
+   switch (M->getPointerSize()) {
+     case Module::Pointer32:      Out << "Module::Pointer32);\n"; break;
+     case Module::Pointer64:      Out << "Module::Pointer64);\n"; break;
+     case Module::AnyPointerSize: Out << "Module::AnyPointerSize);\n"; break;
+   }
+   if (!M->getTargetTriple().empty())
+     Out << "mod->setTargetTriple(\"" << M->getTargetTriple() << "\");\n";
+ 
+   if (!M->getModuleInlineAsm().empty()) {
+     Out << "mod->setModuleInlineAsm(\"";
+     PrintEscapedString(M->getModuleInlineAsm(),Out);
+     Out << "\");\n";
+   }
+   
+   // Loop over the dependent libraries and emit them.
+   Module::lib_iterator LI = M->lib_begin();
+   Module::lib_iterator LE = M->lib_end();
+   while (LI != LE) {
+     Out << "mod->addLibrary(\"" << *LI << "\");\n";
+     ++LI;
+   }
+ 
+   // Print out all the type definitions
+   Out << "\n// Type Definitions\n";
+   printTypes(M);
+ 
+   // Print out all the constants declarations
+   Out << "\n// Constants Construction\n";
+   printConstants(M);
+ 
+   // Process the global variables
+   Out << "\n// Global Variable Construction\n";
+   for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
+        I != E; ++I) {
+     printGlobal(I);
+   }
+ 
+   // Output all of the functions.
+   Out << "\n// Function Construction\n";
+   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
+     printFunction(I);
+ }
+ 
+ void
+ CppWriter::printCallingConv(unsigned cc){
+   // Print the calling convention.
+   switch (cc) {
+     default:
+     case CallingConv::C:     Out << "CallingConv::C"; break;
+     case CallingConv::CSRet: Out << "CallingConv::CSRet"; break;
+     case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
+     case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
+     case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
+   }
+ }
+ 
+ void 
+ CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
+   switch (LT) {
+     case GlobalValue::InternalLinkage:  
+       Out << "GlobalValue::InternalLinkage"; break;
+     case GlobalValue::LinkOnceLinkage:  
+       Out << "GlobalValue::LinkOnceLinkage "; break;
+     case GlobalValue::WeakLinkage:      
+       Out << "GlobalValue::WeakLinkage"; break;
+     case GlobalValue::AppendingLinkage: 
+       Out << "GlobalValue::AppendingLinkage"; break;
+     case GlobalValue::ExternalLinkage: 
+       Out << "GlobalValue::ExternalLinkage"; break;
+     case GlobalValue::GhostLinkage:
+       Out << "GlobalValue::GhostLinkage"; break;
+   }
+ }
+ void CppWriter::printGlobal(const GlobalVariable *GV) {
+   Out << "\n";
+   Out << "GlobalVariable* ";
+   printCppName(GV);
+   Out << " = new GlobalVariable(\n";
+   Out << "  /*Type=*/";
+   printCppName(GV->getType()->getElementType());
+   Out << ",\n";
+   Out << "  /*isConstant=*/" << (GV->isConstant()?"true":"false") 
+       << ",\n  /*Linkage=*/";
+   printLinkageType(GV->getLinkage());
+   Out << ",\n  /*Initializer=*/";
+   if (GV->hasInitializer()) {
+     printCppName(GV->getInitializer());
+   } else {
+     Out << "0";
+   }
+   Out << ",\n  /*Name=*/\"";
+   PrintEscapedString(GV->getName(),Out);
+   Out << "\",\n  mod);\n";
+ 
+   if (GV->hasSection()) {
+     printCppName(GV);
+     Out << "->setSection(\"";
+     PrintEscapedString(GV->getSection(),Out);
+     Out << "\");\n";
+   }
+   if (GV->getAlignment()) {
+     printCppName(GV);
+     Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");\n";
+   };
+ }
+ 
+ bool
+ CppWriter::isOnStack(const Type* Ty) const {
+   TypeList::const_iterator TI = 
+     std::find(TypeStack.begin(),TypeStack.end(),Ty);
+   return TI != TypeStack.end();
+ }
+ 
+ // Prints a type definition. Returns true if it could not resolve all the types
+ // in the definition but had to use a forward reference.
+ void
+ CppWriter::printTypeDef(const Type* Ty) {
+   assert(TypeStack.empty());
+   TypeStack.clear();
+   printTypeDefInternal(Ty);
+   assert(TypeStack.empty());
+   // early resolve as many unresolved types as possible. Search the unresolved
+   // types map for the type we just printed. Now that its definition is complete
+   // we can resolve any preview references to it. This prevents a cascade of
+   // unresolved types.
+   TypeMap::iterator I = UnresolvedTypes.find(Ty);
+   if (I != UnresolvedTypes.end()) {
+     Out << "cast<OpaqueType>(" << I->second 
+         << "_fwd.get())->refineAbstractTypeTo(" << I->second << ");\n";
+     Out << I->second << " = cast<";
+     switch (Ty->getTypeID()) {
+       case Type::FunctionTyID: Out << "FunctionType"; break;
+       case Type::ArrayTyID:    Out << "ArrayType"; break;
+       case Type::StructTyID:   Out << "StructType"; break;
+       case Type::PackedTyID:   Out << "PackedType"; break;
+       case Type::PointerTyID:  Out << "PointerType"; break;
+       case Type::OpaqueTyID:   Out << "OpaqueType"; break;
+       default:                 Out << "NoSuchDerivedType"; break;
+     }
+     Out << ">(" << I->second << "_fwd.get());\n";
+     UnresolvedTypes.erase(I);
+   }
+   Out << "\n";
+ }
+ 
+ bool
+ CppWriter::printTypeDefInternal(const Type* Ty) {
+   // We don't print definitions for primitive types
+   if (Ty->isPrimitiveType())
+     return false;
+ 
+   // Determine if the name is in the name list before we modify that list.
+   TypeMap::const_iterator TNI = TypeNames.find(Ty);
+ 
+   // Everything below needs the name for the type so get it now
+   std::string typeName(getCppName(Ty));
+ 
+   // Search the type stack for recursion. If we find it, then generate this
+   // as an OpaqueType, but make sure not to do this multiple times because
+   // the type could appear in multiple places on the stack. Once the opaque
+   // definition is issues, it must not be re-issued. Consequently we have to
+   // check the UnresolvedTypes list as well.
