[llvm-commits] CVS: llvm/lib/Target/SparcV9/SparcV9BurgISel.cpp SparcV9BurgISel.h Makefile SparcV9InstrInfo.cpp SparcV9InstrSelection.cpp SparcV9InstrSelectionSupport.h

Brian Gaeke gaeke at cs.uiuc.edu
Wed Aug 4 00:29:02 PDT 2004



Changes in directory llvm/lib/Target/SparcV9:

SparcV9BurgISel.cpp added (r1.1)
SparcV9BurgISel.h added (r1.1)
Makefile updated: 1.42 -> 1.43
SparcV9InstrInfo.cpp (r1.71) removed
SparcV9InstrSelection.cpp (r1.145) removed
SparcV9InstrSelectionSupport.h (r1.19) removed
---
Log message:

All the SparcV9 BURG instruction selector pieces have been collected into the
new file SparcV9BurgISel.cpp, with exposed interfaces in SparcV9BurgISel.h.
The InstrSelection directory is now dead.


---
Diffs of the changes:  (+4566 -1)

Index: llvm/lib/Target/SparcV9/SparcV9BurgISel.cpp
diff -c /dev/null llvm/lib/Target/SparcV9/SparcV9BurgISel.cpp:1.1
*** /dev/null	Wed Aug  4 02:29:01 2004
--- llvm/lib/Target/SparcV9/SparcV9BurgISel.cpp	Wed Aug  4 02:28:51 2004
***************
*** 0 ****
--- 1,4509 ----
+ //===- SparcV9BurgISel.cpp - SparcV9 BURG-based Instruction Selector ------===//
+ // 
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ // 
+ //===----------------------------------------------------------------------===//
+ //
+ // SparcV9 BURG-based instruction selector. It uses the SSA graph to
+ // construct a forest of BURG instruction trees (class InstrForest) and then
+ // uses the BURG-generated tree grammar (BURM) to find the optimal instruction
+ // sequences for the SparcV9.
+ //	
+ //===----------------------------------------------------------------------===//
+ 
+ #include "MachineInstrAnnot.h"
+ #include "SparcV9BurgISel.h"
+ #include "SparcV9InstrForest.h"
+ #include "SparcV9Internals.h"
+ #include "SparcV9TmpInstr.h"
+ #include "llvm/CodeGen/IntrinsicLowering.h"
+ #include "llvm/CodeGen/MachineConstantPool.h"
+ #include "llvm/CodeGen/MachineFunction.h"
+ #include "llvm/CodeGen/MachineFunctionInfo.h"
+ #include "llvm/CodeGen/MachineInstr.h"
+ #include "llvm/CodeGen/MachineInstrBuilder.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/GlobalValue.h"
+ #include "llvm/Instructions.h"
+ #include "llvm/Intrinsics.h"
+ #include "llvm/Module.h"
+ #include "llvm/Pass.h"
+ #include "llvm/Support/CFG.h"
+ #include "llvm/Target/TargetInstrInfo.h"
+ #include "llvm/Target/TargetMachine.h"
+ #include "llvm/Type.h"
+ #include "Config/alloca.h"
+ #include "Support/CommandLine.h"
+ #include "Support/LeakDetector.h"
+ #include "Support/MathExtras.h"
+ #include "Support/STLExtras.h"
+ #include "Support/hash_map"
+ #include <algorithm>
+ #include <cmath>
+ #include <iostream>
+ using namespace llvm;
+ 
+ //==------------------------------------------------------------------------==//
+ //          InstrForest (V9ISel BURG instruction trees) implementation
+ //==------------------------------------------------------------------------==//
+ 
+ namespace llvm {
+ 
+ class InstructionNode : public InstrTreeNode {
+   bool codeIsFoldedIntoParent;
+   
+ public:
+   InstructionNode(Instruction *_instr);
+ 
+   Instruction *getInstruction() const {
+     assert(treeNodeType == NTInstructionNode);
+     return cast<Instruction>(val);
+   }
+ 
+   void markFoldedIntoParent() { codeIsFoldedIntoParent = true; }
+   bool isFoldedIntoParent()   { return codeIsFoldedIntoParent; }
+ 
+   // Methods to support type inquiry through isa, cast, and dyn_cast:
+   static inline bool classof(const InstructionNode *N) { return true; }
+   static inline bool classof(const InstrTreeNode *N) {
+     return N->getNodeType() == InstrTreeNode::NTInstructionNode;
+   }
+   
+ protected:
+   virtual void dumpNode(int indent) const;
+ };
+ 
+ class VRegListNode : public InstrTreeNode {
+ public:
+   VRegListNode() : InstrTreeNode(NTVRegListNode, 0) { opLabel = VRegListOp; }
+   // Methods to support type inquiry through isa, cast, and dyn_cast:
+   static inline bool classof(const VRegListNode  *N) { return true; }
+   static inline bool classof(const InstrTreeNode *N) {
+     return N->getNodeType() == InstrTreeNode::NTVRegListNode;
+   }
+ protected:
+   virtual void dumpNode(int indent) const;
+ };
+ 
+ class VRegNode : public InstrTreeNode {
+ public:
+   VRegNode(Value* _val) : InstrTreeNode(NTVRegNode, _val) {
+     opLabel = VRegNodeOp;
+   }
+   // Methods to support type inquiry through isa, cast, and dyn_cast:
+   static inline bool classof(const VRegNode  *N) { return true; }
+   static inline bool classof(const InstrTreeNode *N) {
+     return N->getNodeType() == InstrTreeNode::NTVRegNode;
+   }
+ protected:
+   virtual void dumpNode(int indent) const;
+ };
+ 
+ class ConstantNode : public InstrTreeNode {
+ public:
+   ConstantNode(Constant *constVal) 
+     : InstrTreeNode(NTConstNode, (Value*)constVal) {
+     opLabel = ConstantNodeOp;    
+   }
+   Constant *getConstVal() const { return (Constant*) val;}
+   // Methods to support type inquiry through isa, cast, and dyn_cast:
+   static inline bool classof(const ConstantNode  *N) { return true; }
+   static inline bool classof(const InstrTreeNode *N) {
+     return N->getNodeType() == InstrTreeNode::NTConstNode;
+   }
+ protected:
+   virtual void dumpNode(int indent) const;
+ };
+ 
+ class LabelNode : public InstrTreeNode {
+ public:
+   LabelNode(BasicBlock* BB) : InstrTreeNode(NTLabelNode, (Value*)BB) {
+     opLabel = LabelNodeOp;
+   }
+   BasicBlock *getBasicBlock() const { return (BasicBlock*)val;}
+   // Methods to support type inquiry through isa, cast, and dyn_cast:
+   static inline bool classof(const LabelNode     *N) { return true; }
+   static inline bool classof(const InstrTreeNode *N) {
+     return N->getNodeType() == InstrTreeNode::NTLabelNode;
+   }
+ protected:
+   virtual void dumpNode(int indent) const;
+ };
+ 
+ /// InstrForest -  A forest of instruction trees for a single function.
+ /// The goal of InstrForest is to group instructions into a single
+ /// tree if one or more of them might be potentially combined into a
+ /// single complex instruction in the target machine. We group two
+ /// instructions O and I if: (1) Instruction O computes an operand used
+ /// by instruction I, and (2) O and I are part of the same basic block,
+ /// and (3) O has only a single use, viz., I.
+ /// 
+ class InstrForest : private hash_map<const Instruction *, InstructionNode*> {
+ public:
+   // Use a vector for the root set to get a deterministic iterator
+   // for stable code generation.  Even though we need to erase nodes
+   // during forest construction, a vector should still be efficient
+   // because the elements to erase are nearly always near the end.
+   typedef std::vector<InstructionNode*> RootSet;
+   typedef RootSet::      iterator       root_iterator;
+   typedef RootSet::const_iterator const_root_iterator;
+   
+ private:
+   RootSet treeRoots;
+   
+ public:
+   /*ctor*/	InstrForest	(Function *F);
+   /*dtor*/	~InstrForest	();
+   
+   /// getTreeNodeForInstr - Returns the tree node for an Instruction.
+   ///
+   inline InstructionNode *getTreeNodeForInstr(Instruction* instr) {
+     return (*this)[instr];
+   }
+   
+   /// Iterators for the root nodes for all the trees.
+   ///
+   const_root_iterator roots_begin() const     { return treeRoots.begin(); }
+         root_iterator roots_begin()           { return treeRoots.begin(); }
+   const_root_iterator roots_end  () const     { return treeRoots.end();   }
+         root_iterator roots_end  ()           { return treeRoots.end();   }
+   
+   void dump() const;
+   
+ private:
+   // Methods used to build the instruction forest.
+   void eraseRoot    (InstructionNode* node);
+   void setLeftChild (InstrTreeNode* parent, InstrTreeNode* child);
+   void setRightChild(InstrTreeNode* parent, InstrTreeNode* child);
+   void setParent    (InstrTreeNode* child,  InstrTreeNode* parent);
+   void noteTreeNodeForInstr(Instruction* instr, InstructionNode* treeNode);
+   InstructionNode* buildTreeForInstruction(Instruction* instr);
+ };
+ 
+ void InstrTreeNode::dump(int dumpChildren, int indent) const {
+   dumpNode(indent);
+   
+   if (dumpChildren) {
+     if (LeftChild)
+       LeftChild->dump(dumpChildren, indent+1);
+     if (RightChild)
+       RightChild->dump(dumpChildren, indent+1);
+   }
+ }
+ 
+ InstructionNode::InstructionNode(Instruction* I)
+   : InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false) {
+   opLabel = I->getOpcode();
+ 
+   // Distinguish special cases of some instructions such as Ret and Br
+   // 
+   if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) {
+     opLabel = RetValueOp;              	 // ret(value) operation
+   }
+   else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
+   {
+     opLabel = BrCondOp;		// br(cond) operation
+   } else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) {
+     opLabel = SetCCOp;		// common label for all SetCC ops
+   } else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) {
+     opLabel = AllocaN;		 // Alloca(ptr, N) operation
+   } else if (opLabel == Instruction::GetElementPtr &&
+              cast<GetElementPtrInst>(I)->hasIndices()) {
+     opLabel = opLabel + 100;		 // getElem with index vector
+   } else if (opLabel == Instruction::Xor &&
+              BinaryOperator::isNot(I)) {
+     opLabel = (I->getType() == Type::BoolTy)?  NotOp  // boolean Not operator
+       : BNotOp; // bitwise Not operator
+   } else if (opLabel == Instruction::And || opLabel == Instruction::Or ||
+              opLabel == Instruction::Xor) {
+     // Distinguish bitwise operators from logical operators!
+     if (I->getType() != Type::BoolTy)
+       opLabel = opLabel + 100;	 // bitwise operator
+   } else if (opLabel == Instruction::Cast) {
+     const Type *ITy = I->getType();
+     switch(ITy->getTypeID())
+     {
+     case Type::BoolTyID:    opLabel = ToBoolTy;    break;
+     case Type::UByteTyID:   opLabel = ToUByteTy;   break;
+     case Type::SByteTyID:   opLabel = ToSByteTy;   break;
+     case Type::UShortTyID:  opLabel = ToUShortTy;  break;
+     case Type::ShortTyID:   opLabel = ToShortTy;   break;
+     case Type::UIntTyID:    opLabel = ToUIntTy;    break;
+     case Type::IntTyID:     opLabel = ToIntTy;     break;
+     case Type::ULongTyID:   opLabel = ToULongTy;   break;
+     case Type::LongTyID:    opLabel = ToLongTy;    break;
+     case Type::FloatTyID:   opLabel = ToFloatTy;   break;
+     case Type::DoubleTyID:  opLabel = ToDoubleTy;  break;
+     case Type::ArrayTyID:   opLabel = ToArrayTy;   break;
+     case Type::PointerTyID: opLabel = ToPointerTy; break;
+     default:
+       // Just use `Cast' opcode otherwise. It's probably ignored.
