[llvm-commits] CVS: llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp ScheduleDAG.cpp ScheduleDAGList.cpp SelectionDAGISel.cpp

Evan Cheng evan.cheng at apple.com
Thu May 11 16:55:56 PDT 2006



Changes in directory llvm/lib/CodeGen/SelectionDAG:

ScheduleDAGRRList.cpp added (r1.1)
ScheduleDAG.cpp updated: 1.86 -> 1.87
ScheduleDAGList.cpp updated: 1.57 -> 1.58
SelectionDAGISel.cpp updated: 1.237 -> 1.238
---
Log message:

Refactor scheduler code. Move register-reduction list scheduler to a
separate file. Added an initial implementation of top-down register pressure
reduction list scheduler.


---
Diffs of the changes:  (+1104 -932)

 ScheduleDAG.cpp       |  251 +++++++++++++
 ScheduleDAGList.cpp   |  927 +-------------------------------------------------
 ScheduleDAGRRList.cpp |  813 +++++++++++++++++++++++++++++++++++++++++++
 SelectionDAGISel.cpp  |   45 +-
 4 files changed, 1104 insertions(+), 932 deletions(-)


Index: llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp
diff -c /dev/null llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp:1.1
*** /dev/null	Thu May 11 18:55:52 2006
--- llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp	Thu May 11 18:55:42 2006
***************
*** 0 ****
--- 1,813 ----
+ //===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===//
+ //
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by Evan Cheng and is distributed under the
+ // University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // This implements bottom-up and top-down register pressure reduction list
+ // schedulers, using standard algorithms.  The basic approach uses a priority
+ // queue of available nodes to schedule.  One at a time, nodes are taken from
+ // the priority queue (thus in priority order), checked for legality to
+ // schedule, and emitted if legal.
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #define DEBUG_TYPE "sched"
+ #include "llvm/CodeGen/ScheduleDAG.h"
+ #include "llvm/CodeGen/SSARegMap.h"
+ #include "llvm/Target/MRegisterInfo.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/Target/TargetInstrInfo.h"
+ #include "llvm/Support/Debug.h"
+ #include "llvm/ADT/Statistic.h"
+ #include <climits>
+ #include <iostream>
+ #include <queue>
+ #include "llvm/Support/CommandLine.h"
+ using namespace llvm;
+ 
+ namespace {
+   cl::opt<bool> SchedLowerDefNUse("sched-lower-defnuse", cl::Hidden);
+ }
+ 
+ namespace {
+ //===----------------------------------------------------------------------===//
+ /// ScheduleDAGRRList - The actual register reduction list scheduler
+ /// implementation.  This supports both top-down and bottom-up scheduling.
+ ///
+ 
+ class ScheduleDAGRRList : public ScheduleDAG {
+ private:
+   /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
+   /// it is top-down.
+   bool isBottomUp;
+   
+   /// AvailableQueue - The priority queue to use for the available SUnits.
+   ///
+   SchedulingPriorityQueue *AvailableQueue;
+ 
+ public:
+   ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
+                   const TargetMachine &tm, bool isbottomup,
+                   SchedulingPriorityQueue *availqueue)
+     : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
+       AvailableQueue(availqueue) {
+     }
+ 
+   ~ScheduleDAGRRList() {
+     delete AvailableQueue;
+   }
+ 
+   void Schedule();
+ 
+ private:
+   void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
+   void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle);
+   void ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle);
+   void ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle);
+   void ListScheduleTopDown();
+   void ListScheduleBottomUp();
+ };
+ }  // end anonymous namespace
+ 
+ 
+ /// Schedule - Schedule the DAG using list scheduling.
+ void ScheduleDAGRRList::Schedule() {
+   DEBUG(std::cerr << "********** List Scheduling **********\n");
+   
+   // Build scheduling units.
+   BuildSchedUnits();
+ 
+   CalculateDepths();
+   CalculateHeights();
+   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+         SUnits[su].dumpAll(&DAG));
+ 
+   AvailableQueue->initNodes(SUnits);
+ 
+   // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
+   if (isBottomUp)
+     ListScheduleBottomUp();
+   else
+     ListScheduleTopDown();
+   
+   AvailableQueue->releaseState();
+   
+   DEBUG(std::cerr << "*** Final schedule ***\n");
+   DEBUG(dumpSchedule());
+   DEBUG(std::cerr << "\n");
+   
+   // Emit in scheduled order
+   EmitSchedule();
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //  Bottom-Up Scheduling
+ //===----------------------------------------------------------------------===//
+ 
+ static const TargetRegisterClass *getRegClass(SUnit *SU,
+                                               const TargetInstrInfo *TII,
+                                               const MRegisterInfo *MRI,
+                                               SSARegMap *RegMap) {
+   if (SU->Node->isTargetOpcode()) {
+     unsigned Opc = SU->Node->getTargetOpcode();
+     const TargetInstrDescriptor &II = TII->get(Opc);
+     return II.OpInfo->RegClass;
+   } else {
+     assert(SU->Node->getOpcode() == ISD::CopyFromReg);
+     unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg();
+     if (MRegisterInfo::isVirtualRegister(SrcReg))
+       return RegMap->getRegClass(SrcReg);
+     else {
+       for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
+              E = MRI->regclass_end(); I != E; ++I)
+         if ((*I)->hasType(SU->Node->getValueType(0)) &&
+             (*I)->contains(SrcReg))
+           return *I;
+       assert(false && "Couldn't find register class for reg copy!");
+     }
+     return NULL;
+   }
+ }
+ 
+ static unsigned getNumResults(SUnit *SU) {
+   unsigned NumResults = 0;
+   for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) {
+     MVT::ValueType VT = SU->Node->getValueType(i);
+     if (VT != MVT::Other && VT != MVT::Flag)
+       NumResults++;
+   }
+   return NumResults;
+ }
+ 
+ /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
+ /// the Available queue is the count reaches zero. Also update its cycle bound.
+ void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, 
+                                     unsigned CurCycle) {
+   // FIXME: the distance between two nodes is not always == the predecessor's
+   // latency. For example, the reader can very well read the register written
+   // by the predecessor later than the issue cycle. It also depends on the
+   // interrupt model (drain vs. freeze).
+   PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
+ 
+   if (!isChain)
+     PredSU->NumSuccsLeft--;
+   else
+     PredSU->NumChainSuccsLeft--;
+   
+ #ifndef NDEBUG
+   if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
+     std::cerr << "*** List scheduling failed! ***\n";
+     PredSU->dump(&DAG);
+     std::cerr << " has been released too many times!\n";
+     assert(0);
+   }
+ #endif
+   
+   if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
+     // EntryToken has to go last!  Special case it here.
+     if (PredSU->Node->getOpcode() != ISD::EntryToken) {
+       PredSU->isAvailable = true;
+       AvailableQueue->push(PredSU);
+     }
+   }
+ }
+ 
+ /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
+ /// count of its predecessors. If a predecessor pending count is zero, add it to
+ /// the Available queue.
+ void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle) {
+   DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
+   DEBUG(SU->dump(&DAG));
+   SU->Cycle = CurCycle;
+ 
+   AvailableQueue->ScheduledNode(SU);
+   Sequence.push_back(SU);
+ 
+   // Bottom up: release predecessors
+   for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
+          E = SU->Preds.end(); I != E; ++I)
+     ReleasePred(I->first, I->second, CurCycle);
+   SU->isScheduled = true;
+   CurCycle++;
+ }
+ 
+ /// isReady - True if node's lower cycle bound is less or equal to the current
+ /// scheduling cycle. Always true if all nodes have uniform latency 1.
+ static inline bool isReady(SUnit *SU, unsigned CurCycle) {
+   return SU->CycleBound <= CurCycle;
+ }
+ 
+ /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
+ /// schedulers.
+ void ScheduleDAGRRList::ListScheduleBottomUp() {
+   unsigned CurCycle = 0;
+   // Add root to Available queue.
+   AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
+ 
+   // While Available queue is not empty, grab the node with the highest
+   // priority. If it is not ready put it back. Schedule the node.
+   std::vector<SUnit*> NotReady;
+   SUnit *CurNode = NULL;
+   while (!AvailableQueue->empty()) {
+     SUnit *CurNode = AvailableQueue->pop();
+     while (!isReady(CurNode, CurCycle)) {
+       NotReady.push_back(CurNode);
+       CurNode = AvailableQueue->pop();
+     }
+     
+     // Add the nodes that aren't ready back onto the available list.
+     AvailableQueue->push_all(NotReady);
+     NotReady.clear();
+ 
+     ScheduleNodeBottomUp(CurNode, CurCycle);
+   }
+ 
+   // Add entry node last
+   if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
+     SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
+     Sequence.push_back(Entry);
+   }
+ 
+   // Reverse the order if it is bottom up.
+   std::reverse(Sequence.begin(), Sequence.end());
+   
+   
+ #ifndef NDEBUG
+   // Verify that all SUnits were scheduled.
+   bool AnyNotSched = false;
+   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+     if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
+       if (!AnyNotSched)
+         std::cerr << "*** List scheduling failed! ***\n";