+   if (isOnStack(Ty)) {
+     TypeMap::const_iterator I = UnresolvedTypes.find(Ty);
+     if (I == UnresolvedTypes.end()) {
+       Out << "PATypeHolder " << typeName << "_fwd = OpaqueType::get();\n";
+       UnresolvedTypes[Ty] = typeName;
+       return true;
+     }
+   }
+ 
+   // Avoid printing things we have already printed. Since TNI was obtained
+   // before the name was inserted with getCppName and because we know the name
+   // is not on the stack (currently being defined), we can surmise here that if
+   // we got the name we've also already emitted its definition.
+   if (TNI != TypeNames.end())
+     return false;
+ 
+   // We're going to print a derived type which, by definition, contains other
+   // types. So, push this one we're printing onto the type stack to assist with
+   // recursive definitions.
+   TypeStack.push_back(Ty); // push on type stack
+   bool didRecurse = false;
+ 
+   // Print the type definition
+   switch (Ty->getTypeID()) {
+     case Type::FunctionTyID:  {
+       const FunctionType* FT = cast<FunctionType>(Ty);
+       Out << "std::vector<const Type*>" << typeName << "_args;\n";
+       FunctionType::param_iterator PI = FT->param_begin();
+       FunctionType::param_iterator PE = FT->param_end();
+       for (; PI != PE; ++PI) {
+         const Type* argTy = static_cast<const Type*>(*PI);
+         bool isForward = printTypeDefInternal(argTy);
+         std::string argName(getCppName(argTy));
+         Out << typeName << "_args.push_back(" << argName;
+         if (isForward)
+           Out << "_fwd";
+         Out << ");\n";
+       }
+       bool isForward = printTypeDefInternal(FT->getReturnType());
+       std::string retTypeName(getCppName(FT->getReturnType()));
+       Out << "FunctionType* " << typeName << " = FunctionType::get(\n"
+           << "  /*Result=*/" << retTypeName;
+       if (isForward)
+         Out << "_fwd";
+       Out << ",\n  /*Params=*/" << typeName << "_args,\n  /*isVarArg=*/"
+           << (FT->isVarArg() ? "true" : "false") << ");\n";
+       break;
+     }
+     case Type::StructTyID: {
+       const StructType* ST = cast<StructType>(Ty);
+       Out << "std::vector<const Type*>" << typeName << "_fields;\n";
+       StructType::element_iterator EI = ST->element_begin();
+       StructType::element_iterator EE = ST->element_end();
+       for (; EI != EE; ++EI) {
+         const Type* fieldTy = static_cast<const Type*>(*EI);
+         bool isForward = printTypeDefInternal(fieldTy);
+         std::string fieldName(getCppName(fieldTy));
+         Out << typeName << "_fields.push_back(" << fieldName;
+         if (isForward)
+           Out << "_fwd";
+         Out << ");\n";
+       }
+       Out << "StructType* " << typeName << " = StructType::get("
+           << typeName << "_fields);\n";
+       break;
+     }
+     case Type::ArrayTyID: {
+       const ArrayType* AT = cast<ArrayType>(Ty);
+       const Type* ET = AT->getElementType();
+       bool isForward = printTypeDefInternal(ET);
+       std::string elemName(getCppName(ET));
+       Out << "ArrayType* " << typeName << " = ArrayType::get("
+           << elemName << (isForward ? "_fwd" : "") 
+           << ", " << utostr(AT->getNumElements()) << ");\n";
+       break;
+     }
+     case Type::PointerTyID: {
+       const PointerType* PT = cast<PointerType>(Ty);
+       const Type* ET = PT->getElementType();
+       bool isForward = printTypeDefInternal(ET);
+       std::string elemName(getCppName(ET));
+       Out << "PointerType* " << typeName << " = PointerType::get("
+           << elemName << (isForward ? "_fwd" : "") << ");\n";
+       break;
+     }
+     case Type::PackedTyID: {
+       const PackedType* PT = cast<PackedType>(Ty);
+       const Type* ET = PT->getElementType();
+       bool isForward = printTypeDefInternal(ET);
+       std::string elemName(getCppName(ET));
+       Out << "PackedType* " << typeName << " = PackedType::get("
+           << elemName << (isForward ? "_fwd" : "") 
+           << ", " << utostr(PT->getNumElements()) << ");\n";
+       break;
+     }
+     case Type::OpaqueTyID: {
+       const OpaqueType* OT = cast<OpaqueType>(Ty);
+       Out << "OpaqueType* " << typeName << " = OpaqueType::get();\n";
+       break;
+     }
+     default:
+       assert(!"Invalid TypeID");
+   }
+ 
+   // Pop us off the type stack
+   TypeStack.pop_back();
+ 
+   // We weren't a recursive type
+   return false;
+ }
+ 
+ void
+ CppWriter::printTypes(const Module* M) {
+   // Add all of the global variables to the value table...
+   for (Module::const_global_iterator I = TheModule->global_begin(), 
+        E = TheModule->global_end(); I != E; ++I) {
+     if (I->hasInitializer())
+       printTypeDef(I->getInitializer()->getType());
+     printTypeDef(I->getType());
+   }
+ 
+   // Add all the functions to the table
+   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+        FI != FE; ++FI) {
+     printTypeDef(FI->getReturnType());
+     printTypeDef(FI->getFunctionType());
+     // Add all the function arguments
+     for(Function::const_arg_iterator AI = FI->arg_begin(),
+         AE = FI->arg_end(); AI != AE; ++AI) {
+       printTypeDef(AI->getType());
+     }
+ 
+     // Add all of the basic blocks and instructions
+     for (Function::const_iterator BB = FI->begin(),
+          E = FI->end(); BB != E; ++BB) {
+       printTypeDef(BB->getType());
+       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 
+            ++I) {
+         printTypeDef(I->getType());
+       }
+     }
+   }
+ }
+ 
+ void
+ CppWriter::printConstants(const Module* M) {
+   const SymbolTable& ST = M->getSymbolTable();
+ 
+   // Print the constants, in type plane order.