+       break;
+     }
+   }
+ }
+ 
+ void InstructionNode::dumpNode(int indent) const {
+   for (int i=0; i < indent; i++)
+     std::cerr << "    ";
+   std::cerr << getInstruction()->getOpcodeName()
+             << " [label " << getOpLabel() << "]" << "\n";
+ }
+ 
+ void VRegListNode::dumpNode(int indent) const {
+   for (int i=0; i < indent; i++)
+     std::cerr << "    ";
+   
+   std::cerr << "List" << "\n";
+ }
+ 
+ void VRegNode::dumpNode(int indent) const {
+   for (int i=0; i < indent; i++)
+     std::cerr << "    ";
+     std::cerr << "VReg " << *getValue() << "\n";
+ }
+ 
+ void ConstantNode::dumpNode(int indent) const {
+   for (int i=0; i < indent; i++)
+     std::cerr << "    ";
+   std::cerr << "Constant " << *getValue() << "\n";
+ }
+ 
+ void LabelNode::dumpNode(int indent) const {
+   for (int i=0; i < indent; i++)
+     std::cerr << "    ";
+   
+   std::cerr << "Label " << *getValue() << "\n";
+ }
+ 
+ /// InstrForest ctor - Create a forest of instruction trees for a
+ /// single function.
+ ///
+ InstrForest::InstrForest(Function *F) {
+   for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
+     for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+       buildTreeForInstruction(I);
+   }
+ }
+ 
+ InstrForest::~InstrForest() {
+   for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
+ }
+ 
+ void InstrForest::dump() const {
+   for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
+     (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
+ }
+ 
+ inline void InstrForest::eraseRoot(InstructionNode* node) {
+   for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
+        RI != RE; ++RI)
+     if (*RI == node)
+       treeRoots.erase(RI.base()-1);
+ }
+ 
+ inline void InstrForest::noteTreeNodeForInstr(Instruction *instr,
+                                               InstructionNode *treeNode) {
+   (*this)[instr] = treeNode;
+   treeRoots.push_back(treeNode);	// mark node as root of a new tree
+ }
+ 
+ inline void InstrForest::setLeftChild(InstrTreeNode *parent,
+                                       InstrTreeNode *child) {
+   parent->LeftChild = child;
+   child->Parent = parent;
+   if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
+     eraseRoot(instrNode); // no longer a tree root
+ }
+ 
+ inline void InstrForest::setRightChild(InstrTreeNode *parent,
+                                        InstrTreeNode *child) {
+   parent->RightChild = child;
+   child->Parent = parent;
+   if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
+     eraseRoot(instrNode); // no longer a tree root
+ }
+ 
+ InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) {
+   InstructionNode *treeNode = getTreeNodeForInstr(instr);
+   if (treeNode) {
+     // treeNode has already been constructed for this instruction
+     assert(treeNode->getInstruction() == instr);
+     return treeNode;
+   }
+   
+   // Otherwise, create a new tree node for this instruction.
+   treeNode = new InstructionNode(instr);
+   noteTreeNodeForInstr(instr, treeNode);
+   
+   if (instr->getOpcode() == Instruction::Call) {
+     // Operands of call instruction
+     return treeNode;
+   }
+   
+   // If the instruction has more than 2 instruction operands,
+   // then we need to create artificial list nodes to hold them.
+   // (Note that we only count operands that get tree nodes, and not
+   // others such as branch labels for a branch or switch instruction.)
+   // To do this efficiently, we'll walk all operands, build treeNodes
+   // for all appropriate operands and save them in an array.  We then
+   // insert children at the end, creating list nodes where needed.
+   // As a performance optimization, allocate a child array only
+   // if a fixed array is too small.
+   int numChildren = 0;
+   InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()];
+   
+   // Walk the operands of the instruction
+   for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end();
+        ++O) {
+       Value* operand = *O;
+       
+       // Check if the operand is a data value, not an branch label, type,
+       // method or module.  If the operand is an address type (i.e., label
+       // or method) that is used in an non-branching operation, e.g., `add'.
+       // that should be considered a data value.
+       // Check latter condition here just to simplify the next IF.
+       bool includeAddressOperand =
+ 	(isa<BasicBlock>(operand) || isa<Function>(operand))
+ 	&& !instr->isTerminator();
+     
+       if (includeAddressOperand || isa<Instruction>(operand) ||
+ 	  isa<Constant>(operand) || isa<Argument>(operand)) {
+         // This operand is a data value.
+         // An instruction that computes the incoming value is added as a
+         // child of the current instruction if:
+         //   the value has only a single use
+         //   AND both instructions are in the same basic block.
+         //   AND the current instruction is not a PHI (because the incoming
+         //		value is conceptually in a predecessor block,
+         //		even though it may be in the same static block)
+         // (Note that if the value has only a single use (viz., `instr'),
+         //  the def of the value can be safely moved just before instr
+         //  and therefore it is safe to combine these two instructions.)
+         // In all other cases, the virtual register holding the value
+         // is used directly, i.e., made a child of the instruction node.
+         InstrTreeNode* opTreeNode;
+         if (isa<Instruction>(operand) && operand->hasOneUse() &&
+             cast<Instruction>(operand)->getParent() == instr->getParent() &&
+             instr->getOpcode() != Instruction::PHI &&
+             instr->getOpcode() != Instruction::Call) {
+           // Recursively create a treeNode for it.
+           opTreeNode = buildTreeForInstruction((Instruction*)operand);
+         } else if (Constant *CPV = dyn_cast<Constant>(operand)) {
+           if (isa<GlobalValue>(CPV))
+             opTreeNode = new VRegNode(operand);
+           else
+             // Create a leaf node for a constant
+             opTreeNode = new ConstantNode(CPV);
+         } else {
+           // Create a leaf node for the virtual register
+           opTreeNode = new VRegNode(operand);
+         }
+ 
+         childArray[numChildren++] = opTreeNode;
+       }
+     }
+   
+   // Add any selected operands as children in the tree.
+   // Certain instructions can have more than 2 in some instances (viz.,
+   // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
+   // array or struct). Make the operands of every such instruction into
+   // a right-leaning binary tree with the operand nodes at the leaves
+   // and VRegList nodes as internal nodes.
+   InstrTreeNode *parent = treeNode;
+   
+   if (numChildren > 2) {
+     unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
+     assert(instrOpcode == Instruction::PHI ||
+            instrOpcode == Instruction::Call ||
+            instrOpcode == Instruction::Load ||
+            instrOpcode == Instruction::Store ||
+            instrOpcode == Instruction::GetElementPtr);
+   }
+   
+   // Insert the first child as a direct child
+   if (numChildren >= 1)
+     setLeftChild(parent, childArray[0]);
+ 
+   int n;
+   
+   // Create a list node for children 2 .. N-1, if any
+   for (n = numChildren-1; n >= 2; n--) {
+     // We have more than two children
+     InstrTreeNode *listNode = new VRegListNode();
+     setRightChild(parent, listNode);
+     setLeftChild(listNode, childArray[numChildren - n]);
+     parent = listNode;
+   }
+   
+   // Now insert the last remaining child (if any).
+   if (numChildren >= 2) {
+     assert(n == 1);
+     setRightChild(parent, childArray[numChildren - 1]);
+   }
+ 
+   delete [] childArray;
+   return treeNode;
+ }
+ //==------------------------------------------------------------------------==//
+ //                V9ISel Command-line options and declarations
+ //==------------------------------------------------------------------------==//
+ 
+ namespace {
+   /// Allow the user to select the amount of debugging information printed
+   /// out by V9ISel.
+   ///
+   enum SelectDebugLevel_t {
+     Select_NoDebugInfo,
+     Select_PrintMachineCode, 
+     Select_DebugInstTrees, 
+     Select_DebugBurgTrees,
+   };
+   cl::opt<SelectDebugLevel_t>
+   SelectDebugLevel("dselect", cl::Hidden,
+                    cl::desc("enable instruction selection debug information"),
+                    cl::values(
+      clEnumValN(Select_NoDebugInfo,      "n", "disable debug output"),
+      clEnumValN(Select_PrintMachineCode, "y", "print generated machine code"),
+      clEnumValN(Select_DebugInstTrees,   "i",
+                 "print debugging info for instruction selection"),
+      clEnumValN(Select_DebugBurgTrees,   "b", "print burg trees"),
+                               clEnumValEnd));
+ 
+ 
+   /// V9ISel - This is the FunctionPass that drives the instruction selection
+   /// process on the SparcV9 target.
+   ///
+   class V9ISel : public FunctionPass {
+     TargetMachine &Target;
+     void InsertCodeForPhis(Function &F);
+     void InsertPhiElimInstructions(BasicBlock *BB,
+                                    const std::vector<MachineInstr*>& CpVec);
+     void SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt);
+     void PostprocessMachineCodeForTree(InstructionNode* instrNode,
+                                        int ruleForNode, short* nts);
+   public:
+     V9ISel(TargetMachine &TM) : Target(TM) {}
+ 
+     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+       AU.setPreservesCFG();
+     }
+     
+     bool runOnFunction(Function &F);
+     virtual const char *getPassName() const {
+       return "SparcV9 BURG Instruction Selector";
+     }
+   };
+ }
+ 
+ 
+ //==------------------------------------------------------------------------==//
+ //                     Various V9ISel helper functions
+ //==------------------------------------------------------------------------==//
+ 
+ static const uint32_t MAXLO   = (1 << 10) - 1; // set bits set by %lo(*)
+ static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR
+ 
+ /// ConvertConstantToIntType - Function to get the value of an integral
+ /// constant in the form that must be put into the machine register.  The
+ /// specified constant is interpreted as (i.e., converted if necessary to) the
+ /// specified destination type.  The result is always returned as an uint64_t,
+ /// since the representation of int64_t and uint64_t are identical.  The
+ /// argument can be any known const.  isValidConstant is set to true if a valid
+ /// constant was found.
+ /// 
+ uint64_t ConvertConstantToIntType(const TargetMachine &target, const Value *V,
+                                   const Type *destType, bool &isValidConstant) {
+   isValidConstant = false;
+   uint64_t C = 0;
+ 
+   if (! destType->isIntegral() && ! isa<PointerType>(destType))
+     return C;
+ 
+   if (! isa<Constant>(V) || isa<GlobalValue>(V))
+     return C;
+ 
+   // GlobalValue: no conversions needed: get value and return it
+   if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
+     isValidConstant = true;             // may be overwritten by recursive call
+     return ConvertConstantToIntType(target, GV, destType, isValidConstant);
+   }
+ 
+   // ConstantBool: no conversions needed: get value and return it
+   if (const ConstantBool *CB = dyn_cast<ConstantBool>(V)) {
+     isValidConstant = true;
+     return (uint64_t) CB->getValue();
+   }
+ 
+   // ConstantPointerNull: it's really just a big, shiny version of zero.
+   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(V)) {
+     isValidConstant = true;
+     return 0;
+   }
+ 
+   // For other types of constants, some conversion may be needed.
+   // First, extract the constant operand according to its own type
+   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+     switch(CE->getOpcode()) {
+     case Instruction::Cast:             // recursively get the value as cast
+       C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(),
+                                    isValidConstant);
+       break;
+     default:                            // not simplifying other ConstantExprs
+       break;
+     }
+   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+     isValidConstant = true;
+     C = CI->getRawValue();
+   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+     isValidConstant = true;
+     double fC = CFP->getValue();
+     C = (destType->isSigned()? (uint64_t) (int64_t) fC
+                              : (uint64_t)           fC);
+   }
+ 
+   // Now if a valid value was found, convert it to destType.
+   if (isValidConstant) {
+     unsigned opSize   = target.getTargetData().getTypeSize(V->getType());
+     unsigned destSize = target.getTargetData().getTypeSize(destType);
+     uint64_t maskHi   = (destSize < 8)? (1U << 8*destSize) - 1 : ~0;
+     assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected");
+     
+     if (destType->isSigned()) {
+       if (opSize > destSize)            // operand is larger than dest:
+         C = C & maskHi;                 // mask high bits
+ 
+       if (opSize > destSize ||
+           (opSize == destSize && ! V->getType()->isSigned()))
+         if (C & (1U << (8*destSize - 1)))
+           C =  C | ~maskHi;             // sign-extend from destSize to 64 bits
+     }
+     else {
+       if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) {
+         // operand is larger than dest,
+         //    OR both are equal but smaller than the full register size
+         //       AND operand is signed, so it may have extra sign bits:
+         // mask high bits
+         C = C & maskHi;
+       }
+     }
+   }
+ 
+   return C;
+ }
+ 
+ /// CreateSETUWConst - Copy a 32-bit unsigned constant into the register
+ /// `dest', using SETHI, OR in the worst case.  This function correctly emulates
+ /// the SETUW pseudo-op for SPARC v9 (if argument isSigned == false). The
+ /// isSigned=true case is used to implement SETSW without duplicating code. It
+ /// optimizes some common cases:
+ /// (1) Small value that fits in simm13 field of OR: don't need SETHI.