+       SUnits[i].dump(&DAG);
+       std::cerr << "has not been scheduled!\n";
+       AnyNotSched = true;
+     }
+   }
+   assert(!AnyNotSched);
+ #endif
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //  Top-Down Scheduling
+ //===----------------------------------------------------------------------===//
+ 
+ /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
+ /// the PendingQueue if the count reaches zero.
+ void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, 
+                                     unsigned CurCycle) {
+   // FIXME: the distance between two nodes is not always == the predecessor's
+   // latency. For example, the reader can very well read the register written
+   // by the predecessor later than the issue cycle. It also depends on the
+   // interrupt model (drain vs. freeze).
+   SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
+ 
+   if (!isChain)
+     SuccSU->NumPredsLeft--;
+   else
+     SuccSU->NumChainPredsLeft--;
+   
+ #ifndef NDEBUG
+   if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
+     std::cerr << "*** List scheduling failed! ***\n";
+     SuccSU->dump(&DAG);
+     std::cerr << " has been released too many times!\n";
+     assert(0);
+   }
+ #endif
+   
+   if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
+     SuccSU->isAvailable = true;
+     AvailableQueue->push(SuccSU);
+   }
+ }
+ 
+ 
+ /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
+ /// count of its successors. If a successor pending count is zero, add it to
+ /// the Available queue.
+ void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle) {
+   DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
+   DEBUG(SU->dump(&DAG));
+   SU->Cycle = CurCycle;
+ 
+   AvailableQueue->ScheduledNode(SU);
+   Sequence.push_back(SU);
+ 
+   // Top down: release successors
+   for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
+          E = SU->Succs.end(); I != E; ++I)
+     ReleaseSucc(I->first, I->second, CurCycle);
+   SU->isScheduled = true;
+   CurCycle++;
+ }
+ 
+ void ScheduleDAGRRList::ListScheduleTopDown() {
+   unsigned CurCycle = 0;
+   SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
+ 
+   // All leaves to Available queue.
+   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+     // It is available if it has no predecessors.
+     if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
+       AvailableQueue->push(&SUnits[i]);
+       SUnits[i].isAvailable = true;
+     }
+   }
+   
+   // Emit the entry node first.
+   ScheduleNodeTopDown(Entry, CurCycle);
+ 
+   // While Available queue is not empty, grab the node with the highest
+   // priority. If it is not ready put it back. Schedule the node.
+   std::vector<SUnit*> NotReady;
+   SUnit *CurNode = NULL;
+   while (!AvailableQueue->empty()) {
+     SUnit *CurNode = AvailableQueue->pop();
+     while (!isReady(CurNode, CurCycle)) {
+       NotReady.push_back(CurNode);
+       CurNode = AvailableQueue->pop();
+     }
+     
+     // Add the nodes that aren't ready back onto the available list.
+     AvailableQueue->push_all(NotReady);
+     NotReady.clear();
+ 
+     ScheduleNodeTopDown(CurNode, CurCycle);
+   }
+   
+   
+ #ifndef NDEBUG
+   // Verify that all SUnits were scheduled.
+   bool AnyNotSched = false;
+   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+     if (!SUnits[i].isScheduled) {
+       if (!AnyNotSched)
+         std::cerr << "*** List scheduling failed! ***\n";
+       SUnits[i].dump(&DAG);
+       std::cerr << "has not been scheduled!\n";
+       AnyNotSched = true;
+     }
+   }
+   assert(!AnyNotSched);
+ #endif
+ }
+ 
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //                RegReductionPriorityQueue Implementation
+ //===----------------------------------------------------------------------===//
+ //
+ // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
+ // to reduce register pressure.
+ // 
+ namespace {
+   template<class SF>
+   class RegReductionPriorityQueue;
+   
+   /// Sorting functions for the Available queue.
+   struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
+     RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
+     bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
+     bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
+     
+     bool operator()(const SUnit* left, const SUnit* right) const;
+   };
+ 
+   struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
+     RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
+     td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
+     td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
+     
+     bool operator()(const SUnit* left, const SUnit* right) const;
+   };
+ }  // end anonymous namespace
+ 
+ namespace {
+   template<class SF>
+   class RegReductionPriorityQueue : public SchedulingPriorityQueue {
+     std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
+ 
+   public:
+     RegReductionPriorityQueue() :
+     Queue(SF(this)) {}
+     
+     virtual void initNodes(const std::vector<SUnit> &sunits) {}
+     virtual void releaseState() {}
+     
+     virtual int getSethiUllmanNumber(unsigned NodeNum) const {
+       return 0;
+     }
+     
+     bool empty() const { return Queue.empty(); }
+     
+     void push(SUnit *U) {
+       Queue.push(U);
+     }
+     void push_all(const std::vector<SUnit *> &Nodes) {
+       for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
+         Queue.push(Nodes[i]);
+     }
+     
+     SUnit *pop() {
+       SUnit *V = Queue.top();
+       Queue.pop();
+       return V;
+     }
+   };
+ 
+   template<class SF>
+   class BURegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
+     // SUnits - The SUnits for the current graph.
+     const std::vector<SUnit> *SUnits;
+     
+     // SethiUllmanNumbers - The SethiUllman number for each node.
+     std::vector<int> SethiUllmanNumbers;
+ 
+   public:
+     BURegReductionPriorityQueue() {}
+ 
+     void initNodes(const std::vector<SUnit> &sunits) {
+       SUnits = &sunits;
+       // Add pseudo dependency edges for two-address nodes.
+       if (SchedLowerDefNUse)
+         AddPseudoTwoAddrDeps();
+       // Calculate node priorities.
+       CalculatePriorities();
+     }
+ 
+     void releaseState() {
+       SUnits = 0;
+       SethiUllmanNumbers.clear();
+     }
+ 
+     int getSethiUllmanNumber(unsigned NodeNum) const {
+       assert(NodeNum < SethiUllmanNumbers.size());
+       return SethiUllmanNumbers[NodeNum];
+     }
+ 
+   private:
+     void AddPseudoTwoAddrDeps();
+     void CalculatePriorities();
+     int CalcNodePriority(const SUnit *SU);
+   };
+ 
+ 
+   template<class SF>
+   class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> {
+     // SUnits - The SUnits for the current graph.
+     const std::vector<SUnit> *SUnits;
+     
+     // SethiUllmanNumbers - The SethiUllman number for each node.
+     std::vector<int> SethiUllmanNumbers;
+ 
+   public:
+     TDRegReductionPriorityQueue() {}
+ 
+     void initNodes(const std::vector<SUnit> &sunits) {
+       SUnits = &sunits;
+       // Calculate node priorities.
+       CalculatePriorities();
+     }
+ 
+     void releaseState() {
+       SUnits = 0;
+       SethiUllmanNumbers.clear();
+     }
+ 
+     int getSethiUllmanNumber(unsigned NodeNum) const {
+       assert(NodeNum < SethiUllmanNumbers.size());
+       return SethiUllmanNumbers[NodeNum];
+     }
+ 
+   private:
+     void CalculatePriorities();
+     int CalcNodePriority(const SUnit *SU);
+   };
+ }
+ 
+ // Bottom up
+ bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
+   unsigned LeftNum  = left->NodeNum;
+   unsigned RightNum = right->NodeNum;
+   bool LIsTarget = left->Node->isTargetOpcode();
+   bool RIsTarget = right->Node->isTargetOpcode();
+   int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
+   int RPriority = SPQ->getSethiUllmanNumber(RightNum);
+   bool LIsFloater = LIsTarget && (LPriority == 1 || LPriority == 0);
+   bool RIsFloater = RIsTarget && (RPriority == 1 || RPriority == 0);
+   int LBonus = 0;
+   int RBonus = 0;
+ 
+   // Schedule floaters (e.g. load from some constant address) and those nodes
+   // with a single predecessor each first. They maintain / reduce register
+   // pressure.
+   if (LIsFloater)
+     LBonus += 2;
+   if (RIsFloater)
+     RBonus += 2;
+ 
+   if (!SchedLowerDefNUse) {
+     // Special tie breaker: if two nodes share a operand, the one that use it
+     // as a def&use operand is preferred.
+     if (LIsTarget && RIsTarget) {
+       if (left->isTwoAddress && !right->isTwoAddress) {
+         SDNode *DUNode = left->Node->getOperand(0).Val;
+         if (DUNode->isOperand(right->Node))
+           LBonus += 2;
+       }
+       if (!left->isTwoAddress && right->isTwoAddress) {
+         SDNode *DUNode = right->Node->getOperand(0).Val;
+         if (DUNode->isOperand(left->Node))
+           RBonus += 2;
+       }
+     }
+   }
+ 
+   if (LPriority+LBonus < RPriority+RBonus)
+     return true;
+   else if (LPriority+LBonus == RPriority+RBonus)
+     if (left->NumPredsLeft > right->NumPredsLeft)
+       return true;
+     else if (left->NumPredsLeft+LBonus == right->NumPredsLeft+RBonus)
+       if (left->CycleBound > right->CycleBound) 
+         return true;
+   return false;
+ }
+ 
+ static inline bool isCopyFromLiveIn(const SUnit *SU) {
+   SDNode *N = SU->Node;
+   return N->getOpcode() == ISD::CopyFromReg &&
+     N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
+ }
+ 
+ // FIXME: This is probably too slow!
+ static void isReachable(SUnit *SU, SUnit *TargetSU,