+   for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
+        PI != ST.plane_end(); ++PI ) {
+     SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
+     SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
+ 
+     for (; VI != VE; ++VI) {
+       const Value* V = VI->second;
+       const Constant *CPV = dyn_cast<Constant>(V) ;
+       if (CPV && !isa<GlobalValue>(V)) {
+         printConstant(CPV);
+       }
+     }
+   }
+ 
+   // Add all of the global variables to the value table...
+   for (Module::const_global_iterator I = TheModule->global_begin(), 
+        E = TheModule->global_end(); I != E; ++I)
+     if (I->hasInitializer())
+       printConstant(I->getInitializer());
+ }
+ 
+ // printSymbolTable - Run through symbol table looking for constants
+ // and types. Emit their declarations.
+ void CppWriter::printSymbolTable(const SymbolTable &ST) {
+ 
+   // Print the types.
+   for (SymbolTable::type_const_iterator TI = ST.type_begin();
+        TI != ST.type_end(); ++TI ) {
+     Out << "\t" << getLLVMName(TI->first) << " = type ";
+ 
+     // Make sure we print out at least one level of the type structure, so
+     // that we do not get %FILE = type %FILE
+     //
+     printTypeAtLeastOneLevel(TI->second) << "\n";
+   }
+ 
+ }
+ 
+ 
+ /// printConstant - Print out a constant pool entry...
+ ///
+ void CppWriter::printConstant(const Constant *CV) {
+   const int IndentSize = 2;
+   static std::string Indent = "\n";
+   std::string constName(getCppName(CV));
+   std::string typeName(getCppName(CV->getType()));
+   if (CV->isNullValue()) {
+     Out << "Constant* " << constName << " = Constant::getNullValue("
+         << typeName << ");\n";
+     return;
+   }
+   if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+     Out << "Constant* " << constName << " = ConstantBool::get(" 
+         << (CB == ConstantBool::True ? "true" : "false")
+         << ");";
+   } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
+     Out << "Constant* " << constName << " = ConstantSInt::get(" 
+         << typeName << ", " << CI->getValue() << ");";
+   } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
+     Out << "Constant* " << constName << " = ConstantUInt::get(" 
+         << typeName << ", " << CI->getValue() << ");";
+   } else if (isa<ConstantAggregateZero>(CV)) {
+     Out << "Constant* " << constName << " = ConstantAggregateZero::get(" 
+         << typeName << ");";
+   } else if (isa<ConstantPointerNull>(CV)) {
+     Out << "Constant* " << constName << " = ConstanPointerNull::get(" 
+         << typeName << ");";
+   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+     Out << "ConstantFP::get(" << typeName << ", ";
+     // We would like to output the FP constant value in exponential notation,
+     // but we cannot do this if doing so will lose precision.  Check here to
+     // make sure that we only output it in exponential format if we can parse
+     // the value back and get the same value.
+     //
+     std::string StrVal = ftostr(CFP->getValue());
+ 
+     // Check to make sure that the stringized number is not some string like
+     // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
+     // the string matches the "[-+]?[0-9]" regex.
+     //
+     if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
+         ((StrVal[0] == '-' || StrVal[0] == '+') &&
+          (StrVal[1] >= '0' && StrVal[1] <= '9')))
+       // Reparse stringized version!
+       if (atof(StrVal.c_str()) == CFP->getValue()) {
+         Out << StrVal;
+         return;
+       }
+ 
+     // Otherwise we could not reparse it to exactly the same value, so we must
+     // output the string in hexadecimal format!
+     assert(sizeof(double) == sizeof(uint64_t) &&
+            "assuming that double is 64 bits!");
+     Out << "0x" << utohexstr(DoubleToBits(CFP->getValue())) << ");";
+   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
+     if (CA->isString()) {
+       Out << "Constant* " << constName << " = ConstantArray::get(\"";
+       PrintEscapedString(CA->getAsString(),Out);
+       Out << "\");";
+     } else {
+       Out << "std::vector<Constant*> " << constName << "_elems;\n";
+       unsigned N = CA->getNumOperands();
+       for (unsigned i = 0; i < N; ++i) {
+         printConstant(CA->getOperand(i));
+         Out << constName << "_elems.push_back("
+             << getCppName(CA->getOperand(i)) << ");\n";
+       }
+       Out << "Constant* " << constName << " = ConstantArray::get(" 
+           << typeName << ", " << constName << "_elems);";
+     }
+   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
+     Out << "std::vector<Constant*> " << constName << "_fields;\n";
+     unsigned N = CS->getNumOperands();
+     for (unsigned i = 0; i < N; i++) {
+       printConstant(CS->getOperand(i));
+       Out << constName << "_fields.push_back("
+           << getCppName(CA->getOperand(i)) << ");\n";
+     }
+     Out << "Constant* " << constName << " = ConstantStruct::get(" 
+         << typeName << ", " << constName << "_fields);";
+   } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
+     Out << "std::vector<Constant*> " << constName << "_elems;\n";
+     unsigned N = CP->getNumOperands();
+     for (unsigned i = 0; i < N; ++i) {
+       printConstant(CP->getOperand(i));
+       Out << constName << "_elems.push_back("
+           << getCppName(CP->getOperand(i)) << ");\n";
+     }
+     Out << "Constant* " << constName << " = ConstantPacked::get(" 
+         << typeName << ", " << constName << "_elems);";
+   } else if (isa<UndefValue>(CV)) {
+     Out << "Constant* " << constName << " = UndefValue::get(" 
+         << typeName << ");\n";
+   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+     Out << CE->getOpcodeName() << " (";
+ 
+     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
+       //printTypeInt(Out, (*OI)->getType(), TypeTable);
+       //WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
+       if (OI+1 != CE->op_end())
+         Out << ", ";
+     }
+ 
+     if (CE->getOpcode() == Instruction::Cast) {
+       Out << " to ";
+       // printTypeInt(Out, CE->getType(), TypeTable);
+     }
+     Out << ')';
+ 
+   } else {
+     Out << "<placeholder or erroneous Constant>";
+   }
+   Out << "\n";
+ }
+ 
+ /// printFunction - Print all aspects of a function.