+ /// (2) isSigned = true and C is a small negative signed value, i.e.,
+ ///     high bits are 1, and the remaining bits fit in simm13(OR).
+ static inline void
+ CreateSETUWConst(const TargetMachine& target, uint32_t C,
+                  Instruction* dest, std::vector<MachineInstr*>& mvec,
+                  bool isSigned = false) {
+   MachineInstr *miSETHI = NULL, *miOR = NULL;
+ 
+   // In order to get efficient code, we should not generate the SETHI if
+   // all high bits are 1 (i.e., this is a small signed value that fits in
+   // the simm13 field of OR).  So we check for and handle that case specially.
+   // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0.
+   //       In fact, sC == -sC, so we have to check for this explicitly.
+   int32_t sC = (int32_t) C;
+   bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM;
+ 
+   // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough
+   if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) {
+     miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest);
+     miSETHI->getOperand(0).markHi32();
+     mvec.push_back(miSETHI);
+   }
+   
+   // Set the low 10 or 12 bits in dest.  This is necessary if no SETHI
+   // was generated, or if the low 10 bits are non-zero.
+   if (miSETHI==NULL || C & MAXLO) {
+     if (miSETHI) {
+       // unsigned value with high-order bits set using SETHI
+       miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest);
+       miOR->getOperand(1).markLo32();
+     } else {
+       // unsigned or small signed value that fits in simm13 field of OR
+       assert(smallNegValue || (C & ~MAXSIMM) == 0);
+       miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo()->getZeroRegNum())
+         .addSImm(sC).addRegDef(dest);
+     }
+     mvec.push_back(miOR);
+   }
+   
+   assert((miSETHI || miOR) && "Oops, no code was generated!");
+ }
+ 
+ /// CreateSETSWConst - Set a 32-bit signed constant in the register `dest',
+ /// with sign-extension to 64 bits.  This uses SETHI, OR, SRA in the worst case.
+ /// This function correctly emulates the SETSW pseudo-op for SPARC v9.  It
+ /// optimizes the same cases as SETUWConst, plus:
+ /// (1) SRA is not needed for positive or small negative values.
+ /// 
+ static inline void
+ CreateSETSWConst(const TargetMachine& target, int32_t C,
+                  Instruction* dest, std::vector<MachineInstr*>& mvec) {
+   // Set the low 32 bits of dest
+   CreateSETUWConst(target, (uint32_t) C,  dest, mvec, /*isSigned*/true);
+ 
+   // Sign-extend to the high 32 bits if needed.
+   // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM
+   if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM))
+     mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest));
+ }
+ 
+ /// CreateSETXConst - Set a 64-bit signed or unsigned constant in the
+ /// register `dest'.  Use SETUWConst for each 32 bit word, plus a
+ /// left-shift-by-32 in between.  This function correctly emulates the SETX
+ /// pseudo-op for SPARC v9.  It optimizes the same cases as SETUWConst for each
+ /// 32 bit word.
+ /// 
+ static inline void
+ CreateSETXConst(const TargetMachine& target, uint64_t C,
+                 Instruction* tmpReg, Instruction* dest,
+                 std::vector<MachineInstr*>& mvec) {
+   assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!");
+   
+   MachineInstr* MI;
+   
+   // Code to set the upper 32 bits of the value in register `tmpReg'
+   CreateSETUWConst(target, (C >> 32), tmpReg, mvec);
+   
+   // Shift tmpReg left by 32 bits
+   mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
+                  .addRegDef(tmpReg));
+   
+   // Code to set the low 32 bits of the value in register `dest'
+   CreateSETUWConst(target, C, dest, mvec);
+   
+   // dest = OR(tmpReg, dest)
+   mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest));
+ }
+ 
+ /// CreateSETUWLabel - Set a 32-bit constant (given by a symbolic label) in
+ /// the register `dest'.
+ /// 
+ static inline void
+ CreateSETUWLabel(const TargetMachine& target, Value* val,
+                  Instruction* dest, std::vector<MachineInstr*>& mvec) {
+   MachineInstr* MI;
+   
+   // Set the high 22 bits in dest
+   MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest);
+   MI->getOperand(0).markHi32();
+   mvec.push_back(MI);
+   
+   // Set the low 10 bits in dest
+   MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest);
+   MI->getOperand(1).markLo32();
+   mvec.push_back(MI);
+ }
+ 
+ /// CreateSETXLabel - Set a 64-bit constant (given by a symbolic label) in the
+ /// register `dest'.
+ /// 
+ static inline void
+ CreateSETXLabel(const TargetMachine& target, Value* val, Instruction* tmpReg,
+                 Instruction* dest, std::vector<MachineInstr*>& mvec) {
+   assert(isa<Constant>(val) && 
+          "I only know about constant values and global addresses");
+   
+   MachineInstr* MI;
+   
+   MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg);
+   MI->getOperand(0).markHi64();
+   mvec.push_back(MI);
+   
+   MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg);
+   MI->getOperand(1).markLo64();
+   mvec.push_back(MI);
+   
+   mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
+                  .addRegDef(tmpReg));
+   MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest);
+   MI->getOperand(0).markHi32();
+   mvec.push_back(MI);
+   
+   MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest);
+   mvec.push_back(MI);
+   
+   MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest);
+   MI->getOperand(1).markLo32();
+   mvec.push_back(MI);
+ }
+ 
+ /// CreateUIntSetInstruction - Create code to Set an unsigned constant in the
+ /// register `dest'.  Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst
+ /// as needed.  CreateSETSWConst is an optimization for the case that the
+ /// unsigned value has all ones in the 33 high bits (so that sign-extension sets
+ /// them all).
+ /// 
+ static inline void
+ CreateUIntSetInstruction(const TargetMachine& target,
+                          uint64_t C, Instruction* dest,
+                          std::vector<MachineInstr*>& mvec,
+                          MachineCodeForInstruction& mcfi) {
+   static const uint64_t lo32 = (uint32_t) ~0;
+   if (C <= lo32)                        // High 32 bits are 0.  Set low 32 bits.
+     CreateSETUWConst(target, (uint32_t) C, dest, mvec);
+   else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) {
+     // All high 33 (not 32) bits are 1s: sign-extension will take care
+     // of high 32 bits, so use the sequence for signed int
+     CreateSETSWConst(target, (int32_t) C, dest, mvec);
+   } else if (C > lo32) {
+     // C does not fit in 32 bits
+     TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy);
+     CreateSETXConst(target, C, tmpReg, dest, mvec);
+   }
+ }
+ 
+ /// CreateIntSetInstruction - Create code to Set a signed constant in the
+ /// register `dest'.  Really the same as CreateUIntSetInstruction.
+ /// 
+ static inline void
+ CreateIntSetInstruction(const TargetMachine& target,
+                         int64_t C, Instruction* dest,
+                         std::vector<MachineInstr*>& mvec,
+                         MachineCodeForInstruction& mcfi) {
+   CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi);
+ }
+ 
+ /// MaxConstantsTableTy - Table mapping LLVM opcodes to the max. immediate
+ /// constant usable for that operation in the SparcV9 backend. Used by
+ /// ConstantMayNotFitInImmedField().
+ /// 
+ struct MaxConstantsTableTy {
+   // Entry == 0 ==> no immediate constant field exists at all.
+   // Entry >  0 ==> abs(immediate constant) <= Entry
+   std::vector<int> tbl;
+ 
+   int getMaxConstantForInstr (unsigned llvmOpCode);
+   MaxConstantsTableTy ();
+   unsigned size() const            { return tbl.size (); }
+   int &operator[] (unsigned index) { return tbl[index];  }
+ };
+ 
+ int MaxConstantsTableTy::getMaxConstantForInstr(unsigned llvmOpCode) {
+   int modelOpCode = -1;
+ 
+   if (llvmOpCode >= Instruction::BinaryOpsBegin &&
+       llvmOpCode <  Instruction::BinaryOpsEnd)
+     modelOpCode = V9::ADDi;
+   else
+     switch(llvmOpCode) {
+     case Instruction::Ret:   modelOpCode = V9::JMPLCALLi; break;
+ 
+     case Instruction::Malloc:         
+     case Instruction::Alloca:         
+     case Instruction::GetElementPtr:  
+     case Instruction::PHI:       
+     case Instruction::Cast:
+     case Instruction::Call:  modelOpCode = V9::ADDi; break;
+ 
+     case Instruction::Shl:
+     case Instruction::Shr:   modelOpCode = V9::SLLXi6; break;
+ 
+     default: break;
+     };
+ 
+   return (modelOpCode < 0)? 0: SparcV9MachineInstrDesc[modelOpCode].maxImmedConst;
+ }
+ 
+ MaxConstantsTableTy::MaxConstantsTableTy () : tbl (Instruction::OtherOpsEnd) {
+   unsigned op;
+   assert(tbl.size() == Instruction::OtherOpsEnd &&
+          "assignments below will be illegal!");
+   for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op)
+     tbl[op] = getMaxConstantForInstr(op);
+   for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op)
+     tbl[op] = getMaxConstantForInstr(op);
+   for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op)
+     tbl[op] = getMaxConstantForInstr(op);
+   for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op)
+     tbl[op] = getMaxConstantForInstr(op);
+ }
+ 
+ bool ConstantMayNotFitInImmedField(const Constant* CV, const Instruction* I) {
+   // The one and only MaxConstantsTable, used only by this function.
+   static MaxConstantsTableTy MaxConstantsTable;
+ 
+   if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!)
+     return true;
+ 
+   if (isa<ConstantPointerNull>(CV))               // can always use %g0
+     return false;
+ 
+   if (isa<SwitchInst>(I)) // Switch instructions will be lowered!
+     return false;
+ 
+   if (const ConstantInt* CI = dyn_cast<ConstantInt>(CV))
+     return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()];
+ 
+   if (isa<ConstantBool>(CV))
+     return 1 > MaxConstantsTable[I->getOpcode()];
+ 
+   return true;
+ }
+ 
+ /// ChooseLoadInstruction - Return the appropriate load instruction opcode
+ /// based on the given LLVM value type.
+ /// 
+ static inline MachineOpCode ChooseLoadInstruction(const Type *DestTy) {
+   switch (DestTy->getTypeID()) {
+   case Type::BoolTyID:
+   case Type::UByteTyID:   return V9::LDUBr;
+   case Type::SByteTyID:   return V9::LDSBr;
+   case Type::UShortTyID:  return V9::LDUHr;
+   case Type::ShortTyID:   return V9::LDSHr;
+   case Type::UIntTyID:    return V9::LDUWr;
+   case Type::IntTyID:     return V9::LDSWr;
+   case Type::PointerTyID:
+   case Type::ULongTyID:
+   case Type::LongTyID:    return V9::LDXr;
+   case Type::FloatTyID:   return V9::LDFr;
+   case Type::DoubleTyID:  return V9::LDDFr;
+   default: assert(0 && "Invalid type for Load instruction");
+   }
+   return 0;
+ }
+ 
+ /// ChooseStoreInstruction - Return the appropriate store instruction opcode
+ /// based on the given LLVM value type.
+ /// 
+ static inline MachineOpCode ChooseStoreInstruction(const Type *DestTy) {
+   switch (DestTy->getTypeID()) {
+   case Type::BoolTyID:
+   case Type::UByteTyID:
+   case Type::SByteTyID:   return V9::STBr;
+   case Type::UShortTyID:
+   case Type::ShortTyID:   return V9::STHr;
+   case Type::UIntTyID:
+   case Type::IntTyID:     return V9::STWr;
+   case Type::PointerTyID:
+   case Type::ULongTyID:
+   case Type::LongTyID:    return V9::STXr;
+   case Type::FloatTyID:   return V9::STFr;
+   case Type::DoubleTyID:  return V9::STDFr;
+   default: assert(0 && "Invalid type for Store instruction");
+   }
+   return 0;
+ }
+ 
+ static inline MachineOpCode ChooseAddInstructionByType(const Type* resultType) {
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+   if (resultType->isIntegral() || isa<PointerType>(resultType)
+       || isa<FunctionType>(resultType) || resultType == Type::LabelTy) {
+     opCode = V9::ADDr;
+   } else
+     switch(resultType->getTypeID()) {
+     case Type::FloatTyID:  opCode = V9::FADDS; break;
+     case Type::DoubleTyID: opCode = V9::FADDD; break;
+     default: assert(0 && "Invalid type for ADD instruction"); break; 
+     }
+   
+   return opCode;
+ }
+ 
+ /// convertOpcodeFromRegToImm - Because the SparcV9 instruction selector likes
+ /// to re-write operands to instructions, making them change from a Value*
+ /// (virtual register) to a Constant* (making an immediate field), we need to
+ /// change the opcode from a register-based instruction to an immediate-based
+ /// instruction, hence this mapping.