+                         std::set<SUnit *> &Visited, bool &Reached) {
+   if (Reached) return;
+   if (SU == TargetSU) {
+     Reached = true;
+     return;
+   }
+   if (!Visited.insert(SU).second) return;
+ 
+   for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
+          E = SU->Preds.end(); I != E; ++I)
+     isReachable(I->first, TargetSU, Visited, Reached);
+ }
+ 
+ static bool isReachable(SUnit *SU, SUnit *TargetSU) {
+   std::set<SUnit *> Visited;
+   bool Reached = false;
+   isReachable(SU, TargetSU, Visited, Reached);
+   return Reached;
+ }
+ 
+ static SUnit *getDefUsePredecessor(SUnit *SU) {
+   SDNode *DU = SU->Node->getOperand(0).Val;
+   for (std::set<std::pair<SUnit*, bool> >::iterator
+          I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
+     if (I->second) continue;  // ignore chain preds
+     SUnit *PredSU = I->first;
+     if (PredSU->Node == DU)
+       return PredSU;
+   }
+ 
+   // Must be flagged.
+   return NULL;
+ }
+ 
+ static bool canClobber(SUnit *SU, SUnit *Op) {
+   if (SU->isTwoAddress)
+     return Op == getDefUsePredecessor(SU);
+   return false;
+ }
+ 
+ /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
+ /// it as a def&use operand. Add a pseudo control edge from it to the other
+ /// node (if it won't create a cycle) so the two-address one will be scheduled
+ /// first (lower in the schedule).
+ template<class SF>
+ void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
+   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
+     SUnit *SU = (SUnit *)&((*SUnits)[i]);
+     SDNode *Node = SU->Node;
+     if (!Node->isTargetOpcode())
+       continue;
+ 
+     if (SU->isTwoAddress) {
+       unsigned Depth = SU->Node->getNodeDepth();
+       SUnit *DUSU = getDefUsePredecessor(SU);
+       if (!DUSU) continue;
+ 
+       for (std::set<std::pair<SUnit*, bool> >::iterator I = DUSU->Succs.begin(),
+              E = DUSU->Succs.end(); I != E; ++I) {
+         SUnit *SuccSU = I->first;
+         if (SuccSU != SU && !canClobber(SuccSU, DUSU)) {
+           if (SuccSU->Node->getNodeDepth() <= Depth+2 &&
+               !isReachable(SuccSU, SU)) {
+             DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum
+                   << " to SU #" << SuccSU->NodeNum << "\n");
+             if (SU->Preds.insert(std::make_pair(SuccSU, true)).second)
+               SU->NumChainPredsLeft++;
+             if (SuccSU->Succs.insert(std::make_pair(SU, true)).second)
+               SuccSU->NumChainSuccsLeft++;
+           }
+         }
+       }
+     }
+   }
+ }
+ 
+ /// CalcNodePriority - Priority is the Sethi Ullman number. 
+ /// Smaller number is the higher priority.
+ template<class SF>
+ int BURegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
+   int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
+   if (SethiUllmanNumber != 0)
+     return SethiUllmanNumber;
+ 
+   unsigned Opc = SU->Node->getOpcode();
+   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
+     SethiUllmanNumber = INT_MAX - 10;
+   else if (SU->NumSuccsLeft == 0)
+     // If SU does not have a use, i.e. it doesn't produce a value that would
+     // be consumed (e.g. store), then it terminates a chain of computation.
+     // Give it a small SethiUllman number so it will be scheduled right before its
+     // predecessors that it doesn't lengthen their live ranges.
+     SethiUllmanNumber = INT_MIN + 10;
+   else if (SU->NumPredsLeft == 0 &&
+            (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
+     SethiUllmanNumber = 1;
+   else {
+     int Extra = 0;
+     for (std::set<std::pair<SUnit*, bool> >::const_iterator
+          I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
+       if (I->second) continue;  // ignore chain preds
+       SUnit *PredSU = I->first;
+       int PredSethiUllman = CalcNodePriority(PredSU);
+       if (PredSethiUllman > SethiUllmanNumber) {
+         SethiUllmanNumber = PredSethiUllman;
+         Extra = 0;
+       } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
+         Extra++;
+     }
+ 
+     SethiUllmanNumber += Extra;
+   }
+   
+   return SethiUllmanNumber;
+ }
+ 
+ /// CalculatePriorities - Calculate priorities of all scheduling units.
+ template<class SF>
+ void BURegReductionPriorityQueue<SF>::CalculatePriorities() {
+   SethiUllmanNumbers.assign(SUnits->size(), 0);
+   
+   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
+     CalcNodePriority(&(*SUnits)[i]);
+ }
+ 
+ static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) {
+   unsigned Sum = 0;
+   for (std::set<std::pair<SUnit*, bool> >::const_iterator
+          I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) {
+     SUnit *SuccSU = I->first;
+     for (std::set<std::pair<SUnit*, bool> >::const_iterator
+          II = SuccSU->Preds.begin(), EE = SuccSU->Preds.end(); II != EE; ++II) {
+       SUnit *PredSU = II->first;
+       if (!PredSU->isScheduled)
+         Sum++;
+     }
+   }
+ 
+   return Sum;
+ }
+ 
+ 
+ // Top down
+ bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
+   unsigned LeftNum  = left->NodeNum;
+   unsigned RightNum = right->NodeNum;
+   int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
+   int RPriority = SPQ->getSethiUllmanNumber(RightNum);
+   bool LIsTarget = left->Node->isTargetOpcode();
+   bool RIsTarget = right->Node->isTargetOpcode();
+   bool LIsFloater = LIsTarget && left->NumPreds == 0;
+   bool RIsFloater = RIsTarget && right->NumPreds == 0;
+   unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0;
+   unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0;
+ 
+   if (left->NumSuccs == 0 && right->NumSuccs != 0)
+     return false;
+   else if (left->NumSuccs != 0 && right->NumSuccs == 0)
+     return true;
+ 
+   // Special tie breaker: if two nodes share a operand, the one that use it
+   // as a def&use operand is preferred.
+   if (LIsTarget && RIsTarget) {
+     if (left->isTwoAddress && !right->isTwoAddress) {
+       SDNode *DUNode = left->Node->getOperand(0).Val;
+       if (DUNode->isOperand(right->Node))
+         RBonus += 2;
+     }
+     if (!left->isTwoAddress && right->isTwoAddress) {
+       SDNode *DUNode = right->Node->getOperand(0).Val;
+       if (DUNode->isOperand(left->Node))
+         LBonus += 2;
+     }
+   }
+   if (LIsFloater)
+     LBonus -= 2;
+   if (RIsFloater)
+     RBonus -= 2;
+   if (left->NumSuccs == 1)
+     LBonus += 2;
+   if (right->NumSuccs == 1)
+     RBonus += 2;
+ 
+   if (LPriority+LBonus < RPriority+RBonus)
+     return true;
+   else if (LPriority == RPriority)
+     if (left->Depth < right->Depth)
+       return true;
+     else if (left->Depth == right->Depth)
+       if (left->NumSuccsLeft > right->NumSuccsLeft)
+         return true;
+       else if (left->NumSuccsLeft == right->NumSuccsLeft)
+         if (left->CycleBound > right->CycleBound) 
+           return true;
+   return false;
+ }
+ 
+ /// CalcNodePriority - Priority is the Sethi Ullman number. 
+ /// Smaller number is the higher priority.
+ template<class SF>
+ int TDRegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
+   int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
+   if (SethiUllmanNumber != 0)
+     return SethiUllmanNumber;
+ 
+   unsigned Opc = SU->Node->getOpcode();
+   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
+     SethiUllmanNumber = INT_MAX - 10;
+   else if (SU->NumSuccsLeft == 0)
+     // If SU does not have a use, i.e. it doesn't produce a value that would
+     // be consumed (e.g. store), then it terminates a chain of computation.
+     // Give it a small SethiUllman number so it will be scheduled right before its
+     // predecessors that it doesn't lengthen their live ranges.
+     SethiUllmanNumber = INT_MIN + 10;
+   else if (SU->NumPredsLeft == 0 &&
+            (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
+     SethiUllmanNumber = 1;
+   else {
+     int Extra = 0;
+     for (std::set<std::pair<SUnit*, bool> >::const_iterator
+          I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
+       if (I->second) continue;  // ignore chain preds
+       SUnit *PredSU = I->first;
+       int PredSethiUllman = CalcNodePriority(PredSU);
+       if (PredSethiUllman > SethiUllmanNumber) {
+         SethiUllmanNumber = PredSethiUllman;
+         Extra = 0;
+       } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
+         Extra++;
+     }
+ 
+     SethiUllmanNumber += Extra;
+   }
+   
+   return SethiUllmanNumber;
+ }
+ 
+ /// CalculatePriorities - Calculate priorities of all scheduling units.
+ template<class SF>
+ void TDRegReductionPriorityQueue<SF>::CalculatePriorities() {
+   SethiUllmanNumbers.assign(SUnits->size(), 0);
+   
+   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
+     CalcNodePriority(&(*SUnits)[i]);
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                         Public Constructor Functions
+ //===----------------------------------------------------------------------===//
+ 
+ llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
+                                                     MachineBasicBlock *BB) {
+   return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), true,
+                                new BURegReductionPriorityQueue<bu_ls_rr_sort>());
+ }
+ 
+ llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAG &DAG,
+                                                     MachineBasicBlock *BB) {
+   return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), false,
+                                new TDRegReductionPriorityQueue<td_ls_rr_sort>());
+ }
+ 