+ ///
+ void CppWriter::printFunction(const Function *F) {
+   std::string funcTypeName(getCppName(F->getFunctionType()));
+ 
+   Out << "Function* ";
+   printCppName(F);
+   Out << " = new Function(" << funcTypeName << ", " ;
+   printLinkageType(F->getLinkage());
+   Out << ", \"" << F->getName() << "\", mod);\n";
+   printCppName(F);
+   Out << "->setCallingConv(";
+   printCallingConv(F->getCallingConv());
+   Out << ");\n";
+   if (F->hasSection()) {
+     printCppName(F);
+     Out << "->setSection(" << F->getSection() << ");\n";
+   }
+   if (F->getAlignment()) {
+     printCppName(F);
+     Out << "->setAlignment(" << F->getAlignment() << ");\n";
+   }
+ 
+   Machine.incorporateFunction(F);
+ 
+   if (!F->isExternal()) {
+     Out << "{";
+     // Output all of its basic blocks... for the function
+     for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
+       printBasicBlock(I);
+     Out << "}\n";
+   }
+ 
+   Machine.purgeFunction();
+ }
+ 
+ /// printArgument - This member is called for every argument that is passed into
+ /// the function.  Simply print it out
+ ///
+ void CppWriter::printArgument(const Argument *Arg) {
+   // Insert commas as we go... the first arg doesn't get a comma
+   if (Arg != Arg->getParent()->arg_begin()) Out << ", ";
+ 
+   // Output type...
+   printType(Arg->getType());
+ 
+   // Output name, if available...
+   if (Arg->hasName())
+     Out << ' ' << getLLVMName(Arg->getName());
+ }
+ 
+ /// printBasicBlock - This member is called for each basic block in a method.
+ ///
+ void CppWriter::printBasicBlock(const BasicBlock *BB) {
+   if (BB->hasName()) {              // Print out the label if it exists...
+     Out << "\n" << getLLVMName(BB->getName(), false) << ':';
+   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
+     Out << "\n; <label>:";
+     int Slot = Machine.getSlot(BB);
+     if (Slot != -1)
+       Out << Slot;
+     else
+       Out << "<badref>";
+   }
+ 
+   if (BB->getParent() == 0)
+     Out << "\t\t; Error: Block without parent!";
+   else {
+     if (BB != &BB->getParent()->front()) {  // Not the entry block?
+       // Output predecessors for the block...
+       Out << "\t\t;";
+       pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
+ 
+       if (PI == PE) {
+         Out << " No predecessors!";
+       } else {
+         Out << " preds =";
+         writeOperand(*PI, false, true);
+         for (++PI; PI != PE; ++PI) {
+           Out << ',';
+           writeOperand(*PI, false, true);
+         }
+       }
+     }
+   }
+ 
+   Out << "\n";
+ 
+   // Output all of the instructions in the basic block...
+   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+     printInstruction(*I);
+ }
+ 
+ 
+ /// printInfoComment - Print a little comment after the instruction indicating
+ /// which slot it occupies.
+ ///
+ void CppWriter::printInfoComment(const Value &V) {
+   if (V.getType() != Type::VoidTy) {
+     Out << "\t\t; <";
+     printType(V.getType()) << '>';
+ 
+     if (!V.hasName()) {
+       int SlotNum = Machine.getSlot(&V);
+       if (SlotNum == -1)
+         Out << ":<badref>";
+       else
+         Out << ':' << SlotNum; // Print out the def slot taken.
+     }
+     Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
+   }
+ }
+ 
+ /// printInstruction - This member is called for each Instruction in a function..
+ ///
+ void CppWriter::printInstruction(const Instruction &I) {
+   Out << "\t";
+ 
+   // Print out name if it exists...
+   if (I.hasName())
+     Out << getLLVMName(I.getName()) << " = ";
+ 
+   // If this is a volatile load or store, print out the volatile marker.
+   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
+       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
+       Out << "volatile ";
+   } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
+     // If this is a call, check if it's a tail call.
+     Out << "tail ";
+   }
+ 
+   // Print out the opcode...
+   Out << I.getOpcodeName();
+ 
+   // Print out the type of the operands...
+   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
+ 
+   // Special case conditional branches to swizzle the condition out to the front
+   if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
+     writeOperand(I.getOperand(2), true);
+     Out << ',';
+     writeOperand(Operand, true);
+     Out << ',';
+     writeOperand(I.getOperand(1), true);
+ 
+   } else if (isa<SwitchInst>(I)) {
+     // Special case switch statement to get formatting nice and correct...
+     writeOperand(Operand        , true); Out << ',';
+     writeOperand(I.getOperand(1), true); Out << " [";
+ 
+     for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
+       Out << "\n\t\t";
+       writeOperand(I.getOperand(op  ), true); Out << ',';
+       writeOperand(I.getOperand(op+1), true);
+     }
+     Out << "\n\t]";
+   } else if (isa<PHINode>(I)) {
+     Out << ' ';
+     printType(I.getType());
+     Out << ' ';
+ 
+     for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
+       if (op) Out << ", ";
+       Out << '[';
+       writeOperand(I.getOperand(op  ), false); Out << ',';
+       writeOperand(I.getOperand(op+1), false); Out << " ]";
+     }
+   } else if (isa<ReturnInst>(I) && !Operand) {
+     Out << " void";
+   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
+     // Print the calling convention being used.
+     switch (CI->getCallingConv()) {
+     case CallingConv::C: break;   // default
+     case CallingConv::CSRet: Out << " csretcc"; break;
+     case CallingConv::Fast:  Out << " fastcc"; break;
+     case CallingConv::Cold:  Out << " coldcc"; break;
+     default: Out << " cc" << CI->getCallingConv(); break;
+     }
+ 
+     const PointerType  *PTy = cast<PointerType>(Operand->getType());
+     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+     const Type       *RetTy = FTy->getReturnType();
+ 
+     // If possible, print out the short form of the call instruction.  We can
+     // only do this if the first argument is a pointer to a nonvararg function,
+     // and if the return type is not a pointer to a function.