+ /// 
+ static unsigned convertOpcodeFromRegToImm(unsigned Opcode) {
+   switch (Opcode) {
+     /* arithmetic */
+   case V9::ADDr:     return V9::ADDi;
+   case V9::ADDccr:   return V9::ADDcci;
+   case V9::ADDCr:    return V9::ADDCi;
+   case V9::ADDCccr:  return V9::ADDCcci;
+   case V9::SUBr:     return V9::SUBi;
+   case V9::SUBccr:   return V9::SUBcci;
+   case V9::SUBCr:    return V9::SUBCi;
+   case V9::SUBCccr:  return V9::SUBCcci;
+   case V9::MULXr:    return V9::MULXi;
+   case V9::SDIVXr:   return V9::SDIVXi;
+   case V9::UDIVXr:   return V9::UDIVXi;
+ 
+     /* logical */
+   case V9::ANDr:    return V9::ANDi;
+   case V9::ANDccr:  return V9::ANDcci;
+   case V9::ANDNr:   return V9::ANDNi;
+   case V9::ANDNccr: return V9::ANDNcci;
+   case V9::ORr:     return V9::ORi;
+   case V9::ORccr:   return V9::ORcci;
+   case V9::ORNr:    return V9::ORNi;
+   case V9::ORNccr:  return V9::ORNcci;
+   case V9::XORr:    return V9::XORi;
+   case V9::XORccr:  return V9::XORcci;
+   case V9::XNORr:   return V9::XNORi;
+   case V9::XNORccr: return V9::XNORcci;
+ 
+     /* shift */
+   case V9::SLLr5:   return V9::SLLi5;
+   case V9::SRLr5:   return V9::SRLi5;
+   case V9::SRAr5:   return V9::SRAi5;
+   case V9::SLLXr6:  return V9::SLLXi6;
+   case V9::SRLXr6:  return V9::SRLXi6;
+   case V9::SRAXr6:  return V9::SRAXi6;
+ 
+     /* Conditional move on int comparison with zero */
+   case V9::MOVRZr:   return V9::MOVRZi;
+   case V9::MOVRLEZr: return V9::MOVRLEZi;
+   case V9::MOVRLZr:  return V9::MOVRLZi;
+   case V9::MOVRNZr:  return V9::MOVRNZi;
+   case V9::MOVRGZr:  return V9::MOVRGZi;
+   case V9::MOVRGEZr: return V9::MOVRGEZi;
+ 
+ 
+     /* Conditional move on int condition code */
+   case V9::MOVAr:   return V9::MOVAi;
+   case V9::MOVNr:   return V9::MOVNi;
+   case V9::MOVNEr:  return V9::MOVNEi;
+   case V9::MOVEr:   return V9::MOVEi;
+   case V9::MOVGr:   return V9::MOVGi;
+   case V9::MOVLEr:  return V9::MOVLEi;
+   case V9::MOVGEr:  return V9::MOVGEi;
+   case V9::MOVLr:   return V9::MOVLi;
+   case V9::MOVGUr:  return V9::MOVGUi;
+   case V9::MOVLEUr: return V9::MOVLEUi;
+   case V9::MOVCCr:  return V9::MOVCCi;
+   case V9::MOVCSr:  return V9::MOVCSi;
+   case V9::MOVPOSr: return V9::MOVPOSi;
+   case V9::MOVNEGr: return V9::MOVNEGi;
+   case V9::MOVVCr:  return V9::MOVVCi;
+   case V9::MOVVSr:  return V9::MOVVSi;
+ 
+     /* Conditional move of int reg on fp condition code */
+   case V9::MOVFAr:   return V9::MOVFAi;
+   case V9::MOVFNr:   return V9::MOVFNi;
+   case V9::MOVFUr:   return V9::MOVFUi;
+   case V9::MOVFGr:   return V9::MOVFGi;
+   case V9::MOVFUGr:  return V9::MOVFUGi;
+   case V9::MOVFLr:   return V9::MOVFLi;
+   case V9::MOVFULr:  return V9::MOVFULi;
+   case V9::MOVFLGr:  return V9::MOVFLGi;
+   case V9::MOVFNEr:  return V9::MOVFNEi;
+   case V9::MOVFEr:   return V9::MOVFEi;
+   case V9::MOVFUEr:  return V9::MOVFUEi;
+   case V9::MOVFGEr:  return V9::MOVFGEi;
+   case V9::MOVFUGEr: return V9::MOVFUGEi;
+   case V9::MOVFLEr:  return V9::MOVFLEi;
+   case V9::MOVFULEr: return V9::MOVFULEi;
+   case V9::MOVFOr:   return V9::MOVFOi;
+ 
+     /* load */
+   case V9::LDSBr:   return V9::LDSBi;
+   case V9::LDSHr:   return V9::LDSHi;
+   case V9::LDSWr:   return V9::LDSWi;
+   case V9::LDUBr:   return V9::LDUBi;
+   case V9::LDUHr:   return V9::LDUHi;
+   case V9::LDUWr:   return V9::LDUWi;
+   case V9::LDXr:    return V9::LDXi;
+   case V9::LDFr:    return V9::LDFi;
+   case V9::LDDFr:   return V9::LDDFi;
+   case V9::LDQFr:   return V9::LDQFi;
+   case V9::LDFSRr:  return V9::LDFSRi;
+   case V9::LDXFSRr: return V9::LDXFSRi;
+ 
+     /* store */
+   case V9::STBr:    return V9::STBi;
+   case V9::STHr:    return V9::STHi;
+   case V9::STWr:    return V9::STWi;
+   case V9::STXr:    return V9::STXi;
+   case V9::STFr:    return V9::STFi;
+   case V9::STDFr:   return V9::STDFi;
+   case V9::STFSRr:  return V9::STFSRi;
+   case V9::STXFSRr: return V9::STXFSRi;
+ 
+     /* jump & return */
+   case V9::JMPLCALLr: return V9::JMPLCALLi;
+   case V9::JMPLRETr:  return V9::JMPLRETi;
+ 
+   /* save and restore */
+   case V9::SAVEr:     return V9::SAVEi;
+   case V9::RESTOREr:  return V9::RESTOREi;
+ 
+   default:
+     // It's already in correct format
+     // Or, it's just not handled yet, but an assert() would break LLC
+ #if 0
+     std::cerr << "Unhandled opcode in convertOpcodeFromRegToImm(): " << Opcode 
+               << "\n";
+ #endif
+     return Opcode;
+   }
+ }
+ 
+ /// CreateCodeToLoadConst - Create an instruction sequence to put the
+ /// constant `val' into the virtual register `dest'.  `val' may be a Constant or
+ /// a GlobalValue, viz., the constant address of a global variable or function.
+ /// The generated instructions are returned in `mvec'. Any temp. registers
+ /// (TmpInstruction) created are recorded in mcfi. Any stack space required is
+ /// allocated via MachineFunction.
+ /// 
+ void CreateCodeToLoadConst(const TargetMachine& target, Function* F,
+                            Value* val, Instruction* dest,
+                            std::vector<MachineInstr*>& mvec,
+                            MachineCodeForInstruction& mcfi) {
+   assert(isa<Constant>(val) &&
+          "I only know about constant values and global addresses");
+   
+   // Use a "set" instruction for known constants or symbolic constants (labels)
+   // that can go in an integer reg.
+   // We have to use a "load" instruction for all other constants,
+   // in particular, floating point constants.
+   const Type* valType = val->getType();
+   
+   if (isa<GlobalValue>(val)) {
+       TmpInstruction* tmpReg =
+         new TmpInstruction(mcfi, PointerType::get(val->getType()), val);
+       CreateSETXLabel(target, val, tmpReg, dest, mvec);
+       return;
+   }
+ 
+   bool isValid;
+   uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid);
+   if (isValid) {
+     if (dest->getType()->isSigned())
+       CreateUIntSetInstruction(target, C, dest, mvec, mcfi);
+     else
+       CreateIntSetInstruction(target, (int64_t) C, dest, mvec, mcfi);
+ 
+   } else {
+     // Make an instruction sequence to load the constant, viz:
+     //            SETX <addr-of-constant>, tmpReg, addrReg
+     //            LOAD  /*addr*/ addrReg, /*offset*/ 0, dest
+     // First, create a tmp register to be used by the SETX sequence.
+     TmpInstruction* tmpReg =
+       new TmpInstruction(mcfi, PointerType::get(val->getType()));
+       
+     // Create another TmpInstruction for the address register
+     TmpInstruction* addrReg =
+       new TmpInstruction(mcfi, PointerType::get(val->getType()));
+     
+     // Get the constant pool index for this constant
+     MachineConstantPool *CP = MachineFunction::get(F).getConstantPool();
+     Constant *C = cast<Constant>(val);
+     unsigned CPI = CP->getConstantPoolIndex(C);
+ 
+     // Put the address of the constant into a register
+     MachineInstr* MI;
+   
+     MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg);
+     MI->getOperand(0).markHi64();
+     mvec.push_back(MI);
+   
+     MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI)
+       .addRegDef(tmpReg);
+     MI->getOperand(1).markLo64();
+     mvec.push_back(MI);
+   
+     mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32)
+                    .addRegDef(tmpReg));
+     MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg);
+     MI->getOperand(0).markHi32();
+     mvec.push_back(MI);
+   
+     MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg).addRegDef(addrReg);
+     mvec.push_back(MI);
+   
+     MI = BuildMI(V9::ORi, 3).addReg(addrReg).addConstantPoolIndex(CPI)
+       .addRegDef(addrReg);
+     MI->getOperand(1).markLo32();
+     mvec.push_back(MI);
+ 
+     // Now load the constant from out ConstantPool label
+     unsigned Opcode = ChooseLoadInstruction(val->getType());
+     Opcode = convertOpcodeFromRegToImm(Opcode);
+     mvec.push_back(BuildMI(Opcode, 3)
+                    .addReg(addrReg).addSImm((int64_t)0).addRegDef(dest));
+   }
+ }
+ 
+ /// CreateCodeToCopyFloatToInt - Similarly, create an instruction sequence
+ /// to copy an FP register `val' to an integer register `dest' by copying to
+ /// memory and back.  The generated instructions are returned in `mvec'.  Any
+ /// temp. virtual registers (TmpInstruction) created are recorded in mcfi.
+ /// Temporary stack space required is allocated via MachineFunction.
+ /// 
+ void CreateCodeToCopyFloatToInt(const TargetMachine& target, Function* F,
+                                 Value* val, Instruction* dest,
+                                 std::vector<MachineInstr*>& mvec,
+                                 MachineCodeForInstruction& mcfi) {
+   const Type* opTy   = val->getType();
+   const Type* destTy = dest->getType();
+   assert(opTy->isFloatingPoint() && "Source type must be float/double");
+   assert((destTy->isIntegral() || isa<PointerType>(destTy))
+          && "Dest type must be integer, bool or pointer");
+ 
+   // FIXME: For now, we allocate permanent space because the stack frame
+   // manager does not allow locals to be allocated (e.g., for alloca) after
+   // a temp is allocated!
+   int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val); 
+ 
+   unsigned FPReg = target.getRegInfo()->getFramePointer();
+ 
+   // Store instruction stores `val' to [%fp+offset].
+   // The store opCode is based only the source value being copied.
+   unsigned StoreOpcode = ChooseStoreInstruction(opTy);
+   StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);  
+   mvec.push_back(BuildMI(StoreOpcode, 3)
+                  .addReg(val).addMReg(FPReg).addSImm(offset));
+ 
+   // Load instruction loads [%fp+offset] to `dest'.
+   // The type of the load opCode is the integer type that matches the
+   // source type in size:
+   // On SparcV9: int for float, long for double.
+   // Note that we *must* use signed loads even for unsigned dest types, to
+   // ensure correct sign-extension for UByte, UShort or UInt:
+   const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy;
+   unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
+   LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
+   mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg)
+                  .addSImm(offset).addRegDef(dest));
+ }
+ 
+ /// CreateBitExtensionInstructions - Helper function for sign-extension and
+ /// zero-extension. For SPARC v9, we sign-extend the given operand using SLL;
+ /// SRA/SRL.