Index: llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
diff -u llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp:1.86 llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp:1.87
--- llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp:1.86	Thu May  4 13:16:01 2006
+++ llvm/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp	Thu May 11 18:55:42 2006
@@ -13,6 +13,7 @@
 //
 //===----------------------------------------------------------------------===//
 
+#define DEBUG_TYPE "sched"
 #include "llvm/CodeGen/ScheduleDAG.h"
 #include "llvm/CodeGen/MachineConstantPool.h"
 #include "llvm/CodeGen/MachineFunction.h"
@@ -20,10 +21,185 @@
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetLowering.h"
+#include "llvm/Support/Debug.h"
 #include "llvm/Support/MathExtras.h"
+#include <iostream>
 using namespace llvm;
 
 
+/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
+/// This SUnit graph is similar to the SelectionDAG, but represents flagged
+/// together nodes with a single SUnit.
+void ScheduleDAG::BuildSchedUnits() {
+  // Reserve entries in the vector for each of the SUnits we are creating.  This
+  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
+  // invalidated.
+  SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
+  
+  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
+  
+  for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
+       E = DAG.allnodes_end(); NI != E; ++NI) {
+    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
+      continue;
+    
+    // If this node has already been processed, stop now.
+    if (SUnitMap[NI]) continue;
+    
+    SUnit *NodeSUnit = NewSUnit(NI);
+    
+    // See if anything is flagged to this node, if so, add them to flagged
+    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
+    // are required the be the last operand and result of a node.
+    
+    // Scan up, adding flagged preds to FlaggedNodes.
+    SDNode *N = NI;
+    while (N->getNumOperands() &&
+           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
+      N = N->getOperand(N->getNumOperands()-1).Val;
+      NodeSUnit->FlaggedNodes.push_back(N);
+      SUnitMap[N] = NodeSUnit;
+    }
+    
+    // Scan down, adding this node and any flagged succs to FlaggedNodes if they
+    // have a user of the flag operand.
+    N = NI;
+    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
+      SDOperand FlagVal(N, N->getNumValues()-1);
+      
+      // There are either zero or one users of the Flag result.
+      bool HasFlagUse = false;
+      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 
+           UI != E; ++UI)
+        if (FlagVal.isOperand(*UI)) {
+          HasFlagUse = true;
+          NodeSUnit->FlaggedNodes.push_back(N);
+          SUnitMap[N] = NodeSUnit;
+          N = *UI;
+          break;
+        }
+          if (!HasFlagUse) break;
+    }
+    
+    // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
+    // Update the SUnit
+    NodeSUnit->Node = N;
+    SUnitMap[N] = NodeSUnit;
+    
+    // Compute the latency for the node.  We use the sum of the latencies for
+    // all nodes flagged together into this SUnit.
+    if (InstrItins.isEmpty()) {
+      // No latency information.
+      NodeSUnit->Latency = 1;
+    } else {
+      NodeSUnit->Latency = 0;
+      if (N->isTargetOpcode()) {
+        unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
+        InstrStage *S = InstrItins.begin(SchedClass);
+        InstrStage *E = InstrItins.end(SchedClass);
+        for (; S != E; ++S)
+          NodeSUnit->Latency += S->Cycles;
+      }
+      for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
+        SDNode *FNode = NodeSUnit->FlaggedNodes[i];
+        if (FNode->isTargetOpcode()) {
+          unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
+          InstrStage *S = InstrItins.begin(SchedClass);
+          InstrStage *E = InstrItins.end(SchedClass);
+          for (; S != E; ++S)
+            NodeSUnit->Latency += S->Cycles;
+        }
+      }
+    }
+  }
+  
+  // Pass 2: add the preds, succs, etc.
+  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
+    SUnit *SU = &SUnits[su];
+    SDNode *MainNode = SU->Node;
+    
+    if (MainNode->isTargetOpcode()) {
+      unsigned Opc = MainNode->getTargetOpcode();
+      if (TII->isTwoAddrInstr(Opc)) {
+        SU->isTwoAddress = true;
+        SDNode *OpN = MainNode->getOperand(0).Val;
+        SUnit *OpSU = SUnitMap[OpN];
+        if (OpSU)
+          OpSU->isDefNUseOperand = true;
+      }
+    }
+    
+    // Find all predecessors and successors of the group.
+    // Temporarily add N to make code simpler.
+    SU->FlaggedNodes.push_back(MainNode);
+    
+    for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
+      SDNode *N = SU->FlaggedNodes[n];
+      
+      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+        SDNode *OpN = N->getOperand(i).Val;
+        if (isPassiveNode(OpN)) continue;   // Not scheduled.
+        SUnit *OpSU = SUnitMap[OpN];
+        assert(OpSU && "Node has no SUnit!");
+        if (OpSU == SU) continue;           // In the same group.
+
+        MVT::ValueType OpVT = N->getOperand(i).getValueType();
+        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
+        bool isChain = OpVT == MVT::Other;
+        
+        if (SU->Preds.insert(std::make_pair(OpSU, isChain)).second) {
+          if (!isChain) {
+            SU->NumPreds++;
+            SU->NumPredsLeft++;
+          } else {
+            SU->NumChainPredsLeft++;
+          }
+        }
+        if (OpSU->Succs.insert(std::make_pair(SU, isChain)).second) {
+          if (!isChain) {
+            OpSU->NumSuccs++;
+            OpSU->NumSuccsLeft++;
+          } else {
+            OpSU->NumChainSuccsLeft++;
+          }
+        }
+      }
+    }
+    
+    // Remove MainNode from FlaggedNodes again.
+    SU->FlaggedNodes.pop_back();
+  }
+  
+  return;
+}
+
+static void CalculateDepths(SUnit *SU, unsigned Depth) {
+  if (Depth > SU->Depth) SU->Depth = Depth;
+  for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
+         E = SU->Succs.end(); I != E; ++I)
+    CalculateDepths(I->first, Depth+1);
+}
+
+void ScheduleDAG::CalculateDepths() {
+  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
+  ::CalculateDepths(Entry, 0U);
+  for (unsigned i = 0, e = SUnits.size(); i != e; ++i)
+    if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
+      ::CalculateDepths(&SUnits[i], 0U);
+    }
+}
+
+static void CalculateHeights(SUnit *SU, unsigned Height) {
+  if (Height > SU->Height) SU->Height = Height;
+  for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
+         E = SU->Preds.end(); I != E; ++I)
+    CalculateHeights(I->first, Height+1);
+}
+void ScheduleDAG::CalculateHeights() {
+  SUnit *Root = SUnitMap[DAG.getRoot().Val];
+  ::CalculateHeights(Root, 0U);
+}
+
 /// CountResults - The results of target nodes have register or immediate
 /// operands first, then an optional chain, and optional flag operands (which do
 /// not go into the machine instrs.)
@@ -348,6 +524,32 @@
   TII->insertNoop(*BB, BB->end());
 }
 
+/// EmitSchedule - Emit the machine code in scheduled order.
+void ScheduleDAG::EmitSchedule() {
+  std::map<SDNode*, unsigned> VRBaseMap;
+  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
+    if (SUnit *SU = Sequence[i]) {
+      for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
+        EmitNode(SU->FlaggedNodes[j], VRBaseMap);
+      EmitNode(SU->Node, VRBaseMap);
+    } else {
+      // Null SUnit* is a noop.
+      EmitNoop();
+    }
+  }
+}
+
+/// dump - dump the schedule.
+void ScheduleDAG::dumpSchedule() const {
+  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
+    if (SUnit *SU = Sequence[i])
+      SU->dump(&DAG);
+    else
+      std::cerr << "**** NOOP ****\n";
+  }
+}
+
+
 /// Run - perform scheduling.
 ///
 MachineBasicBlock *ScheduleDAG::Run() {
@@ -360,4 +562,53 @@
   return BB;
 }
 
+/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
+/// a group of nodes flagged together.
+void SUnit::dump(const SelectionDAG *G) const {
+  std::cerr << "SU(" << NodeNum << "): ";
+  Node->dump(G);
+  std::cerr << "\n";
+  if (FlaggedNodes.size() != 0) {
+    for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
+      std::cerr << "    ";
+      FlaggedNodes[i]->dump(G);
+      std::cerr << "\n";
+    }
+  }
+}
+
+void SUnit::dumpAll(const SelectionDAG *G) const {
+  dump(G);
 
+  std::cerr << "  # preds left       : " << NumPredsLeft << "\n";
+  std::cerr << "  # succs left       : " << NumSuccsLeft << "\n";
+  std::cerr << "  # chain preds left : " << NumChainPredsLeft << "\n";
+  std::cerr << "  # chain succs left : " << NumChainSuccsLeft << "\n";
+  std::cerr << "  Latency            : " << Latency << "\n";
+  std::cerr << "  Depth              : " << Depth << "\n";
+  std::cerr << "  Height             : " << Height << "\n";
+
+  if (Preds.size() != 0) {
+    std::cerr << "  Predecessors:\n";
+    for (std::set<std::pair<SUnit*,bool> >::const_iterator I = Preds.begin(),
+           E = Preds.end(); I != E; ++I) {
+      if (I->second)
+        std::cerr << "   ch  ";
+      else
+        std::cerr << "   val ";
+      I->first->dump(G);
+    }
+  }
+  if (Succs.size() != 0) {
+    std::cerr << "  Successors:\n";
+    for (std::set<std::pair<SUnit*, bool> >::const_iterator I = Succs.begin(),
+           E = Succs.end(); I != E; ++I) {
+      if (I->second)
+        std::cerr << "   ch  ";
+      else
+        std::cerr << "   val ";
+      I->first->dump(G);
+    }
+  }
+  std::cerr << "\n";
+}


Index: llvm/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
diff -u llvm/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp:1.57 llvm/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp:1.58
--- llvm/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp:1.57	Wed May 10 01:16:44 2006
+++ llvm/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp	Thu May 11 18:55:42 2006
@@ -7,10 +7,10 @@
 //
 //===----------------------------------------------------------------------===//
 //
-// This implements bottom-up and top-down list schedulers, using standard
-// algorithms.  The basic approach uses a priority queue of available nodes to
-// schedule.  One at a time, nodes are taken from the priority queue (thus in
-// priority order), checked for legality to schedule, and emitted if legal.
+// This implements a top-down list scheduler, using standard algorithms.
+// The basic approach uses a priority queue of available nodes to schedule.
+// One at a time, nodes are taken from the priority queue (thus in priority
+// order), checked for legality to schedule, and emitted if legal.
 //
 // Nodes may not be legal to schedule either due to structural hazards (e.g.
 // pipeline or resource constraints) or because an input to the instruction has
@@ -29,157 +29,20 @@
 #include <climits>
 #include <iostream>
 #include <queue>
-#include <set>
-#include <vector>
-#include "llvm/Support/CommandLine.h"
 using namespace llvm;
 