+     //
+     if (!FTy->isVarArg() &&
+         (!isa<PointerType>(RetTy) ||
+          !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
+       Out << ' '; printType(RetTy);
+       writeOperand(Operand, false);
+     } else {
+       writeOperand(Operand, true);
+     }
+     Out << '(';
+     if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true);
+     for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
+       Out << ',';
+       writeOperand(I.getOperand(op), true);
+     }
+ 
+     Out << " )";
+   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
+     const PointerType  *PTy = cast<PointerType>(Operand->getType());
+     const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+     const Type       *RetTy = FTy->getReturnType();
+ 
+     // Print the calling convention being used.
+     switch (II->getCallingConv()) {
+     case CallingConv::C: break;   // default
+     case CallingConv::CSRet: Out << " csretcc"; break;
+     case CallingConv::Fast:  Out << " fastcc"; break;
+     case CallingConv::Cold:  Out << " coldcc"; break;
+     default: Out << " cc" << II->getCallingConv(); break;
+     }
+ 
+     // If possible, print out the short form of the invoke instruction. We can
+     // only do this if the first argument is a pointer to a nonvararg function,
+     // and if the return type is not a pointer to a function.
+     //
+     if (!FTy->isVarArg() &&
+         (!isa<PointerType>(RetTy) ||
+          !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
+       Out << ' '; printType(RetTy);
+       writeOperand(Operand, false);
+     } else {
+       writeOperand(Operand, true);
+     }
+ 
+     Out << '(';
+     if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
+     for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
+       Out << ',';
+       writeOperand(I.getOperand(op), true);
+     }
+ 
+     Out << " )\n\t\t\tto";
+     writeOperand(II->getNormalDest(), true);
+     Out << " unwind";
+     writeOperand(II->getUnwindDest(), true);
+ 
+   } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
+     Out << ' ';
+     printType(AI->getType()->getElementType());
+     if (AI->isArrayAllocation()) {
+       Out << ',';
+       writeOperand(AI->getArraySize(), true);
+     }
+     if (AI->getAlignment()) {
+       Out << ", align " << AI->getAlignment();
+     }
+   } else if (isa<CastInst>(I)) {
+     if (Operand) writeOperand(Operand, true);   // Work with broken code
+     Out << " to ";
+     printType(I.getType());
+   } else if (isa<VAArgInst>(I)) {
+     if (Operand) writeOperand(Operand, true);   // Work with broken code
+     Out << ", ";
+     printType(I.getType());
+   } else if (Operand) {   // Print the normal way...
+ 
+     // PrintAllTypes - Instructions who have operands of all the same type
+     // omit the type from all but the first operand.  If the instruction has
+     // different type operands (for example br), then they are all printed.
+     bool PrintAllTypes = false;
+     const Type *TheType = Operand->getType();
+ 
+     // Shift Left & Right print both types even for Ubyte LHS, and select prints
+     // types even if all operands are bools.
+     if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
+         isa<ShuffleVectorInst>(I)) {
+       PrintAllTypes = true;
+     } else {
+       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
+         Operand = I.getOperand(i);
+         if (Operand->getType() != TheType) {
+           PrintAllTypes = true;    // We have differing types!  Print them all!
+           break;
+         }
+       }
+     }
+ 
+     if (!PrintAllTypes) {
+       Out << ' ';
+       printType(TheType);
+     }
+ 
+     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
+       if (i) Out << ',';
+       writeOperand(I.getOperand(i), PrintAllTypes);
+     }
+   }
+ 
+   printInfoComment(I);
+   Out << "\n";
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //                       External Interface declarations
+ //===----------------------------------------------------------------------===//
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //===--                    SlotMachine Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ #if 0
+ #define SC_DEBUG(X) std::cerr << X
+ #else
+ #define SC_DEBUG(X)
+ #endif
+ 
+ // Module level constructor. Causes the contents of the Module (sans functions)
+ // to be added to the slot table.
+ SlotMachine::SlotMachine(const Module *M)
+   : TheModule(M)    ///< Saved for lazy initialization.
+   , mMap()
+   , mTypes()
+   , fMap()
+   , fTypes()
+ {
+   assert(M != 0 && "Invalid Module");
+   processModule();
+ }
+ 
+ // Iterate through all the global variables, functions, and global
+ // variable initializers and create slots for them.
+ void SlotMachine::processModule() {
+   // Add all of the global variables to the value table...
+   for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end();
+        I != E; ++I)
+     createSlot(I);
+ 
+   // Add all the functions to the table
+   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
+        FI != FE; ++FI) {
+     createSlot(FI);
+     // Add all the function arguments
+     for(Function::const_arg_iterator AI = FI->arg_begin(),
+         AE = FI->arg_end(); AI != AE; ++AI)
+       createSlot(AI);
+ 
+     // Add all of the basic blocks and instructions
+     for (Function::const_iterator BB = FI->begin(),
+          E = FI->end(); BB != E; ++BB) {
+       createSlot(BB);
+       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; 
+            ++I) {
+         createSlot(I);
+       }
+     }
+   }
+ }
+ 
+ // Process the arguments, basic blocks, and instructions  of a function.
+ void SlotMachine::processFunction() {
+ 
+ }
+ 
+ // Clean up after incorporating a function. This is the only way
+ // to get out of the function incorporation state that affects the
+ // getSlot/createSlot lock. Function incorporation state is indicated
+ // by TheFunction != 0.
+ void SlotMachine::purgeFunction() {
+   SC_DEBUG("begin purgeFunction!\n");
+   fMap.clear(); // Simply discard the function level map
+   fTypes.clear();
+   TheFunction = 0;
+   FunctionProcessed = false;
+   SC_DEBUG("end purgeFunction!\n");
+ }
+ 
+ /// Get the slot number for a value. This function will assert if you
+ /// ask for a Value that hasn't previously been inserted with createSlot.
+ /// Types are forbidden because Type does not inherit from Value (any more).
+ int SlotMachine::getSlot(const Value *V) {
+   assert( V && "Can't get slot for null Value" );
+   assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
+     "Can't insert a non-GlobalValue Constant into SlotMachine");
+ 
+   // Get the type of the value
+   const Type* VTy = V->getType();
+ 
+   // Find the type plane in the module map
+   TypedPlanes::const_iterator MI = mMap.find(VTy);
+ 
+   if ( TheFunction ) {
+     // Lookup the type in the function map too
+     TypedPlanes::const_iterator FI = fMap.find(VTy);
+     // If there is a corresponding type plane in the function map
+     if ( FI != fMap.end() ) {
+       // Lookup the Value in the function map
+       ValueMap::const_iterator FVI = FI->second.map.find(V);
+       // If the value doesn't exist in the function map
+       if ( FVI == FI->second.map.end() ) {
+         // Look up the value in the module map.