+ /// 
+ inline void
+ CreateBitExtensionInstructions(bool signExtend, const TargetMachine& target,
+                                Function* F, Value* srcVal, Value* destVal,
+                                unsigned int numLowBits,
+                                std::vector<MachineInstr*>& mvec,
+                                MachineCodeForInstruction& mcfi) {
+   MachineInstr* M;
+ 
+   assert(numLowBits <= 32 && "Otherwise, nothing should be done here!");
+ 
+   if (numLowBits < 32) {
+     // SLL is needed since operand size is < 32 bits.
+     TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(),
+                                               srcVal, destVal, "make32");
+     mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal)
+                    .addZImm(32-numLowBits).addRegDef(tmpI));
+     srcVal = tmpI;
+   }
+ 
+   mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3)
+                  .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal));
+ }
+ 
+ /// CreateSignExtensionInstructions - Create instruction sequence to produce
+ /// a sign-extended register value from an arbitrary-sized integer value (sized
+ /// in bits, not bytes). The generated instructions are returned in `mvec'. Any
+ /// temp. registers (TmpInstruction) created are recorded in mcfi. Any stack
+ /// space required is allocated via MachineFunction.
+ /// 
+ void CreateSignExtensionInstructions(const TargetMachine& target,
+                                      Function* F, Value* srcVal, Value* destVal,
+                                      unsigned int numLowBits,
+                                      std::vector<MachineInstr*>& mvec,
+                                      MachineCodeForInstruction& mcfi) {
+   CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal,
+                                  destVal, numLowBits, mvec, mcfi);
+ }
+ 
+ /// CreateZeroExtensionInstructions - Create instruction sequence to produce
+ /// a zero-extended register value from an arbitrary-sized integer value (sized
+ /// in bits, not bytes).  For SPARC v9, we sign-extend the given operand using
+ /// SLL; SRL.  The generated instructions are returned in `mvec'.  Any temp.
+ /// registers (TmpInstruction) created are recorded in mcfi.  Any stack space
+ /// required is allocated via MachineFunction.
+ /// 
+ void CreateZeroExtensionInstructions(const TargetMachine& target,
+                                      Function* F, Value* srcVal, Value* destVal,
+                                      unsigned int numLowBits,
+                                      std::vector<MachineInstr*>& mvec,
+                                      MachineCodeForInstruction& mcfi) {
+   CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal,
+                                  destVal, numLowBits, mvec, mcfi);
+ }
+ 
+ /// CreateCodeToCopyIntToFloat - Create an instruction sequence to copy an
+ /// integer register `val' to a floating point register `dest' by copying to
+ /// memory and back. val must be an integral type.  dest must be a Float or
+ /// Double. The generated instructions are returned in `mvec'. Any temp.
+ /// registers (TmpInstruction) created are recorded in mcfi. Any stack space
+ /// required is allocated via MachineFunction.
+ ///
+ void CreateCodeToCopyIntToFloat(const TargetMachine& target,
+                                 Function* F, Value* val, Instruction* dest,
+                                 std::vector<MachineInstr*>& mvec,
+                                 MachineCodeForInstruction& mcfi) {
+   assert((val->getType()->isIntegral() || isa<PointerType>(val->getType()))
+          && "Source type must be integral (integer or bool) or pointer");
+   assert(dest->getType()->isFloatingPoint()
+          && "Dest type must be float/double");
+ 
+   // Get a stack slot to use for the copy
+   int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val);
+ 
+   // Get the size of the source value being copied. 
+   size_t srcSize = target.getTargetData().getTypeSize(val->getType());
+ 
+   // Store instruction stores `val' to [%fp+offset].
+   // The store and load opCodes are based on the size of the source value.
+   // If the value is smaller than 32 bits, we must sign- or zero-extend it
+   // to 32 bits since the load-float will load 32 bits.
+   // Note that the store instruction is the same for signed and unsigned ints.
+   const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy;
+   Value* storeVal = val;
+   if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) {
+     // sign- or zero-extend respectively
+     storeVal = new TmpInstruction(mcfi, storeType, val);
+     if (val->getType()->isSigned())
+       CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize,
+                                       mvec, mcfi);
+     else
+       CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize,
+                                       mvec, mcfi);
+   }
+ 
+   unsigned FPReg = target.getRegInfo()->getFramePointer();
+   unsigned StoreOpcode = ChooseStoreInstruction(storeType);
+   StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode);
+   mvec.push_back(BuildMI(StoreOpcode, 3)
+                  .addReg(storeVal).addMReg(FPReg).addSImm(offset));
+ 
+   // Load instruction loads [%fp+offset] to `dest'.
+   // The type of the load opCode is the floating point type that matches the
+   // stored type in size:
+   // On SparcV9: float for int or smaller, double for long.
+   const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
+   unsigned LoadOpcode = ChooseLoadInstruction(loadType);
+   LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode);
+   mvec.push_back(BuildMI(LoadOpcode, 3)
+                  .addMReg(FPReg).addSImm(offset).addRegDef(dest));
+ }
+ 
+ /// InsertCodeToLoadConstant - Generates code to load the constant
+ /// into a TmpInstruction (virtual reg) and returns the virtual register.
+ /// 
+ static TmpInstruction*
+ InsertCodeToLoadConstant(Function *F, Value* opValue, Instruction* vmInstr,
+                          std::vector<MachineInstr*>& loadConstVec,
+                          TargetMachine& target) {
+   // Create a tmp virtual register to hold the constant.
+   MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
+   TmpInstruction* tmpReg = new TmpInstruction(mcfi, opValue);
+   
+   CreateCodeToLoadConst(target, F, opValue, tmpReg, loadConstVec, mcfi);
+   
+   // Record the mapping from the tmp VM instruction to machine instruction.
+   // Do this for all machine instructions that were not mapped to any
+   // other temp values created by 
+   // tmpReg->addMachineInstruction(loadConstVec.back());
+   return tmpReg;
+ }
+ 
+ MachineOperand::MachineOperandType
+ ChooseRegOrImmed(int64_t intValue, bool isSigned,
+                  MachineOpCode opCode, const TargetMachine& target,
+                  bool canUseImmed, unsigned int& getMachineRegNum,
+                  int64_t& getImmedValue) {
+   MachineOperand::MachineOperandType opType=MachineOperand::MO_VirtualRegister;
+   getMachineRegNum = 0;
+   getImmedValue = 0;
+ 
+   if (canUseImmed &&
+       target.getInstrInfo()->constantFitsInImmedField(opCode, intValue)) {
+       opType = isSigned? MachineOperand::MO_SignExtendedImmed
+                        : MachineOperand::MO_UnextendedImmed;
+       getImmedValue = intValue;
+   } else if (intValue == 0 &&
+              target.getRegInfo()->getZeroRegNum() != (unsigned)-1) {
+     opType = MachineOperand::MO_MachineRegister;
+     getMachineRegNum = target.getRegInfo()->getZeroRegNum();
+   }
+ 
+   return opType;
+ }
+ 
+ MachineOperand::MachineOperandType
+ ChooseRegOrImmed(Value* val,
+                  MachineOpCode opCode, const TargetMachine& target,
+ 		 bool canUseImmed, unsigned int& getMachineRegNum,
+ 		 int64_t& getImmedValue) {
+   getMachineRegNum = 0;
+   getImmedValue = 0;
+ 
+   // To use reg or immed, constant needs to be integer, bool, or a NULL pointer.
+   // ConvertConstantToIntType() does the right conversions.
+   bool isValidConstant;
+   uint64_t valueToUse =
+     ConvertConstantToIntType(target, val, val->getType(), isValidConstant);
+   if (! isValidConstant)
+     return MachineOperand::MO_VirtualRegister;
+ 
+   // Now check if the constant value fits in the IMMED field.
+   return ChooseRegOrImmed((int64_t) valueToUse, val->getType()->isSigned(),
+                           opCode, target, canUseImmed,
+                           getMachineRegNum, getImmedValue);
+ }
+ 
+ /// CreateCopyInstructionsByType - Create instruction(s) to copy src to dest,
+ /// for arbitrary types. The generated instructions are returned in `mvec'. Any
+ /// temp. registers (TmpInstruction) created are recorded in mcfi. Any stack
+ /// space required is allocated via MachineFunction.
+ /// 
+ void CreateCopyInstructionsByType(const TargetMachine& target,
+                                   Function *F, Value* src, Instruction* dest,
+                                   std::vector<MachineInstr*>& mvec,
+                                   MachineCodeForInstruction& mcfi) {
+   bool loadConstantToReg = false;
+   const Type* resultType = dest->getType();
+   MachineOpCode opCode = ChooseAddInstructionByType(resultType);
+   assert (opCode != V9::INVALID_OPCODE
+           && "Unsupported result type in CreateCopyInstructionsByType()");
+ 
+   // If `src' is a constant that doesn't fit in the immed field or if it is
+   // a global variable (i.e., a constant address), generate a load
+   // instruction instead of an add.
+   if (isa<GlobalValue>(src))
+     loadConstantToReg = true;
+   else if (isa<Constant>(src)) {
+     unsigned int machineRegNum;
+     int64_t immedValue;
+     MachineOperand::MachineOperandType opType =
+       ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
+                        machineRegNum, immedValue);
+       
+     if (opType == MachineOperand::MO_VirtualRegister)
+       loadConstantToReg = true;
+   }
+   
+   if (loadConstantToReg) { 
+     // `src' is constant and cannot fit in immed field for the ADD.
+     // Insert instructions to "load" the constant into a register.
+     CreateCodeToLoadConst(target, F, src, dest, mvec, mcfi);
+   } else { 
+     // Create a reg-to-reg copy instruction for the given type:
+     // -- For FP values, create a FMOVS or FMOVD instruction
+     // -- For non-FP values, create an add-with-0 instruction (opCode as above)
+     // Make `src' the second operand, in case it is a small constant!
+     MachineInstr* MI;
+     if (resultType->isFloatingPoint())
+       MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
+             .addReg(src).addRegDef(dest));
+     else {
+         const Type* Ty =isa<PointerType>(resultType)? Type::ULongTy :resultType;
+         MI = (BuildMI(opCode, 3)
+               .addSImm((int64_t) 0).addReg(src).addRegDef(dest));
+     }
+     mvec.push_back(MI);
+   }
+ }
+ 
+ /// FixConstantOperandsForInstr - Make a machine instruction use its constant
+ /// operands more efficiently.  If the constant is 0, then use the hardwired 0
+ /// register, if any.  Else, if the constant fits in the IMMEDIATE field, then
+ /// use that field.  Otherwise, else create instructions to put the constant
+ /// into a register, either directly or by loading explicitly from the constant
+ /// pool.  In the first 2 cases, the operand of `minstr' is modified in place.
+ /// Returns a vector of machine instructions generated for operands that fall
+ /// under case 3; these must be inserted before `minstr'.
+ /// 
+ std::vector<MachineInstr*>
+ FixConstantOperandsForInstr(Instruction* vmInstr, MachineInstr* minstr,
+                             TargetMachine& target) {
+   std::vector<MachineInstr*> MVec;
+   
+   MachineOpCode opCode = minstr->getOpcode();
+   const TargetInstrInfo& instrInfo = *target.getInstrInfo();
+   int resultPos = instrInfo.getResultPos(opCode);
+   int immedPos = instrInfo.getImmedConstantPos(opCode);
+ 
+   Function *F = vmInstr->getParent()->getParent();
+ 
+   for (unsigned op=0; op < minstr->getNumOperands(); op++) {
+       const MachineOperand& mop = minstr->getOperand(op);
+           
+       // Skip the result position, preallocated machine registers, or operands
+       // that cannot be constants (CC regs or PC-relative displacements)
+       if (resultPos == (int)op ||
+           mop.getType() == MachineOperand::MO_MachineRegister ||
+           mop.getType() == MachineOperand::MO_CCRegister ||
+           mop.getType() == MachineOperand::MO_PCRelativeDisp)
+         continue;
+ 
+       bool constantThatMustBeLoaded = false;
+       unsigned int machineRegNum = 0;
+       int64_t immedValue = 0;
+       Value* opValue = NULL;
+       MachineOperand::MachineOperandType opType =
+         MachineOperand::MO_VirtualRegister;
+ 
+       // Operand may be a virtual register or a compile-time constant
+       if (mop.getType() == MachineOperand::MO_VirtualRegister) {
+         assert(mop.getVRegValue() != NULL);
+         opValue = mop.getVRegValue();
+         if (Constant *opConst = dyn_cast<Constant>(opValue)) 
+           if (!isa<GlobalValue>(opConst)) {
+             opType = ChooseRegOrImmed(opConst, opCode, target,
+                                       (immedPos == (int)op), machineRegNum,
+                                       immedValue);
+             if (opType == MachineOperand::MO_VirtualRegister)
+               constantThatMustBeLoaded = true;
+           }
+       } else {
+         // If the operand is from the constant pool, don't try to change it.