 namespace {
-  cl::opt<bool> SchedVertically("sched-vertically", cl::Hidden);
-  cl::opt<bool> SchedLowerDefNUse("sched-lower-defnuse", cl::Hidden);
-}
-
-namespace {
   Statistic<> NumNoops ("scheduler", "Number of noops inserted");
   Statistic<> NumStalls("scheduler", "Number of pipeline stalls");
-
-  /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
-  /// a group of nodes flagged together.
-  struct SUnit {
-    SDNode *Node;                       // Representative node.
-    std::vector<SDNode*> FlaggedNodes;  // All nodes flagged to Node.
-    
-    // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
-    // is true if the edge is a token chain edge, false if it is a value edge. 
-    std::set<std::pair<SUnit*,bool> > Preds;  // All sunit predecessors.
-    std::set<std::pair<SUnit*,bool> > Succs;  // All sunit successors.
-
-    short NumPredsLeft;                 // # of preds not scheduled.
-    short NumSuccsLeft;                 // # of succs not scheduled.
-    short NumChainPredsLeft;            // # of chain preds not scheduled.
-    short NumChainSuccsLeft;            // # of chain succs not scheduled.
-    bool isTwoAddress     : 1;          // Is a two-address instruction.
-    bool isDefNUseOperand : 1;          // Is a def&use operand.
-    bool isPending        : 1;          // True once pending.
-    bool isAvailable      : 1;          // True once available.
-    bool isScheduled      : 1;          // True once scheduled.
-    unsigned short Latency;             // Node latency.
-    unsigned CycleBound;                // Upper/lower cycle to be scheduled at.
-    unsigned Cycle;                     // Once scheduled, the cycle of the op.
-    unsigned NodeNum;                   // Entry # of node in the node vector.
-    
-    SUnit(SDNode *node, unsigned nodenum)
-      : Node(node), NumPredsLeft(0), NumSuccsLeft(0),
-        NumChainPredsLeft(0), NumChainSuccsLeft(0),
-        isTwoAddress(false), isDefNUseOperand(false),
-        isPending(false), isAvailable(false), isScheduled(false),
-        Latency(0), CycleBound(0), Cycle(0), NodeNum(nodenum) {}
-    
-    void dump(const SelectionDAG *G) const;
-    void dumpAll(const SelectionDAG *G) const;
-  };
-}
-
-void SUnit::dump(const SelectionDAG *G) const {
-  std::cerr << "SU(" << NodeNum << "): ";
-  Node->dump(G);
-  std::cerr << "\n";
-  if (FlaggedNodes.size() != 0) {
-    for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
-      std::cerr << "    ";
-      FlaggedNodes[i]->dump(G);
-      std::cerr << "\n";
-    }
-  }
-}
-
-void SUnit::dumpAll(const SelectionDAG *G) const {
-  dump(G);
-
-  std::cerr << "  # preds left       : " << NumPredsLeft << "\n";
-  std::cerr << "  # succs left       : " << NumSuccsLeft << "\n";
-  std::cerr << "  # chain preds left : " << NumChainPredsLeft << "\n";
-  std::cerr << "  # chain succs left : " << NumChainSuccsLeft << "\n";
-  std::cerr << "  Latency            : " << Latency << "\n";
-
-  if (Preds.size() != 0) {
-    std::cerr << "  Predecessors:\n";
-    for (std::set<std::pair<SUnit*,bool> >::const_iterator I = Preds.begin(),
-           E = Preds.end(); I != E; ++I) {
-      if (I->second)
-        std::cerr << "   ch  ";
-      else
-        std::cerr << "   val ";
-      I->first->dump(G);
-    }
-  }
-  if (Succs.size() != 0) {
-    std::cerr << "  Successors:\n";
-    for (std::set<std::pair<SUnit*, bool> >::const_iterator I = Succs.begin(),
-           E = Succs.end(); I != E; ++I) {
-      if (I->second)
-        std::cerr << "   ch  ";
-      else
-        std::cerr << "   val ";
-      I->first->dump(G);
-    }
-  }
-  std::cerr << "\n";
 }
 
-//===----------------------------------------------------------------------===//
-/// SchedulingPriorityQueue - This interface is used to plug different
-/// priorities computation algorithms into the list scheduler. It implements the
-/// interface of a standard priority queue, where nodes are inserted in 
-/// arbitrary order and returned in priority order.  The computation of the
-/// priority and the representation of the queue are totally up to the
-/// implementation to decide.
-/// 
-namespace {
-class SchedulingPriorityQueue {
-public:
-  virtual ~SchedulingPriorityQueue() {}
-  
-  virtual void initNodes(const std::vector<SUnit> &SUnits) = 0;
-  virtual void releaseState() = 0;
-  
-  virtual bool empty() const = 0;
-  virtual void push(SUnit *U) = 0;
-  
-  virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
-  virtual SUnit *pop() = 0;
-
-  virtual void RemoveFromPriorityQueue(SUnit *SU) = 0;
-  
-  /// ScheduledNode - As each node is scheduled, this method is invoked.  This
-  /// allows the priority function to adjust the priority of node that have
-  /// already been emitted.
-  virtual void ScheduledNode(SUnit *Node) {}
-};
-}
-
-
-
 namespace {
 //===----------------------------------------------------------------------===//
 /// ScheduleDAGList - The actual list scheduler implementation.  This supports
-/// both top-down and bottom-up scheduling.
+/// top-down scheduling.
 ///
 class ScheduleDAGList : public ScheduleDAG {
 private:
-  // SDNode to SUnit mapping (many to one).
-  std::map<SDNode*, SUnit*> SUnitMap;
-
-  // The schedule.  Null SUnit*'s represent noop instructions.
-  std::vector<SUnit*> Sequence;
-  
-  // The scheduling units.
-  std::vector<SUnit> SUnits;
-
-  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
-  /// it is top-down.
-  bool isBottomUp;
-  
   /// AvailableQueue - The priority queue to use for the available SUnits.
   ///
   SchedulingPriorityQueue *AvailableQueue;
@@ -194,20 +57,12 @@
   /// HazardRec - The hazard recognizer to use.
   HazardRecognizer *HazardRec;
 
-  /// OpenNodes - Nodes with open live ranges, i.e. predecessors or successors
-  /// of scheduled nodes which are not themselves scheduled.
-  std::map<const TargetRegisterClass*, std::set<SUnit*> > OpenNodes;
-
-  /// RegPressureLimits - Keep track of upper limit of register pressure for
-  /// each register class that allows the scheduler to go into vertical mode.
-  std::map<const TargetRegisterClass*, unsigned> RegPressureLimits;
-
 public:
   ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
-                  const TargetMachine &tm, bool isbottomup,
+                  const TargetMachine &tm,
                   SchedulingPriorityQueue *availqueue,
                   HazardRecognizer *HR)
-    : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), 
+    : ScheduleDAG(dag, bb, tm),
       AvailableQueue(availqueue), HazardRec(HR) {
     }
 
@@ -218,202 +73,16 @@
 
   void Schedule();
 
-  void dumpSchedule() const;
-
 private:
-  SUnit *NewSUnit(SDNode *N);
-  void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
   void ReleaseSucc(SUnit *SuccSU, bool isChain);
-  void ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle, bool Veritical=true);
-  void ScheduleVertically(SUnit *SU, unsigned& CurCycle);
   void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
   void ListScheduleTopDown();
-  void ListScheduleBottomUp();
-  void BuildSchedUnits();
-  void EmitSchedule();
 };
 }  // end anonymous namespace
 