+         if (MI == mMap.end()) return -1;
+         ValueMap::const_iterator MVI = MI->second.map.find(V);
+         // If we didn't find it, it wasn't inserted
+         if (MVI == MI->second.map.end()) return -1;
+         assert( MVI != MI->second.map.end() && "Value not found");
+         // We found it only at the module level
+         return MVI->second;
+ 
+       // else the value exists in the function map
+       } else {
+         // Return the slot number as the module's contribution to
+         // the type plane plus the index in the function's contribution
+         // to the type plane.
+         if (MI != mMap.end())
+           return MI->second.next_slot + FVI->second;
+         else
+           return FVI->second;
+       }
+     }
+   }
+ 
+   // N.B. Can get here only if either !TheFunction or the function doesn't
+   // have a corresponding type plane for the Value
+ 
+   // Make sure the type plane exists
+   if (MI == mMap.end()) return -1;
+   // Lookup the value in the module's map
+   ValueMap::const_iterator MVI = MI->second.map.find(V);
+   // Make sure we found it.
+   if (MVI == MI->second.map.end()) return -1;
+   // Return it.
+   return MVI->second;
+ }
+ 
+ /// Get the slot number for a type. This function will assert if you
+ /// ask for a Type that hasn't previously been inserted with createSlot.
+ int SlotMachine::getSlot(const Type *Ty) {
+   assert( Ty && "Can't get slot for null Type" );
+ 
+   if ( TheFunction ) {
+     // Lookup the Type in the function map
+     TypeMap::const_iterator FTI = fTypes.map.find(Ty);
+     // If the Type doesn't exist in the function map
+     if ( FTI == fTypes.map.end() ) {
+       TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+       // If we didn't find it, it wasn't inserted
+       if (MTI == mTypes.map.end())
+         return -1;
+       // We found it only at the module level
+       return MTI->second;
+ 
+     // else the value exists in the function map
+     } else {
+       // Return the slot number as the module's contribution to
+       // the type plane plus the index in the function's contribution
+       // to the type plane.
+       return mTypes.next_slot + FTI->second;
+     }
+   }
+ 
+   // N.B. Can get here only if !TheFunction
+ 
+   // Lookup the value in the module's map
+   TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+   // Make sure we found it.
+   if (MTI == mTypes.map.end()) return -1;
+   // Return it.
+   return MTI->second;
+ }
+ 
+ // Create a new slot, or return the existing slot if it is already
+ // inserted. Note that the logic here parallels getSlot but instead
+ // of asserting when the Value* isn't found, it inserts the value.
+ unsigned SlotMachine::createSlot(const Value *V) {
+   assert( V && "Can't insert a null Value to SlotMachine");
+   assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
+     "Can't insert a non-GlobalValue Constant into SlotMachine");
+ 
+   const Type* VTy = V->getType();
+ 
+   // Just ignore void typed things
+   if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
+ 
+   // Look up the type plane for the Value's type from the module map
+   TypedPlanes::const_iterator MI = mMap.find(VTy);
+ 
+   if ( TheFunction ) {
+     // Get the type plane for the Value's type from the function map
+     TypedPlanes::const_iterator FI = fMap.find(VTy);
+     // If there is a corresponding type plane in the function map
+     if ( FI != fMap.end() ) {
+       // Lookup the Value in the function map
+       ValueMap::const_iterator FVI = FI->second.map.find(V);
+       // If the value doesn't exist in the function map
+       if ( FVI == FI->second.map.end() ) {
+         // If there is no corresponding type plane in the module map
+         if ( MI == mMap.end() )
+           return insertValue(V);
+         // Look up the value in the module map
+         ValueMap::const_iterator MVI = MI->second.map.find(V);
+         // If we didn't find it, it wasn't inserted
+         if ( MVI == MI->second.map.end() )
+           return insertValue(V);
+         else
+           // We found it only at the module level
+           return MVI->second;
+ 
+       // else the value exists in the function map
+       } else {
+         if ( MI == mMap.end() )
+           return FVI->second;
+         else
+           // Return the slot number as the module's contribution to
+           // the type plane plus the index in the function's contribution
+           // to the type plane.
+           return MI->second.next_slot + FVI->second;
+       }
+ 
+     // else there is not a corresponding type plane in the function map
+     } else {
+       // If the type plane doesn't exists at the module level
+       if ( MI == mMap.end() ) {
+         return insertValue(V);
+       // else type plane exists at the module level, examine it
+       } else {
+         // Look up the value in the module's map
+         ValueMap::const_iterator MVI = MI->second.map.find(V);
+         // If we didn't find it there either
+         if ( MVI == MI->second.map.end() )
+           // Return the slot number as the module's contribution to
+           // the type plane plus the index of the function map insertion.
+           return MI->second.next_slot + insertValue(V);
+         else
+           return MVI->second;
+       }
+     }
+   }
+ 
+   // N.B. Can only get here if !TheFunction
+ 
+   // If the module map's type plane is not for the Value's type
+   if ( MI != mMap.end() ) {
+     // Lookup the value in the module's map
+     ValueMap::const_iterator MVI = MI->second.map.find(V);
+     if ( MVI != MI->second.map.end() )
+       return MVI->second;
+   }
+ 
+   return insertValue(V);
+ }
+ 
+ // Create a new slot, or return the existing slot if it is already
+ // inserted. Note that the logic here parallels getSlot but instead
+ // of asserting when the Value* isn't found, it inserts the value.
+ unsigned SlotMachine::createSlot(const Type *Ty) {
+   assert( Ty && "Can't insert a null Type to SlotMachine");
+ 
+   if ( TheFunction ) {
+     // Lookup the Type in the function map
+     TypeMap::const_iterator FTI = fTypes.map.find(Ty);
+     // If the type doesn't exist in the function map
+     if ( FTI == fTypes.map.end() ) {
+       // Look up the type in the module map
+       TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+       // If we didn't find it, it wasn't inserted
+       if ( MTI == mTypes.map.end() )
+         return insertValue(Ty);
+       else
+         // We found it only at the module level
+         return MTI->second;
+ 
+     // else the value exists in the function map
+     } else {
+       // Return the slot number as the module's contribution to
+       // the type plane plus the index in the function's contribution
+       // to the type plane.