+         if (mop.getType() == MachineOperand::MO_ConstantPoolIndex) {
+           continue;
+         }
+         assert(mop.isImmediate());
+         bool isSigned = mop.getType() == MachineOperand::MO_SignExtendedImmed;
+ 
+         // Bit-selection flags indicate an instruction that is extracting
+         // bits from its operand so ignore this even if it is a big constant.
+         if (mop.isHiBits32() || mop.isLoBits32() ||
+             mop.isHiBits64() || mop.isLoBits64())
+           continue;
+ 
+         opType = ChooseRegOrImmed(mop.getImmedValue(), isSigned,
+                                   opCode, target, (immedPos == (int)op), 
+                                   machineRegNum, immedValue);
+ 
+         if (opType == MachineOperand::MO_SignExtendedImmed ||
+             opType == MachineOperand::MO_UnextendedImmed) {
+           // The optype is an immediate value
+           // This means we need to change the opcode, e.g. ADDr -> ADDi
+           unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
+           minstr->setOpcode(newOpcode);
+         }
+ 
+         if (opType == mop.getType()) 
+           continue;           // no change: this is the most common case
+ 
+         if (opType == MachineOperand::MO_VirtualRegister) {
+           constantThatMustBeLoaded = true;
+           opValue = isSigned
+             ? (Value*)ConstantSInt::get(Type::LongTy, immedValue)
+             : (Value*)ConstantUInt::get(Type::ULongTy,(uint64_t)immedValue);
+         }
+       }
+ 
+       if (opType == MachineOperand::MO_MachineRegister)
+         minstr->SetMachineOperandReg(op, machineRegNum);
+       else if (opType == MachineOperand::MO_SignExtendedImmed ||
+                opType == MachineOperand::MO_UnextendedImmed) {
+         minstr->SetMachineOperandConst(op, opType, immedValue);
+         // The optype is or has become an immediate
+         // This means we need to change the opcode, e.g. ADDr -> ADDi
+         unsigned newOpcode = convertOpcodeFromRegToImm(opCode);
+         minstr->setOpcode(newOpcode);
+       } else if (constantThatMustBeLoaded ||
+                (opValue && isa<GlobalValue>(opValue)))
+         { // opValue is a constant that must be explicitly loaded into a reg
+           assert(opValue);
+           TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue, vmInstr,
+                                                             MVec, target);
+           minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
+                                        tmpReg);
+         }
+     }
+   
+   // Also, check for implicit operands used by the machine instruction
+   // (no need to check those defined since they cannot be constants).
+   // These include:
+   // -- arguments to a Call
+   // -- return value of a Return
+   // Any such operand that is a constant value needs to be fixed also.
+   // The current instructions with implicit refs (viz., Call and Return)
+   // have no immediate fields, so the constant always needs to be loaded
+   // into a register.
+   bool isCall = instrInfo.isCall(opCode);
+   unsigned lastCallArgNum = 0;          // unused if not a call
+   CallArgsDescriptor* argDesc = NULL;   // unused if not a call
+   if (isCall)
+     argDesc = CallArgsDescriptor::get(minstr);
+   
+   for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
+     if (isa<Constant>(minstr->getImplicitRef(i))) {
+         Value* oldVal = minstr->getImplicitRef(i);
+         TmpInstruction* tmpReg =
+           InsertCodeToLoadConstant(F, oldVal, vmInstr, MVec, target);
+         minstr->setImplicitRef(i, tmpReg);
+         
+         if (isCall) {
+           // find and replace the argument in the CallArgsDescriptor
+           unsigned i=lastCallArgNum;
+           while (argDesc->getArgInfo(i).getArgVal() != oldVal)
+             ++i;
+           assert(i < argDesc->getNumArgs() &&
+                  "Constant operands to a call *must* be in the arg list");
+           lastCallArgNum = i;
+           argDesc->getArgInfo(i).replaceArgVal(tmpReg);
+         }
+       }
+   
+   return MVec;
+ }
+ 
+ static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
+                                     std::vector<MachineInstr*>& mvec) {
+   mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue())
+                                    .addReg(Node->rightChild()->getValue())
+                                    .addRegDef(Node->getValue()));
+ }
+ 
+ /// IsZero - Check for a constant 0.
+ ///
+ static inline bool IsZero(Value* idx) {
+   return (idx == ConstantSInt::getNullValue(idx->getType()));
+ }
+ 
+ /// FoldGetElemChain - Fold a chain of GetElementPtr instructions containing
+ /// only constant offsets into an equivalent (Pointer, IndexVector) pair.
+ /// Returns the pointer Value, and stores the resulting IndexVector in argument
+ /// chainIdxVec. This is a helper function for FoldConstantIndices that does the
+ /// actual folding.
+ //
+ static Value*
+ FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
+                  bool lastInstHasLeadingNonZero) {
+   InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
+   GetElementPtrInst* gepInst =
+     dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0);
+ 
+   // ptr value is not computed in this tree or ptr value does not come from GEP
+   // instruction
+   if (gepInst == NULL)
+     return NULL;
+ 
+   // Return NULL if we don't fold any instructions in.
+   Value* ptrVal = NULL;
+ 
+   // Now chase the chain of getElementInstr instructions, if any.
+   // Check for any non-constant indices and stop there.
+   // Also, stop if the first index of child is a non-zero array index
+   // and the last index of the current node is a non-array index:
+   // in that case, a non-array declared type is being accessed as an array
+   // which is not type-safe, but could be legal.
+   InstructionNode* ptrChild = gepNode;
+   while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
+                       ptrChild->getOpLabel() == GetElemPtrIdx)) {
+     // Child is a GetElemPtr instruction
+     gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
+     User::op_iterator OI, firstIdx = gepInst->idx_begin();
+     User::op_iterator lastIdx = gepInst->idx_end();
+     bool allConstantOffsets = true;
+ 
+     // The first index of every GEP must be an array index.
+     assert((*firstIdx)->getType() == Type::LongTy &&
+            "INTERNAL ERROR: Structure index for a pointer type!");
+ 
+     // If the last instruction had a leading non-zero index, check if the
+     // current one references a sequential (i.e., indexable) type.
+     // If not, the code is not type-safe and we would create an illegal GEP
+     // by folding them, so don't fold any more instructions.
+     if (lastInstHasLeadingNonZero)
+       if (! isa<SequentialType>(gepInst->getType()->getElementType()))
+         break;   // cannot fold in any preceding getElementPtr instrs.
+ 
+     // Check that all offsets are constant for this instruction
+     for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI)
+       allConstantOffsets = isa<ConstantInt>(*OI);
+ 
+     if (allConstantOffsets) {
+       // Get pointer value out of ptrChild.
+       ptrVal = gepInst->getPointerOperand();
+ 
+       // Insert its index vector at the start, skipping any leading [0]
+       // Remember the old size to check if anything was inserted.
+       unsigned oldSize = chainIdxVec.size();
+       int firstIsZero = IsZero(*firstIdx);
+       chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx);
+ 
+       // Remember if it has leading zero index: it will be discarded later.
+       if (oldSize < chainIdxVec.size())
+         lastInstHasLeadingNonZero = !firstIsZero;
+ 
+       // Mark the folded node so no code is generated for it.
+       ((InstructionNode*) ptrChild)->markFoldedIntoParent();
+ 
+       // Get the previous GEP instruction and continue trying to fold
+       ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild());
+     } else // cannot fold this getElementPtr instr. or any preceding ones
+       break;
+   }
+ 
+   // If the first getElementPtr instruction had a leading [0], add it back.
+   // Note that this instruction is the *last* one that was successfully
+   // folded *and* contributed any indices, in the loop above.
+   if (ptrVal && ! lastInstHasLeadingNonZero) 
+     chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0));
+ 
+   return ptrVal;
+ }
+ 
+ /// GetGEPInstArgs - Helper function for GetMemInstArgs that handles the
+ /// final getElementPtr instruction used by (or same as) the memory operation.
+ /// Extracts the indices of the current instruction and tries to fold in
+ /// preceding ones if all indices of the current one are constant.
+ ///
+ static Value *GetGEPInstArgs(InstructionNode *gepNode,
+                              std::vector<Value *> &idxVec,
+                              bool &allConstantIndices) {
+   allConstantIndices = true;
+   GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction());
+ 
+   // Default pointer is the one from the current instruction.
+   Value* ptrVal = gepI->getPointerOperand();
+   InstrTreeNode* ptrChild = gepNode->leftChild(); 
+ 
+   // Extract the index vector of the GEP instruction.
+   // If all indices are constant and first index is zero, try to fold
+   // in preceding GEPs with all constant indices.
+   for (User::op_iterator OI=gepI->idx_begin(),  OE=gepI->idx_end();
+        allConstantIndices && OI != OE; ++OI)
+     if (! isa<Constant>(*OI))
+       allConstantIndices = false;     // note: this also terminates loop!
+ 
+   // If we have only constant indices, fold chains of constant indices
+   // in this and any preceding GetElemPtr instructions.
+   bool foldedGEPs = false;
+   bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin());
+   if (allConstantIndices)
+     if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) {
+       ptrVal = newPtr;
+       foldedGEPs = true;
+     }
+ 
+   // Append the index vector of the current instruction.
+   // Skip the leading [0] index if preceding GEPs were folded into this.
+   idxVec.insert(idxVec.end(),
+                 gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx),
+                 gepI->idx_end());
+ 
+   return ptrVal;
+ }
+ 
+ /// GetMemInstArgs - Get the pointer value and the index vector for a memory
+ /// operation (GetElementPtr, Load, or Store).  If all indices of the given
+ /// memory operation are constant, fold in constant indices in a chain of
+ /// preceding GetElementPtr instructions (if any), and return the pointer value
+ /// of the first instruction in the chain. All folded instructions are marked so
+ /// no code is generated for them. Returns the pointer Value to use, and
+ /// returns the resulting IndexVector in idxVec. Sets allConstantIndices
+ /// to true/false if all indices are/aren't const.
+ /// 
+ static Value *GetMemInstArgs(InstructionNode *memInstrNode,
+                              std::vector<Value*> &idxVec,
+                              bool& allConstantIndices) {
+   allConstantIndices = false;
+   Instruction* memInst = memInstrNode->getInstruction();
+   assert(idxVec.size() == 0 && "Need empty vector to return indices");
+ 
+   // If there is a GetElemPtr instruction to fold in to this instr,
+   // it must be in the left child for Load and GetElemPtr, and in the
+   // right child for Store instructions.
+   InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store
+                              ? memInstrNode->rightChild()
+                              : memInstrNode->leftChild()); 
+   
+   // Default pointer is the one from the current instruction.
+   Value* ptrVal = ptrChild->getValue(); 
+ 
+   // Find the "last" GetElemPtr instruction: this one or the immediate child.
+   // There will be none if this is a load or a store from a scalar pointer.
+   InstructionNode* gepNode = NULL;
+   if (isa<GetElementPtrInst>(memInst))
+     gepNode = memInstrNode;
+   else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) {
+     // Child of load/store is a GEP and memInst is its only use.
+     // Use its indices and mark it as folded.
+     gepNode = cast<InstructionNode>(ptrChild);
+     gepNode->markFoldedIntoParent();
+   }
+ 
+   // If there are no indices, return the current pointer.
+   // Else extract the pointer from the GEP and fold the indices.