 HazardRecognizer::~HazardRecognizer() {}
 
 
-/// NewSUnit - Creates a new SUnit and return a ptr to it.
-SUnit *ScheduleDAGList::NewSUnit(SDNode *N) {
-  SUnits.push_back(SUnit(N, SUnits.size()));
-  return &SUnits.back();
-}
-
-/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
-/// This SUnit graph is similar to the SelectionDAG, but represents flagged
-/// together nodes with a single SUnit.
-void ScheduleDAGList::BuildSchedUnits() {
-  // Reserve entries in the vector for each of the SUnits we are creating.  This
-  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
-  // invalidated.
-  SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
-  
-  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
-  
-  for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
-       E = DAG.allnodes_end(); NI != E; ++NI) {
-    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
-      continue;
-    
-    // If this node has already been processed, stop now.
-    if (SUnitMap[NI]) continue;
-    
-    SUnit *NodeSUnit = NewSUnit(NI);
-    
-    // See if anything is flagged to this node, if so, add them to flagged
-    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
-    // are required the be the last operand and result of a node.
-    
-    // Scan up, adding flagged preds to FlaggedNodes.
-    SDNode *N = NI;
-    while (N->getNumOperands() &&
-           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
-      N = N->getOperand(N->getNumOperands()-1).Val;
-      NodeSUnit->FlaggedNodes.push_back(N);
-      SUnitMap[N] = NodeSUnit;
-    }
-    
-    // Scan down, adding this node and any flagged succs to FlaggedNodes if they
-    // have a user of the flag operand.
-    N = NI;
-    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
-      SDOperand FlagVal(N, N->getNumValues()-1);
-      
-      // There are either zero or one users of the Flag result.
-      bool HasFlagUse = false;
-      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 
-           UI != E; ++UI)
-        if (FlagVal.isOperand(*UI)) {
-          HasFlagUse = true;
-          NodeSUnit->FlaggedNodes.push_back(N);
-          SUnitMap[N] = NodeSUnit;
-          N = *UI;
-          break;
-        }
-          if (!HasFlagUse) break;
-    }
-    
-    // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
-    // Update the SUnit
-    NodeSUnit->Node = N;
-    SUnitMap[N] = NodeSUnit;
-    
-    // Compute the latency for the node.  We use the sum of the latencies for
-    // all nodes flagged together into this SUnit.
-    if (InstrItins.isEmpty()) {
-      // No latency information.
-      NodeSUnit->Latency = 1;
-    } else {
-      NodeSUnit->Latency = 0;
-      if (N->isTargetOpcode()) {
-        unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
-        InstrStage *S = InstrItins.begin(SchedClass);
-        InstrStage *E = InstrItins.end(SchedClass);
-        for (; S != E; ++S)
-          NodeSUnit->Latency += S->Cycles;
-      }
-      for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
-        SDNode *FNode = NodeSUnit->FlaggedNodes[i];
-        if (FNode->isTargetOpcode()) {
-          unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
-          InstrStage *S = InstrItins.begin(SchedClass);
-          InstrStage *E = InstrItins.end(SchedClass);
-          for (; S != E; ++S)
-            NodeSUnit->Latency += S->Cycles;
-        }
-      }
-    }
-  }
-  
-  // Pass 2: add the preds, succs, etc.
-  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
-    SUnit *SU = &SUnits[su];
-    SDNode *MainNode = SU->Node;
-    
-    if (MainNode->isTargetOpcode()) {
-      unsigned Opc = MainNode->getTargetOpcode();
-      if (TII->isTwoAddrInstr(Opc)) {
-        SU->isTwoAddress = true;
-        SDNode *OpN = MainNode->getOperand(0).Val;
-        SUnit *OpSU = SUnitMap[OpN];
-        if (OpSU)
-          OpSU->isDefNUseOperand = true;
-      }
-    }
-    
-    // Find all predecessors and successors of the group.
-    // Temporarily add N to make code simpler.
-    SU->FlaggedNodes.push_back(MainNode);
-    
-    for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
-      SDNode *N = SU->FlaggedNodes[n];
-      
-      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
-        SDNode *OpN = N->getOperand(i).Val;
-        if (isPassiveNode(OpN)) continue;   // Not scheduled.
-        SUnit *OpSU = SUnitMap[OpN];
-        assert(OpSU && "Node has no SUnit!");
-        if (OpSU == SU) continue;           // In the same group.
-
-        MVT::ValueType OpVT = N->getOperand(i).getValueType();
-        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
-        bool isChain = OpVT == MVT::Other;
-        
-        if (SU->Preds.insert(std::make_pair(OpSU, isChain)).second) {
-          if (!isChain) {
-            SU->NumPredsLeft++;
-          } else {
-            SU->NumChainPredsLeft++;
-          }
-        }
-        if (OpSU->Succs.insert(std::make_pair(SU, isChain)).second) {
-          if (!isChain) {
-            OpSU->NumSuccsLeft++;
-          } else {
-            OpSU->NumChainSuccsLeft++;
-          }
-        }
-      }
-    }
-    
-    // Remove MainNode from FlaggedNodes again.
-    SU->FlaggedNodes.pop_back();
-  }
-  
-  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
-        SUnits[su].dumpAll(&DAG));
-  return;
-}
-
-/// EmitSchedule - Emit the machine code in scheduled order.
-void ScheduleDAGList::EmitSchedule() {
-  std::map<SDNode*, unsigned> VRBaseMap;
-  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
-    if (SUnit *SU = Sequence[i]) {
-      for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
-        EmitNode(SU->FlaggedNodes[j], VRBaseMap);
-      EmitNode(SU->Node, VRBaseMap);
-    } else {
-      // Null SUnit* is a noop.
-      EmitNoop();
-    }
-  }
-}
-
-/// dump - dump the schedule.
-void ScheduleDAGList::dumpSchedule() const {
-  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
-    if (SUnit *SU = Sequence[i])
-      SU->dump(&DAG);
-    else
-      std::cerr << "**** NOOP ****\n";
-  }
-}
-
 /// Schedule - Schedule the DAG using list scheduling.
 void ScheduleDAGList::Schedule() {
   DEBUG(std::cerr << "********** List Scheduling **********\n");
@@ -423,11 +92,7 @@
 
   AvailableQueue->initNodes(SUnits);
   
-  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
-  if (isBottomUp)
-    ListScheduleBottomUp();
-  else
-    ListScheduleTopDown();
+  ListScheduleTopDown();
   
   AvailableQueue->releaseState();
   
@@ -440,273 +105,6 @@
 }
 
 //===----------------------------------------------------------------------===//
-//  Bottom-Up Scheduling
-//===----------------------------------------------------------------------===//
-
-static const TargetRegisterClass *getRegClass(SUnit *SU,
-                                              const TargetInstrInfo *TII,
-                                              const MRegisterInfo *MRI,
-                                              SSARegMap *RegMap) {
-  if (SU->Node->isTargetOpcode()) {
-    unsigned Opc = SU->Node->getTargetOpcode();
-    const TargetInstrDescriptor &II = TII->get(Opc);
-    return II.OpInfo->RegClass;
-  } else {
-    assert(SU->Node->getOpcode() == ISD::CopyFromReg);
-    unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg();
-    if (MRegisterInfo::isVirtualRegister(SrcReg))
-      return RegMap->getRegClass(SrcReg);
-    else {
-      for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
-             E = MRI->regclass_end(); I != E; ++I)
-        if ((*I)->hasType(SU->Node->getValueType(0)) &&
-            (*I)->contains(SrcReg))
-          return *I;
-      assert(false && "Couldn't find register class for reg copy!");
-    }
-    return NULL;
-  }
-}
-
-static unsigned getNumResults(SUnit *SU) {
-  unsigned NumResults = 0;
-  for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) {
-    MVT::ValueType VT = SU->Node->getValueType(i);
-    if (VT != MVT::Other && VT != MVT::Flag)
-      NumResults++;
-  }
-  return NumResults;
-}
-
-/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
-/// the Available queue is the count reaches zero. Also update its cycle bound.
-void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain, 
-                                  unsigned CurCycle) {
-  // FIXME: the distance between two nodes is not always == the predecessor's
-  // latency. For example, the reader can very well read the register written
-  // by the predecessor later than the issue cycle. It also depends on the
-  // interrupt model (drain vs. freeze).
-  PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
-
-  if (!isChain)
-    PredSU->NumSuccsLeft--;
-  else
-    PredSU->NumChainSuccsLeft--;
-  
-#ifndef NDEBUG
-  if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
-    std::cerr << "*** List scheduling failed! ***\n";
-    PredSU->dump(&DAG);
-    std::cerr << " has been released too many times!\n";
-    assert(0);
-  }
-#endif
-  
-  if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
-    // EntryToken has to go last!  Special case it here.
-    if (PredSU->Node->getOpcode() != ISD::EntryToken) {
-      PredSU->isAvailable = true;
-      AvailableQueue->push(PredSU);
-    }
-  }
-
-  if (getNumResults(PredSU) > 0) {
-    const TargetRegisterClass *RegClass = getRegClass(PredSU, TII, MRI, RegMap);
-    OpenNodes[RegClass].insert(PredSU);
-  }
-}
-
-/// SharesOperandWithTwoAddr - Check if there is a unscheduled two-address node
-/// with which SU shares an operand. If so, returns the node.
-static SUnit *SharesOperandWithTwoAddr(SUnit *SU) {
-  assert(!SU->isTwoAddress && "Node cannot be two-address op");
-  for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
-         E = SU->Preds.end(); I != E; ++I) {
-    if (I->second) continue;
-    SUnit *PredSU = I->first;
-    for (std::set<std::pair<SUnit*, bool> >::iterator II =
-           PredSU->Succs.begin(), EE = PredSU->Succs.end(); II != EE; ++II) {
-      if (II->second) continue;
-      SUnit *SSU = II->first;
-      if (SSU->isTwoAddress && !SSU->isScheduled) {
-        return SSU;
-      }
-    }
-  }
-  return NULL;
-}
-
-static bool isFloater(const SUnit *SU) {
-  unsigned Opc = SU->Node->getOpcode();
-  return (Opc != ISD::CopyFromReg && SU->NumPredsLeft == 0);
-}
-
-static bool isSimpleFloaterUse(const SUnit *SU) {
-  unsigned NumOps = 0;
-  for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Preds.begin(),
-         E = SU->Preds.end(); I != E; ++I) {
-    if (I->second) continue;
-    if (++NumOps > 1)
-      return false;
-    if (!isFloater(I->first))
-      return false;
-  }
-  return true;
-}
-
-/// ScheduleVertically - Schedule vertically. That is, follow up the D&U chain
-/// (of two-address code) and schedule floaters aggressively.
-void ScheduleDAGList::ScheduleVertically(SUnit *SU, unsigned& CurCycle) {
-  // Try scheduling Def&Use operand if register pressure is low.
-  const TargetRegisterClass *RegClass = getRegClass(SU, TII, MRI, RegMap);
-  unsigned Pressure = OpenNodes[RegClass].size();
-  unsigned Limit = RegPressureLimits[RegClass];
-
-  // See if we can schedule any predecessor that takes no registers.
-  for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
-         E = SU->Preds.end(); I != E; ++I) {
-    if (I->second) continue;
-
-    SUnit *PredSU = I->first;
-    if (!PredSU->isAvailable || PredSU->isScheduled)
-      continue;
-
-    if (isFloater(PredSU)) {
-      DEBUG(std::cerr<<"*** Scheduling floater\n");
-      AvailableQueue->RemoveFromPriorityQueue(PredSU);
-      ScheduleNodeBottomUp(PredSU, CurCycle, false);
-    }
-  }
-
-  SUnit *DUSU = NULL;
-  if (SU->isTwoAddress && Pressure < Limit) {
-    DUSU = SUnitMap[SU->Node->getOperand(0).Val];
-    if (!DUSU->isAvailable || DUSU->isScheduled)
-      DUSU = NULL;
-    else if (!DUSU->isTwoAddress) {
-      SUnit *SSU = SharesOperandWithTwoAddr(DUSU);
-      if (SSU && SSU->isAvailable) {
-        AvailableQueue->RemoveFromPriorityQueue(SSU);
-        ScheduleNodeBottomUp(SSU, CurCycle, false);
-        Pressure = OpenNodes[RegClass].size();
-        if (Pressure >= Limit)
-          DUSU = NULL;
-      }
-    }
-  }
-
-  if (DUSU) {
-    DEBUG(std::cerr<<"*** Low register pressure: scheduling D&U operand\n");
-    AvailableQueue->RemoveFromPriorityQueue(DUSU);
-    ScheduleNodeBottomUp(DUSU, CurCycle, false);
-    Pressure = OpenNodes[RegClass].size();
-    ScheduleVertically(DUSU, CurCycle);
-  }
-}
-
-/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
-/// count of its predecessors. If a predecessor pending count is zero, add it to
-/// the Available queue.
-void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle,
-                                           bool Vertical) {
-  DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
-  DEBUG(SU->dump(&DAG));
-  SU->Cycle = CurCycle;
-
-  AvailableQueue->ScheduledNode(SU);
-  Sequence.push_back(SU);
-
-  // Bottom up: release predecessors
-  for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
-         E = SU->Preds.end(); I != E; ++I)
-    ReleasePred(I->first, I->second, CurCycle);
-  SU->isScheduled = true;
-  CurCycle++;
-
-  if (getNumResults(SU) != 0) {
-    const TargetRegisterClass *RegClass = getRegClass(SU, TII, MRI, RegMap);
-    OpenNodes[RegClass].erase(SU);
-
-    if (SchedVertically && Vertical)
-      ScheduleVertically(SU, CurCycle);
-  }
-}
-
-/// isReady - True if node's lower cycle bound is less or equal to the current
-/// scheduling cycle. Always true if all nodes have uniform latency 1.
-static inline bool isReady(SUnit *SU, unsigned CurCycle) {
-  return SU->CycleBound <= CurCycle;
-}
-
-/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
-/// schedulers.
-void ScheduleDAGList::ListScheduleBottomUp() {
-  // Determine rough register pressure limit.
-  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
-         E = MRI->regclass_end(); RCI != E; ++RCI) {
-    const TargetRegisterClass *RC = *RCI;
-    unsigned Limit = RC->getNumRegs();
-    Limit = (Limit > 2) ? Limit - 2 : 0;
-    std::map<const TargetRegisterClass*, unsigned>::iterator RPI =
-      RegPressureLimits.find(RC);
-    if (RPI == RegPressureLimits.end())
-      RegPressureLimits[RC] = Limit;
-    else {
-      unsigned &OldLimit = RegPressureLimits[RC];
-      if (Limit < OldLimit)
-        OldLimit = Limit;
-    }
-  }
-
-  unsigned CurCycle = 0;
-  // Add root to Available queue.
-  AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
-
-  // While Available queue is not empty, grab the node with the highest
-  // priority. If it is not ready put it back. Schedule the node.
-  std::vector<SUnit*> NotReady;
-  SUnit *CurNode = NULL;
-  while (!AvailableQueue->empty()) {
-    SUnit *CurNode = AvailableQueue->pop();
-    while (!isReady(CurNode, CurCycle)) {
-      NotReady.push_back(CurNode);
-      CurNode = AvailableQueue->pop();
-    }
-    
-    // Add the nodes that aren't ready back onto the available list.
-    AvailableQueue->push_all(NotReady);
-    NotReady.clear();
-
-    ScheduleNodeBottomUp(CurNode, CurCycle);
-  }
-
-  // Add entry node last
-  if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
-    SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
-    Sequence.push_back(Entry);
-  }
-
-  // Reverse the order if it is bottom up.
-  std::reverse(Sequence.begin(), Sequence.end());
-  
-  
-#ifndef NDEBUG
-  // Verify that all SUnits were scheduled.
-  bool AnyNotSched = false;
-  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
-    if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
-      if (!AnyNotSched)
-        std::cerr << "*** List scheduling failed! ***\n";
-      SUnits[i].dump(&DAG);
-      std::cerr << "has not been scheduled!\n";
-      AnyNotSched = true;
-    }
-  }
-  assert(!AnyNotSched);
-#endif
-}
-
-//===----------------------------------------------------------------------===//
 //  Top-Down Scheduling
 //===----------------------------------------------------------------------===//
 