+       return mTypes.next_slot + FTI->second;
+     }
+   }
+ 
+   // N.B. Can only get here if !TheFunction
+ 
+   // Lookup the type in the module's map
+   TypeMap::const_iterator MTI = mTypes.map.find(Ty);
+   if ( MTI != mTypes.map.end() )
+     return MTI->second;
+ 
+   return insertValue(Ty);
+ }
+ 
+ // Low level insert function. Minimal checking is done. This
+ // function is just for the convenience of createSlot (above).
+ unsigned SlotMachine::insertValue(const Value *V ) {
+   assert(V && "Can't insert a null Value into SlotMachine!");
+   assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
+     "Can't insert a non-GlobalValue Constant into SlotMachine");
+ 
+   // If this value does not contribute to a plane (is void)
+   // or if the value already has a name then ignore it.
+   if (V->getType() == Type::VoidTy || V->hasName() ) {
+       SC_DEBUG("ignored value " << *V << "\n");
+       return 0;   // FIXME: Wrong return value
+   }
+ 
+   const Type *VTy = V->getType();
+   unsigned DestSlot = 0;
+ 
+   if ( TheFunction ) {
+     TypedPlanes::iterator I = fMap.find( VTy );
+     if ( I == fMap.end() )
+       I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
+     DestSlot = I->second.map[V] = I->second.next_slot++;
+   } else {
+     TypedPlanes::iterator I = mMap.find( VTy );
+     if ( I == mMap.end() )
+       I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
+     DestSlot = I->second.map[V] = I->second.next_slot++;
+   }
+ 
+   SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
+            DestSlot << " [");
+   // G = Global, C = Constant, T = Type, F = Function, o = other
+   SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
+            (isa<Constant>(V) ? 'C' : 'o'))));
+   SC_DEBUG("]\n");
+   return DestSlot;
+ }
+ 
+ // Low level insert function. Minimal checking is done. This
+ // function is just for the convenience of createSlot (above).
+ unsigned SlotMachine::insertValue(const Type *Ty ) {
+   assert(Ty && "Can't insert a null Type into SlotMachine!");
+ 
+   unsigned DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
+   SC_DEBUG("  Inserting type [" << DestSlot << "] = " << Ty << "\n");
+   return DestSlot;
+ }
+ 
+ }  // end anonymous llvm
+ 
+ namespace llvm {
+ 
+ void WriteModuleToCppFile(Module* mod, std::ostream& o) {
+   o << "#include <llvm/Module.h>\n";
+   o << "#include <llvm/DerivedTypes.h>\n";
+   o << "#include <llvm/Constants.h>\n";
+   o << "#include <llvm/GlobalVariable.h>\n";
+   o << "#include <llvm/Function.h>\n";
+   o << "#include <llvm/CallingConv.h>\n";
+   o << "#include <llvm/BasicBlock.h>\n";
+   o << "#include <llvm/Instructions.h>\n";
+   o << "#include <llvm/Pass.h>\n";
+   o << "#include <llvm/PassManager.h>\n";
+   o << "#include <llvm/Analysis/Verifier.h>\n";
+   o << "#include <llvm/Assembly/PrintModulePass.h>\n";
+   o << "#include <algorithm>\n";
+   o << "#include <iostream>\n\n";
+   o << "using namespace llvm;\n\n";
+   o << "Module* makeLLVMModule();\n\n";
+   o << "int main(int argc, char**argv) {\n";
+   o << "  Module* Mod = makeLLVMModule();\n";
+   o << "  verifyModule(*Mod, PrintMessageAction);\n";
+   o << "  PassManager PM;\n";
+   o << "  PM.add(new PrintModulePass(&std::cout));\n";
+   o << "  PM.run(*Mod);\n";
+   o << "  return 0;\n";
+   o << "}\n\n";
+   o << "Module* makeLLVMModule() {\n";
+   SlotMachine SlotTable(mod);
+   CppWriter W(o, SlotTable, mod);
+   W.write(mod);
+   o << "}\n";
+ }
+ 
+ }


Index: llvm/tools/llvm2cpp/CppWriter.h
diff -c /dev/null llvm/tools/llvm2cpp/CppWriter.h:1.1
*** /dev/null	Sun May 28 19:57:34 2006
--- llvm/tools/llvm2cpp/CppWriter.h	Sun May 28 19:57:22 2006
***************
*** 0 ****
--- 1,18 ----
+ //===--- CppWriter.h - Generate C++ IR to C++ Source Interface ------------===//
+ //
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by Reid Spencer and is distributed under the
+ // University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // This file declares a function, WriteModuleToCppFile that will convert a 
+ // Module into the corresponding C++ code to construct the same module.
+ //
+ //===------------------------------------------------------------------------===
+ #include <ostream>
+ namespace llvm {
+ class Module;
+ void WriteModuleToCppFile(Module* mod, std::ostream& out);
+ }


Index: llvm/tools/llvm2cpp/Makefile
diff -c /dev/null llvm/tools/llvm2cpp/Makefile:1.1
*** /dev/null	Sun May 28 19:57:34 2006
--- llvm/tools/llvm2cpp/Makefile	Sun May 28 19:57:22 2006
***************
*** 0 ****
--- 1,23 ----
+ ##===- tools/llvm-as/Makefile ------------------------------*- Makefile -*-===##
+ # 
+ #                     The LLVM Compiler Infrastructure
+ #
+ # This file was developed by the LLVM research group and is distributed under
+ # the University of Illinois Open Source License. See LICENSE.TXT for details.
+ # 
+ ##===----------------------------------------------------------------------===##
+ LEVEL = ../..