+   return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices)
+                  : ptrVal;
+ }
+ 
+ static inline MachineOpCode 
+ ChooseBprInstruction(const InstructionNode* instrNode) {
+   MachineOpCode opCode;
+   
+   Instruction* setCCInstr =
+     ((InstructionNode*) instrNode->leftChild())->getInstruction();
+   
+   switch(setCCInstr->getOpcode()) {
+   case Instruction::SetEQ: opCode = V9::BRZ;   break;
+   case Instruction::SetNE: opCode = V9::BRNZ;  break;
+   case Instruction::SetLE: opCode = V9::BRLEZ; break;
+   case Instruction::SetGE: opCode = V9::BRGEZ; break;
+   case Instruction::SetLT: opCode = V9::BRLZ;  break;
+   case Instruction::SetGT: opCode = V9::BRGZ;  break;
+   default:
+     assert(0 && "Unrecognized VM instruction!");
+     opCode = V9::INVALID_OPCODE;
+     break; 
+   }
+   
+   return opCode;
+ }
+ 
+ static inline MachineOpCode 
+ ChooseBpccInstruction(const InstructionNode* instrNode,
+                       const BinaryOperator* setCCInstr) {
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+   
+   bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
+   
+   if (isSigned) {
+     switch(setCCInstr->getOpcode()) {
+     case Instruction::SetEQ: opCode = V9::BE;  break;
+     case Instruction::SetNE: opCode = V9::BNE; break;
+     case Instruction::SetLE: opCode = V9::BLE; break;
+     case Instruction::SetGE: opCode = V9::BGE; break;
+     case Instruction::SetLT: opCode = V9::BL;  break;
+     case Instruction::SetGT: opCode = V9::BG;  break;
+     default:
+       assert(0 && "Unrecognized VM instruction!");
+       break; 
+     }
+   } else {
+     switch(setCCInstr->getOpcode()) {
+     case Instruction::SetEQ: opCode = V9::BE;   break;
+     case Instruction::SetNE: opCode = V9::BNE;  break;
+     case Instruction::SetLE: opCode = V9::BLEU; break;
+     case Instruction::SetGE: opCode = V9::BCC;  break;
+     case Instruction::SetLT: opCode = V9::BCS;  break;
+     case Instruction::SetGT: opCode = V9::BGU;  break;
+     default:
+       assert(0 && "Unrecognized VM instruction!");
+       break; 
+     }
+   }
+   
+   return opCode;
+ }
+ 
+ static inline MachineOpCode 
+ ChooseBFpccInstruction(const InstructionNode* instrNode,
+                        const BinaryOperator* setCCInstr) {
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+   
+   switch(setCCInstr->getOpcode()) {
+   case Instruction::SetEQ: opCode = V9::FBE;  break;
+   case Instruction::SetNE: opCode = V9::FBNE; break;
+   case Instruction::SetLE: opCode = V9::FBLE; break;
+   case Instruction::SetGE: opCode = V9::FBGE; break;
+   case Instruction::SetLT: opCode = V9::FBL;  break;
+   case Instruction::SetGT: opCode = V9::FBG;  break;
+   default:
+     assert(0 && "Unrecognized VM instruction!");
+     break; 
+   }
+   
+   return opCode;
+ }
+ 
+ // GetTmpForCC - Create a unique TmpInstruction for a boolean value,
+ // representing the CC register used by a branch on that value.
+ // For now, hack this using a little static cache of TmpInstructions.
+ // Eventually the entire BURG instruction selection should be put
+ // into a separate class that can hold such information.
+ // The static cache is not too bad because the memory for these
+ // TmpInstructions will be freed along with the rest of the Function anyway.
+ // 
+ static TmpInstruction *GetTmpForCC (Value* boolVal, const Function *F,
+                                     const Type* ccType,
+                                     MachineCodeForInstruction& mcfi) {
+   typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
+   static BoolTmpCache boolToTmpCache;     // Map boolVal -> TmpInstruction*
+   static const Function *lastFunction = 0;// Use to flush cache between funcs
+   
+   assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
+   
+   if (lastFunction != F) {
+     lastFunction = F;
+     boolToTmpCache.clear();
+   }
+   
+   // Look for tmpI and create a new one otherwise.  The new value is
+   // directly written to map using the ref returned by operator[].
+   TmpInstruction*& tmpI = boolToTmpCache[boolVal];
+   if (tmpI == NULL)
+     tmpI = new TmpInstruction(mcfi, ccType, boolVal);
+   
+   return tmpI;
+ }
+ 
+ static inline MachineOpCode 
+ ChooseBccInstruction(const InstructionNode* instrNode, const Type*& setCCType) {
+   InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
+   assert(setCCNode->getOpLabel() == SetCCOp);
+   BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction());
+   setCCType = setCCInstr->getOperand(0)->getType();
+   
+   if (setCCType->isFloatingPoint())
+     return ChooseBFpccInstruction(instrNode, setCCInstr);
+   else
+     return ChooseBpccInstruction(instrNode, setCCInstr);
+ }
+ 
+ /// ChooseMovFpcciInstruction - WARNING: since this function has only one
+ /// caller, it always returns the opcode that expects an immediate and a
+ /// register. If this function is ever used in cases where an opcode that takes
+ /// two registers is required, then modify this function and use
+ /// convertOpcodeFromRegToImm() where required. It will be necessary to expand
+ /// convertOpcodeFromRegToImm() to handle the new cases of opcodes.
+ /// 
+ static inline MachineOpCode 
+ ChooseMovFpcciInstruction(const InstructionNode* instrNode) {
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+   
+   switch(instrNode->getInstruction()->getOpcode()) {
+   case Instruction::SetEQ: opCode = V9::MOVFEi;  break;
+   case Instruction::SetNE: opCode = V9::MOVFNEi; break;
+   case Instruction::SetLE: opCode = V9::MOVFLEi; break;
+   case Instruction::SetGE: opCode = V9::MOVFGEi; break;
+   case Instruction::SetLT: opCode = V9::MOVFLi;  break;
+   case Instruction::SetGT: opCode = V9::MOVFGi;  break;
+   default:
+     assert(0 && "Unrecognized VM instruction!");
+     break; 
+   }
+   
+   return opCode;
+ }
+ 
+ /// ChooseMovpcciForSetCC -- Choose a conditional-move instruction
+ /// based on the type of SetCC operation.
+ /// 
+ /// WARNING: like the previous function, this function always returns
+ /// the opcode that expects an immediate and a register.  See above.
+ /// 
+ static MachineOpCode ChooseMovpcciForSetCC(const InstructionNode* instrNode) {
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+ 
+   const Type* opType = instrNode->leftChild()->getValue()->getType();
+   assert(opType->isIntegral() || isa<PointerType>(opType));
+   bool noSign = opType->isUnsigned() || isa<PointerType>(opType);
+   
+   switch(instrNode->getInstruction()->getOpcode()) {
+   case Instruction::SetEQ: opCode = V9::MOVEi;                        break;
+   case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break;
+   case Instruction::SetGE: opCode = noSign? V9::MOVCCi  : V9::MOVGEi; break;
+   case Instruction::SetLT: opCode = noSign? V9::MOVCSi  : V9::MOVLi;  break;
+   case Instruction::SetGT: opCode = noSign? V9::MOVGUi  : V9::MOVGi;  break;
+   case Instruction::SetNE: opCode = V9::MOVNEi;                       break;
+   default: assert(0 && "Unrecognized LLVM instr!"); break; 
+   }
+   
+   return opCode;
+ }
+ 
+ /// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value
+ /// instruction based on the type of SetCC operation.  These instructions
+ /// compare a register with 0 and perform the move is the comparison is true.
+ /// 
+ /// WARNING: like the previous function, this function it always returns
+ /// the opcode that expects an immediate and a register.  See above.
+ /// 
+ static MachineOpCode ChooseMovpregiForSetCC(const InstructionNode* instrNode) {
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+   
+   switch(instrNode->getInstruction()->getOpcode()) {
+   case Instruction::SetEQ: opCode = V9::MOVRZi;  break;
+   case Instruction::SetLE: opCode = V9::MOVRLEZi; break;
+   case Instruction::SetGE: opCode = V9::MOVRGEZi; break;
+   case Instruction::SetLT: opCode = V9::MOVRLZi;  break;
+   case Instruction::SetGT: opCode = V9::MOVRGZi;  break;
+   case Instruction::SetNE: opCode = V9::MOVRNZi; break;
+   default: assert(0 && "Unrecognized VM instr!"); break; 
+   }
+   
+   return opCode;
+ }
+ 
+ static inline MachineOpCode
+ ChooseConvertToFloatInstr(const TargetMachine& target,
+                           OpLabel vopCode, const Type* opType) {
+   assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) &&
+          "Unrecognized convert-to-float opcode!");
+   assert((opType->isIntegral() || opType->isFloatingPoint() ||
+           isa<PointerType>(opType))
+          && "Trying to convert a non-scalar type to FLOAT/DOUBLE?");
+ 
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+ 
+   unsigned opSize = target.getTargetData().getTypeSize(opType);
+ 
+   if (opType == Type::FloatTy)
+     opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD);
+   else if (opType == Type::DoubleTy)
+     opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP);
+   else if (opSize <= 4)
+     opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD);
+   else {
+     assert(opSize == 8 && "Unrecognized type size > 4 and < 8!");
+     opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD);
+   }
+   
+   return opCode;
+ }
+ 
+ static inline MachineOpCode 
+ ChooseConvertFPToIntInstr(const TargetMachine& target,
+                           const Type* destType, const Type* opType) {
+   assert((opType == Type::FloatTy || opType == Type::DoubleTy)
+          && "This function should only be called for FLOAT or DOUBLE");
+   assert((destType->isIntegral() || isa<PointerType>(destType))
+          && "Trying to convert FLOAT/DOUBLE to a non-scalar type?");
+ 
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+ 
+   unsigned destSize = target.getTargetData().getTypeSize(destType);
+ 
+   if (destType == Type::UIntTy)
+     assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand.");
+   else if (destSize <= 4)
+     opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI;
+   else {
+     assert(destSize == 8 && "Unrecognized type size > 4 and < 8!");
+     opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX;
+   }
+ 
+   return opCode;
+ }
+ 
+ static MachineInstr*
+ CreateConvertFPToIntInstr(const TargetMachine& target, Value* srcVal,
+                           Value* destVal, const Type* destType) {
+   MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType,
+                                                    srcVal->getType());
+   assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!");
+   return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal);
+ }
+ 
+ /// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned
+ /// integer.  The FP value must be converted to the dest type in an FP register,
+ /// and the result is then copied from FP to int register via memory.  SPARC
+ /// does not have a float-to-uint conversion, only a float-to-int (fdtoi).
+ /// Since fdtoi converts to signed integers, any FP value V between MAXINT+1 and
+ /// MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly.
+ /// Therefore, for converting an FP value to uint32_t, we first need to convert
+ /// to uint64_t and then to uint32_t.
+ /// 
+ static void
+ CreateCodeToConvertFloatToInt(const TargetMachine& target,
+                               Value* opVal, Instruction* destI,
+                               std::vector<MachineInstr*>& mvec,
+                               MachineCodeForInstruction& mcfi) {
+   Function* F = destI->getParent()->getParent();
+ 
+   // Create a temporary to represent the FP register into which the
+   // int value will placed after conversion.  The type of this temporary
+   // depends on the type of FP register to use: single-prec for a 32-bit
+   // int or smaller; double-prec for a 64-bit int.
+   size_t destSize = target.getTargetData().getTypeSize(destI->getType());
+ 
+   const Type* castDestType = destI->getType(); // type for the cast instr result
+   const Type* castDestRegType;          // type for cast instruction result reg
+   TmpInstruction* destForCast;          // dest for cast instruction
+   Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr
+ 
+   // For converting an FP value to uint32_t, we first need to convert to
+   // uint64_t and then to uint32_t, as explained above.
+   if (destI->getType() == Type::UIntTy) {
+     castDestType    = Type::ULongTy;       // use this instead of type of destI
+     castDestRegType = Type::DoubleTy;      // uint64_t needs 64-bit FP register.
+     destForCast     = new TmpInstruction(mcfi, castDestRegType, opVal);
+     fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast);
+   } else {
+     castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy;
+     destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
+   }
+ 
+   // Create the fp-to-int conversion instruction (src and dest regs are FP regs)
+   mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast,
+                                            castDestType));
+ 
+   // Create the fpreg-to-intreg copy code
+   CreateCodeToCopyFloatToInt(target, F, destForCast, fpToIntCopyDest, mvec,
+                              mcfi);
+ 
+   // Create the uint64_t to uint32_t conversion, if needed
+   if (destI->getType() == Type::UIntTy)
+     CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI,
+                                     /*numLowBits*/ 32, mvec, mcfi);
+ }
+ 
+ static inline MachineOpCode 
+ ChooseAddInstruction(const InstructionNode* instrNode) {
+   return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
+ }
+ 
+ static inline MachineInstr* 
+ CreateMovFloatInstruction(const InstructionNode* instrNode,
+                           const Type* resultType) {
+   return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2)
+                    .addReg(instrNode->leftChild()->getValue())
+                    .addRegDef(instrNode->getValue());
+ }
+ 
+ static inline MachineInstr* 
+ CreateAddConstInstruction(const InstructionNode* instrNode) {
+   MachineInstr* minstr = NULL;
+   
+   Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+   assert(isa<Constant>(constOp));
+   
+   // Cases worth optimizing are:
+   // (1) Add with 0 for float or double: use an FMOV of appropriate type,
+   //	 instead of an FADD (1 vs 3 cycles).  There is no integer MOV.