@@ -885,284 +283,6 @@
 }
 
 //===----------------------------------------------------------------------===//
-//                RegReductionPriorityQueue Implementation
-//===----------------------------------------------------------------------===//
-//
-// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
-// to reduce register pressure.
-// 
-namespace {
-  template<class SF>
-  class RegReductionPriorityQueue;
-  
-  /// Sorting functions for the Available queue.
-  struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
-    RegReductionPriorityQueue<ls_rr_sort> *SPQ;
-    ls_rr_sort(RegReductionPriorityQueue<ls_rr_sort> *spq) : SPQ(spq) {}
-    ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
-    
-    bool operator()(const SUnit* left, const SUnit* right) const;
-  };
-}  // end anonymous namespace
-
-namespace {
-  template<class SF>
-  class RegReductionPriorityQueue : public SchedulingPriorityQueue {
-    // SUnits - The SUnits for the current graph.
-    const std::vector<SUnit> *SUnits;
-    
-    // SethiUllmanNumbers - The SethiUllman number for each node.
-    std::vector<int> SethiUllmanNumbers;
-    
-    std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue;
-  public:
-    RegReductionPriorityQueue() :
-    Queue(ls_rr_sort(this)) {}
-    
-    void initNodes(const std::vector<SUnit> &sunits) {
-      SUnits = &sunits;
-      // Add pseudo dependency edges for two-address nodes.
-      if (SchedLowerDefNUse)
-        AddPseudoTwoAddrDeps();
-      // Calculate node priorities.
-      CalculatePriorities();
-    }
-    void releaseState() {
-      SUnits = 0;
-      SethiUllmanNumbers.clear();
-    }
-    
-    int getSethiUllmanNumber(unsigned NodeNum) const {
-      assert(NodeNum < SethiUllmanNumbers.size());
-      return SethiUllmanNumbers[NodeNum];
-    }
-    
-    bool empty() const { return Queue.empty(); }
-    
-    void push(SUnit *U) {
-      Queue.push(U);
-    }
-    void push_all(const std::vector<SUnit *> &Nodes) {
-      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
-        Queue.push(Nodes[i]);
-    }
-    
-    SUnit *pop() {
-      SUnit *V = Queue.top();
-      Queue.pop();
-      return V;
-    }
-
-    /// RemoveFromPriorityQueue - This is a really inefficient way to remove a
-    /// node from a priority queue.  We should roll our own heap to make this
-    /// better or something.
-    void RemoveFromPriorityQueue(SUnit *SU) {
-      std::vector<SUnit*> Temp;
-      
-      assert(!Queue.empty() && "Not in queue!");
-      while (Queue.top() != SU) {
-        Temp.push_back(Queue.top());
-        Queue.pop();
-        assert(!Queue.empty() && "Not in queue!");
-      }
-
-      // Remove the node from the PQ.
-      Queue.pop();
-      
-      // Add all the other nodes back.
-      for (unsigned i = 0, e = Temp.size(); i != e; ++i)
-        Queue.push(Temp[i]);
-    }
-
-  private:
-    void AddPseudoTwoAddrDeps();
-    void CalculatePriorities();
-    int CalcNodePriority(const SUnit *SU);
-  };
-}
-
-bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
-  unsigned LeftNum  = left->NodeNum;
-  unsigned RightNum = right->NodeNum;
-  bool LIsTarget = left->Node->isTargetOpcode();
-  bool RIsTarget = right->Node->isTargetOpcode();
-  int LPriority = SPQ->getSethiUllmanNumber(LeftNum);
-  int RPriority = SPQ->getSethiUllmanNumber(RightNum);
-  bool LIsFloater = LIsTarget && (LPriority == 1 || LPriority == 0);
-  bool RIsFloater = RIsTarget && (RPriority == 1 || RPriority == 0);
-  int LBonus = 0;
-  int RBonus = 0;
-
-  // Schedule floaters (e.g. load from some constant address) and those nodes
-  // with a single predecessor each first. They maintain / reduce register
-  // pressure.
-  if (LIsFloater)
-    LBonus += 2;
-  if (RIsFloater)
-    RBonus += 2;
-
-  if (!SchedLowerDefNUse) {
-    // Special tie breaker: if two nodes share a operand, the one that use it
-    // as a def&use operand is preferred.
-    if (LIsTarget && RIsTarget) {
-      if (left->isTwoAddress && !right->isTwoAddress) {
-        SDNode *DUNode = left->Node->getOperand(0).Val;
-        if (DUNode->isOperand(right->Node))
-          LBonus += 2;
-      }
-      if (!left->isTwoAddress && right->isTwoAddress) {
-        SDNode *DUNode = right->Node->getOperand(0).Val;
-        if (DUNode->isOperand(left->Node))
-          RBonus += 2;
-      }
-    }
-  }
-
-  if (LPriority+LBonus < RPriority+RBonus)
-    return true;
-  else if (LPriority+LBonus == RPriority+RBonus)
-    if (left->NumPredsLeft > right->NumPredsLeft)
-      return true;
-    else if (left->NumPredsLeft+LBonus == right->NumPredsLeft+RBonus)
-      if (left->CycleBound > right->CycleBound) 
-        return true;
-  return false;
-}
-
-static inline bool isCopyFromLiveIn(const SUnit *SU) {
-  SDNode *N = SU->Node;
-  return N->getOpcode() == ISD::CopyFromReg &&
-    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
-}
-
-// FIXME: This is probably too slow!
-static void isReachable(SUnit *SU, SUnit *TargetSU,
-                        std::set<SUnit *> &Visited, bool &Reached) {
-  if (Reached) return;
-  if (SU == TargetSU) {
-    Reached = true;
-    return;
-  }
-  if (!Visited.insert(SU).second) return;
-
-  for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
-         E = SU->Preds.end(); I != E; ++I)
-    isReachable(I->first, TargetSU, Visited, Reached);
-}
-
-static bool isReachable(SUnit *SU, SUnit *TargetSU) {
-  std::set<SUnit *> Visited;
-  bool Reached = false;
-  isReachable(SU, TargetSU, Visited, Reached);
-  return Reached;
-}
-
-static SUnit *getDefUsePredecessor(SUnit *SU) {
-  SDNode *DU = SU->Node->getOperand(0).Val;
-  for (std::set<std::pair<SUnit*, bool> >::iterator
-         I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
-    if (I->second) continue;  // ignore chain preds
-    SUnit *PredSU = I->first;
-    if (PredSU->Node == DU)
-      return PredSU;
-  }
-
-  // Must be flagged.
-  return NULL;
-}
-
-static bool canClobber(SUnit *SU, SUnit *Op) {
-  if (SU->isTwoAddress)
-    return Op == getDefUsePredecessor(SU);
-  return false;
-}
-
-/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
-/// it as a def&use operand. Add a pseudo control edge from it to the other
-/// node (if it won't create a cycle) so the two-address one will be scheduled
-/// first (lower in the schedule).
-template<class SF>
-void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
-  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
-    SUnit *SU = (SUnit *)&((*SUnits)[i]);
-    SDNode *Node = SU->Node;
-    if (!Node->isTargetOpcode())
-      continue;
-
-    if (SU->isTwoAddress) {
-      unsigned Depth = SU->Node->getNodeDepth();
-      SUnit *DUSU = getDefUsePredecessor(SU);
-      if (!DUSU) continue;
-
-      for (std::set<std::pair<SUnit*, bool> >::iterator I = DUSU->Succs.begin(),
-             E = DUSU->Succs.end(); I != E; ++I) {
-        SUnit *SuccSU = I->first;
-        if (SuccSU != SU && !canClobber(SuccSU, DUSU)) {
-          if (SuccSU->Node->getNodeDepth() <= Depth+2 &&
-              !isReachable(SuccSU, SU)) {
-            DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum
-                  << " to SU #" << SuccSU->NodeNum << "\n");
-            if (SU->Preds.insert(std::make_pair(SuccSU, true)).second)
-              SU->NumChainPredsLeft++;
-            if (SuccSU->Succs.insert(std::make_pair(SU, true)).second)
-              SuccSU->NumChainSuccsLeft++;
-          }
-        }
-      }
-    }
-  }
-}
-
-/// CalcNodePriority - Priority is the Sethi Ullman number. 
-/// Smaller number is the higher priority.
-template<class SF>
-int RegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) {
-  int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
-  if (SethiUllmanNumber != 0)
-    return SethiUllmanNumber;
-
-  unsigned Opc = SU->Node->getOpcode();
-  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
-    SethiUllmanNumber = INT_MAX - 10;
-  else if (SU->NumSuccsLeft == 0)
-    // If SU does not have a use, i.e. it doesn't produce a value that would
-    // be consumed (e.g. store), then it terminates a chain of computation.
-    // Give it a small SethiUllman number so it will be scheduled right before its
-    // predecessors that it doesn't lengthen their live ranges.
-    SethiUllmanNumber = INT_MIN + 10;
-  else if (SU->NumPredsLeft == 0 &&
-           (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
-    SethiUllmanNumber = 1;
-  else {
-    int Extra = 0;
-    for (std::set<std::pair<SUnit*, bool> >::const_iterator
-         I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
-      if (I->second) continue;  // ignore chain preds
-      SUnit *PredSU = I->first;
-      int PredSethiUllman = CalcNodePriority(PredSU);
-      if (PredSethiUllman > SethiUllmanNumber) {
-        SethiUllmanNumber = PredSethiUllman;
-        Extra = 0;
-      } else if (PredSethiUllman == SethiUllmanNumber && !I->second)
-        Extra++;
-    }
-
-    SethiUllmanNumber += Extra;
-  }
-  
-  return SethiUllmanNumber;
-}
-
-/// CalculatePriorities - Calculate priorities of all scheduling units.
-template<class SF>
-void RegReductionPriorityQueue<SF>::CalculatePriorities() {
-  SethiUllmanNumbers.assign(SUnits->size(), 0);
-  
-  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
-    CalcNodePriority(&(*SUnits)[i]);
-}
-
-//===----------------------------------------------------------------------===//
 //                    LatencyPriorityQueue Implementation
 //===----------------------------------------------------------------------===//
 //
@@ -1240,6 +360,17 @@
       return V;
     }
 