+ TOOLNAME = llvm2cpp
+ USEDLIBS = LLVMAsmParser LLVMBCWriter LLVMCore \
+            LLVMSupport.a LLVMbzip2 LLVMSystem.a
+ 
+ include $(LEVEL)/Makefile.common
+ 
+ tryit: all-local recurty.cpp globalvars.cpp
+ 
+ %.cpp : %.ll
+ 	llvm2cpp $*.ll -f -o $*.cpp
+ 	gcc -I$(LLVM_SRC_ROOT)/include -I$(LLVM_OBJ_ROOT)/include -g \
+ 	-D__STDC_LIMIT_MACROS -L$(LibDir) $(LibDir)/LLVMCore.o -lLLVMSupport \
+ 	$(LibDir)/LLVMbzip2.o -lLLVMSystem -lstdc++ \
+ 	$*.cpp -o $*


Index: llvm/tools/llvm2cpp/llvm2cpp.cpp
diff -c /dev/null llvm/tools/llvm2cpp/llvm2cpp.cpp:1.1
*** /dev/null	Sun May 28 19:57:34 2006
--- llvm/tools/llvm2cpp/llvm2cpp.cpp	Sun May 28 19:57:22 2006
***************
*** 0 ****
--- 1,138 ----
+ //===--- llvm-as.cpp - The low-level LLVM assembler -----------------------===//
+ //
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ //  This utility may be invoked in the following manner:
+ //   llvm-as --help         - Output information about command line switches
+ //   llvm-as [options]      - Read LLVM asm from stdin, write bytecode to stdout
+ //   llvm-as [options] x.ll - Read LLVM asm from the x.ll file, write bytecode
+ //                            to the x.bc file.
+ //
+ //===------------------------------------------------------------------------===
+ 
+ #include "llvm/Module.h"
+ #include "llvm/Assembly/Parser.h"
+ #include "llvm/Bytecode/Writer.h"
+ #include "llvm/Analysis/Verifier.h"
+ #include "llvm/Support/CommandLine.h"
+ #include "llvm/Support/SystemUtils.h"
+ #include "llvm/System/Signals.h"
+ #include "CppWriter.h"
+ #include <fstream>
+ #include <iostream>
+ #include <memory>
+ 
+ using namespace llvm;
+ 
+ static cl::opt<std::string>
+ InputFilename(cl::Positional, cl::desc("<input LLVM assembly file>"), 
+   cl::init("-"));
+ 
+ static cl::opt<std::string>
+ OutputFilename("o", cl::desc("Override output filename"),
+                cl::value_desc("filename"));
+ 
+ static cl::opt<bool>
+ Force("f", cl::desc("Overwrite output files"));
+ 
+ static cl::opt<bool>
+ DisableVerify("disable-verify", cl::Hidden,
+               cl::desc("Do not run verifier on input LLVM (dangerous!)"));
+ 
+ int main(int argc, char **argv) {
+   cl::ParseCommandLineOptions(argc, argv, " llvm .ll -> .cpp assembler\n");
+   sys::PrintStackTraceOnErrorSignal();
+ 
+   int exitCode = 0;
+   std::ostream *Out = 0;
+   try {
+     // Parse the file now...
+     std::auto_ptr<Module> M(ParseAssemblyFile(InputFilename));
+     if (M.get() == 0) {
+       std::cerr << argv[0] << ": assembly didn't read correctly.\n";
+       return 1;
+     }
+ 
+     try {
+       if (!DisableVerify)
+         verifyModule(*M.get(), ThrowExceptionAction);
+     } catch (const std::string &Err) {
+       std::cerr << argv[0]
+                 << ": assembly parsed, but does not verify as correct!\n";
+       std::cerr << Err;
+       return 1;
+     }
+ 
+     if (OutputFilename != "") {   // Specified an output filename?
+       if (OutputFilename != "-") {  // Not stdout?
+         if (!Force && std::ifstream(OutputFilename.c_str())) {
+           // If force is not specified, make sure not to overwrite a file!
+           std::cerr << argv[0] << ": error opening '" << OutputFilename
+                     << "': file exists!\n"
+                     << "Use -f command line argument to force output\n";
+           return 1;
+         }
+         Out = new std::ofstream(OutputFilename.c_str(), std::ios::out |
+                                 std::ios::trunc | std::ios::binary);
+       } else {                      // Specified stdout
+         // FIXME: cout is not binary!
+         Out = &std::cout;
+       }
+     } else {
+       if (InputFilename == "-") {
+         OutputFilename = "-";
+         Out = &std::cout;
+       } else {
+         std::string IFN = InputFilename;
+         int Len = IFN.length();
+         if (IFN[Len-3] == '.' && IFN[Len-2] == 'l' && IFN[Len-1] == 'l') {
+           // Source ends in .ll
+           OutputFilename = std::string(IFN.begin(), IFN.end()-3);
+         } else {
+           OutputFilename = IFN;   // Append a .cpp to it
+         }
+         OutputFilename += ".cpp";
+ 
+         if (!Force && std::ifstream(OutputFilename.c_str())) {
+           // If force is not specified, make sure not to overwrite a file!
+           std::cerr << argv[0] << ": error opening '" << OutputFilename
+                     << "': file exists!\n"
+                     << "Use -f command line argument to force output\n";
+           return 1;
+         }
+ 
+         Out = new std::ofstream(OutputFilename.c_str(), std::ios::out |
+                                 std::ios::trunc | std::ios::binary);
+         // Make sure that the Out file gets unlinked from the disk if we get a
+         // SIGINT
+         sys::RemoveFileOnSignal(sys::Path(OutputFilename));
+       }
+     }
+ 
+     if (!Out->good()) {
+       std::cerr << argv[0] << ": error opening " << OutputFilename << "!\n";
+       return 1;
+     }
+ 
+     WriteModuleToCppFile(M.get(), *Out);
+ 
+   } catch (const ParseException &E) {
+     std::cerr << argv[0] << ": " << E.getMessage() << "\n";
+     exitCode = 1;
+   } catch (const std::string& msg) {
+     std::cerr << argv[0] << ": " << msg << "\n";
+     exitCode = 1;
+   } catch (...) {
+     std::cerr << argv[0] << ": Unexpected unknown exception occurred.\n";
+     exitCode = 1;
+   }
+ 
+   if (Out != &std::cout) delete Out;
+   return exitCode;
+ }
+ 






More information about the llvm-commits mailing list