+    // ScheduledNode - As nodes are scheduled, we look to see if there are any
+    // successor nodes that have a single unscheduled predecessor.  If so, that
+    // single predecessor has a higher priority, since scheduling it will make
+    // the node available.
+    void ScheduledNode(SUnit *Node);
+
+private:
+    void CalculatePriorities();
+    int CalcLatency(const SUnit &SU);
+    void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
+
     /// RemoveFromPriorityQueue - This is a really inefficient way to remove a
     /// node from a priority queue.  We should roll our own heap to make this
     /// better or something.
@@ -1260,17 +391,6 @@
       for (unsigned i = 0, e = Temp.size(); i != e; ++i)
         Queue.push(Temp[i]);
     }
-
-    // ScheduledNode - As nodes are scheduled, we look to see if there are any
-    // successor nodes that have a single unscheduled predecessor.  If so, that
-    // single predecessor has a higher priority, since scheduling it will make
-    // the node available.
-    void ScheduledNode(SUnit *Node);
-
-private:
-    void CalculatePriorities();
-    int CalcLatency(const SUnit &SU);
-    void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
   };
 }
 
@@ -1388,19 +508,12 @@
 //                         Public Constructor Functions
 //===----------------------------------------------------------------------===//
 
-llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
-                                                    MachineBasicBlock *BB) {
-  return new ScheduleDAGList(DAG, BB, DAG.getTarget(), true, 
-                             new RegReductionPriorityQueue<ls_rr_sort>(),
-                             new HazardRecognizer());
-}
-
 /// createTDListDAGScheduler - This creates a top-down list scheduler with the
 /// specified hazard recognizer.
 ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG,
                                             MachineBasicBlock *BB,
                                             HazardRecognizer *HR) {
-  return new ScheduleDAGList(DAG, BB, DAG.getTarget(), false,
+  return new ScheduleDAGList(DAG, BB, DAG.getTarget(),
                              new LatencyPriorityQueue(),
                              HR);
 }


Index: llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
diff -u llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:1.237 llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:1.238
--- llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp:1.237	Mon May  8 11:51:36 2006
+++ llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp	Thu May 11 18:55:42 2006
@@ -58,36 +58,28 @@
 static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
 #endif
 
-// Scheduling heuristics
-enum SchedHeuristics {
-  defaultScheduling,      // Let the target specify its preference.
-  noScheduling,           // No scheduling, emit breadth first sequence.
-  simpleScheduling,       // Two pass, min. critical path, max. utilization.
-  simpleNoItinScheduling, // Same as above exact using generic latency.
-  listSchedulingBURR,     // Bottom up reg reduction list scheduling.
-  listSchedulingTD        // Top-down list scheduler.
-};
-
 namespace {
-  cl::opt<SchedHeuristics>
+  cl::opt<ScheduleDAG::SchedHeuristics>
   ISHeuristic(
     "sched",
     cl::desc("Choose scheduling style"),
-    cl::init(defaultScheduling),
+    cl::init(ScheduleDAG::defaultScheduling),
     cl::values(
-      clEnumValN(defaultScheduling, "default",
+      clEnumValN(ScheduleDAG::defaultScheduling, "default",
                  "Target preferred scheduling style"),
-      clEnumValN(noScheduling, "none",
+      clEnumValN(ScheduleDAG::noScheduling, "none",
                  "No scheduling: breadth first sequencing"),
-      clEnumValN(simpleScheduling, "simple",
+      clEnumValN(ScheduleDAG::simpleScheduling, "simple",
                  "Simple two pass scheduling: minimize critical path "
                  "and maximize processor utilization"),
-      clEnumValN(simpleNoItinScheduling, "simple-noitin",
+      clEnumValN(ScheduleDAG::simpleNoItinScheduling, "simple-noitin",
                  "Simple two pass scheduling: Same as simple "
                  "except using generic latency"),
-      clEnumValN(listSchedulingBURR, "list-burr",
-                 "Bottom up register reduction list scheduling"),
-      clEnumValN(listSchedulingTD, "list-td",
+      clEnumValN(ScheduleDAG::listSchedulingBURR, "list-burr",
+                 "Bottom-up register reduction list scheduling"),
+      clEnumValN(ScheduleDAG::listSchedulingTDRR, "list-tdrr",
+                 "Top-down register reduction list scheduling"),
+      clEnumValN(ScheduleDAG::listSchedulingTD, "list-td",
                  "Top-down list scheduler"),
       clEnumValEnd));
 } // namespace
@@ -3418,7 +3410,7 @@
 
   switch (ISHeuristic) {
   default: assert(0 && "Unrecognized scheduling heuristic");
-  case defaultScheduling:
+  case ScheduleDAG::defaultScheduling:
     if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
       SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
     else {
@@ -3427,19 +3419,22 @@
       SL = createBURRListDAGScheduler(DAG, BB);
     }
     break;
-  case noScheduling:
+  case ScheduleDAG::noScheduling:
     SL = createBFS_DAGScheduler(DAG, BB);
     break;
-  case simpleScheduling:
+  case ScheduleDAG::simpleScheduling:
     SL = createSimpleDAGScheduler(false, DAG, BB);
     break;
-  case simpleNoItinScheduling:
+  case ScheduleDAG::simpleNoItinScheduling:
     SL = createSimpleDAGScheduler(true, DAG, BB);
     break;
-  case listSchedulingBURR:
+  case ScheduleDAG::listSchedulingBURR:
     SL = createBURRListDAGScheduler(DAG, BB);
     break;
-  case listSchedulingTD:
+  case ScheduleDAG::listSchedulingTDRR:
+    SL = createTDRRListDAGScheduler(DAG, BB);
+    break;
+  case ScheduleDAG::listSchedulingTD:
     SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
     break;
   }






More information about the llvm-commits mailing list