+   if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
+     double dval = FPC->getValue();
+     if (dval == 0.0)
+       minstr = CreateMovFloatInstruction(instrNode,
+                                         instrNode->getInstruction()->getType());
+   }
+   
+   return minstr;
+ }
+ 
+ static inline MachineOpCode ChooseSubInstructionByType(const Type* resultType) {
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+   
+   if (resultType->isInteger() || isa<PointerType>(resultType)) {
+       opCode = V9::SUBr;
+   } else {
+     switch(resultType->getTypeID()) {
+     case Type::FloatTyID:  opCode = V9::FSUBS; break;
+     case Type::DoubleTyID: opCode = V9::FSUBD; break;
+     default: assert(0 && "Invalid type for SUB instruction"); break; 
+     }
+   }
+ 
+   return opCode;
+ }
+ 
+ static inline MachineInstr* 
+ CreateSubConstInstruction(const InstructionNode* instrNode) {
+   MachineInstr* minstr = NULL;
+   
+   Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+   assert(isa<Constant>(constOp));
+   
+   // Cases worth optimizing are:
+   // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
+   //	 instead of an FSUB (1 vs 3 cycles).  There is no integer MOV.
+   if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
+     double dval = FPC->getValue();
+     if (dval == 0.0)
+       minstr = CreateMovFloatInstruction(instrNode,
+                                         instrNode->getInstruction()->getType());
+   }
+   
+   return minstr;
+ }
+ 
+ static inline MachineOpCode 
+ ChooseFcmpInstruction(const InstructionNode* instrNode) {
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+   
+   Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+   switch(operand->getType()->getTypeID()) {
+   case Type::FloatTyID:  opCode = V9::FCMPS; break;
+   case Type::DoubleTyID: opCode = V9::FCMPD; break;
+   default: assert(0 && "Invalid type for FCMP instruction"); break; 
+   }
+   
+   return opCode;
+ }
+ 
+ /// BothFloatToDouble - Assumes that leftArg and rightArg of instrNode are both
+ /// cast instructions. Returns true if both are floats cast to double.
+ /// 
+ static inline bool BothFloatToDouble(const InstructionNode* instrNode) {
+   InstrTreeNode* leftArg = instrNode->leftChild();
+   InstrTreeNode* rightArg = instrNode->rightChild();
+   InstrTreeNode* leftArgArg = leftArg->leftChild();
+   InstrTreeNode* rightArgArg = rightArg->leftChild();
+   assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
+   return (leftArg->getValue()->getType() == Type::DoubleTy &&
+           leftArgArg->getValue()->getType() == Type::FloatTy &&
+           rightArgArg->getValue()->getType() == Type::FloatTy);
+ }
+ 
+ static inline MachineOpCode ChooseMulInstructionByType(const Type* resultType) {
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+   
+   if (resultType->isInteger())
+     opCode = V9::MULXr;
+   else
+     switch(resultType->getTypeID()) {
+     case Type::FloatTyID:  opCode = V9::FMULS; break;
+     case Type::DoubleTyID: opCode = V9::FMULD; break;
+     default: assert(0 && "Invalid type for MUL instruction"); break; 
+     }
+   
+   return opCode;
+ }
+ 
+ static inline MachineInstr*
+ CreateIntNegInstruction(const TargetMachine& target, Value* vreg) {
+   return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo()->getZeroRegNum())
+     .addReg(vreg).addRegDef(vreg);
+ }
+ 
+ /// CreateShiftInstructions - Create instruction sequence for any shift
+ /// operation. SLL or SLLX on an operand smaller than the integer reg. size
+ /// (64bits) requires a second instruction for explicit sign-extension. Note
+ /// that we only have to worry about a sign-bit appearing in the most
+ /// significant bit of the operand after shifting (e.g., bit 32 of Int or bit 16
+ /// of Short), so we do not have to worry about results that are as large as a
+ /// normal integer register.
+ /// 
+ static inline void
+ CreateShiftInstructions(const TargetMachine& target, Function* F,
+                         MachineOpCode shiftOpCode, Value* argVal1,
+                         Value* optArgVal2, /* Use optArgVal2 if not NULL */
+                         unsigned optShiftNum, /* else use optShiftNum */
+                         Instruction* destVal, std::vector<MachineInstr*>& mvec,
+                         MachineCodeForInstruction& mcfi) {
+   assert((optArgVal2 != NULL || optShiftNum <= 64) &&
+          "Large shift sizes unexpected, but can be handled below: "
+          "You need to check whether or not it fits in immed field below");
+   
+   // If this is a logical left shift of a type smaller than the standard
+   // integer reg. size, we have to extend the sign-bit into upper bits
+   // of dest, so we need to put the result of the SLL into a temporary.
+   Value* shiftDest = destVal;
+   unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType());
+ 
+   if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) {
+     // put SLL result into a temporary
+     shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp");
+   }
+   
+   MachineInstr* M = (optArgVal2 != NULL)
+     ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2)
+                              .addReg(shiftDest, MachineOperand::Def)
+     : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum)
+                              .addReg(shiftDest, MachineOperand::Def);
+   mvec.push_back(M);
+   
+   if (shiftDest != destVal) {
+     // extend the sign-bit of the result into all upper bits of dest
+     assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?");
+     CreateSignExtensionInstructions(target, F, shiftDest, destVal, 8*opSize,
+                                     mvec, mcfi);
+   }
+ }
+ 
+ /// CreateMulConstInstruction - Does not create any instructions if we
+ /// cannot exploit constant to create a cheaper instruction. This returns the
+ /// approximate cost of the instructions generated, which is used to pick the
+ /// cheapest when both operands are constant.
+ /// 
+ static unsigned
+ CreateMulConstInstruction(const TargetMachine &target, Function* F,
+                           Value* lval, Value* rval, Instruction* destVal,
+                           std::vector<MachineInstr*>& mvec,
+                           MachineCodeForInstruction& mcfi) {
+   // Use max. multiply cost, viz., cost of MULX
+   unsigned cost = target.getInstrInfo()->minLatency(V9::MULXr);
+   unsigned firstNewInstr = mvec.size();
+   
+   Value* constOp = rval;
+   if (! isa<Constant>(constOp))
+     return cost;
+   
+   // Cases worth optimizing are:
+   // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
+   // (2) Multiply by 2^x for integer types: replace with Shift
+   const Type* resultType = destVal->getType();
+   
+   if (resultType->isInteger() || isa<PointerType>(resultType)) {
+     bool isValidConst;
+     int64_t C = (int64_t) ConvertConstantToIntType(target, constOp,
+                                                    constOp->getType(),
+                                                    isValidConst);
+     if (isValidConst) {
+       unsigned pow;
+       bool needNeg = false;
+       if (C < 0) {
+         needNeg = true;
+         C = -C;
+       }
+           
+       if (C == 0 || C == 1) {
+         cost = target.getInstrInfo()->minLatency(V9::ADDr);
+         unsigned Zero = target.getRegInfo()->getZeroRegNum();
+         MachineInstr* M;
+         if (C == 0)
+           M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal);
+         else
+           M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal);
+         mvec.push_back(M);
+       } else if (isPowerOf2(C, pow)) {
+         unsigned opSize = target.getTargetData().getTypeSize(resultType);
+         MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6;
+         CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
+                                 destVal, mvec, mcfi);
+       }
+           
+       if (mvec.size() > 0 && needNeg) {
+         // insert <reg = SUB 0, reg> after the instr to flip the sign
+         MachineInstr* M = CreateIntNegInstruction(target, destVal);
+         mvec.push_back(M);
+       }
+     }
+   } else {
+     if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
+       double dval = FPC->getValue();
+       if (fabs(dval) == 1) {
+         MachineOpCode opCode =  (dval < 0)
+           ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
+           : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
+         mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal));
+       } 
+     }
+   }
+   
+   if (firstNewInstr < mvec.size()) {
+     cost = 0;
+     for (unsigned i=firstNewInstr; i < mvec.size(); ++i)
+       cost += target.getInstrInfo()->minLatency(mvec[i]->getOpcode());
+   }
+   
+   return cost;
+ }
+ 
+ /// CreateCheapestMulConstInstruction - Does not create any instructions
+ /// if we cannot exploit constant to create a cheaper instruction.
+ ///
+ static inline void
+ CreateCheapestMulConstInstruction(const TargetMachine &target, Function* F,
+                                   Value* lval, Value* rval,
+                                   Instruction* destVal,
+                                   std::vector<MachineInstr*>& mvec,
+                                   MachineCodeForInstruction& mcfi) {
+   Value* constOp;
+   if (isa<Constant>(lval) && isa<Constant>(rval)) {
+     // both operands are constant: evaluate and "set" in dest
+     Constant* P = ConstantExpr::get(Instruction::Mul,
+                                     cast<Constant>(lval),
+                                     cast<Constant>(rval));
+     CreateCodeToLoadConst (target, F, P, destVal, mvec, mcfi);
+   }
+   else if (isa<Constant>(rval))         // rval is constant, but not lval
+     CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
+   else if (isa<Constant>(lval))         // lval is constant, but not rval
+     CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
+   
+   // else neither is constant
+   return;
+ }
+ 
+ /// CreateMulInstruction - Returns NULL if we cannot exploit constant
+ /// to create a cheaper instruction.
+ /// 
+ static inline void
+ CreateMulInstruction(const TargetMachine &target, Function* F,
+                      Value* lval, Value* rval, Instruction* destVal,
+                      std::vector<MachineInstr*>& mvec,
+                      MachineCodeForInstruction& mcfi,
+                      MachineOpCode forceMulOp = -1) {
+   unsigned L = mvec.size();
+   CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi);
+   if (mvec.size() == L) {
+     // no instructions were added so create MUL reg, reg, reg.
+     // Use FSMULD if both operands are actually floats cast to doubles.
+     // Otherwise, use the default opcode for the appropriate type.
+     MachineOpCode mulOp = ((forceMulOp != -1)
+                            ? forceMulOp 
+                            : ChooseMulInstructionByType(destVal->getType()));
+     mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval)
+                    .addRegDef(destVal));
+   }
+ }
+ 
+ /// ChooseDivInstruction - Generate a divide instruction for Div or Rem.
+ /// For Rem, this assumes that the operand type will be signed if the result
+ /// type is signed.  This is correct because they must have the same sign.
+ /// 
+ static inline MachineOpCode 
+ ChooseDivInstruction(TargetMachine &target, const InstructionNode* instrNode) {
+   MachineOpCode opCode = V9::INVALID_OPCODE;
+   
+   const Type* resultType = instrNode->getInstruction()->getType();
+   
+   if (resultType->isInteger())
+     opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr;
+   else
+     switch(resultType->getTypeID()) {
+       case Type::FloatTyID:  opCode = V9::FDIVS; break;
+       case Type::DoubleTyID: opCode = V9::FDIVD; break;
+       default: assert(0 && "Invalid type for DIV instruction"); break; 
+       }
+   
+   return opCode;
+ }
+ 
+ /// CreateDivConstInstruction - Return if we cannot exploit constant to create
+ /// a cheaper instruction.
+ /// 
+ static void CreateDivConstInstruction(TargetMachine &target,
+                                       const InstructionNode* instrNode,
+                                       std::vector<MachineInstr*>& mvec) {
+   Value* LHS  = instrNode->leftChild()->getValue();
+   Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+   if (!isa<Constant>(constOp))
+     return;
+ 
+   Instruction* destVal = instrNode->getInstruction();
+   unsigned ZeroReg = target.getRegInfo()->getZeroRegNum();
+   
+   // Cases worth optimizing are:
+   // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
+   // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
+   const Type* resultType = instrNode->getInstruction()->getType();
+  
+   if (resultType->isInteger()) {
+     unsigned pow;
+     bool isValidConst;
+     int64_t C = (int64_t) ConvertConstantToIntType(target, constOp,
+                                                    constOp->getType(),
+                                                    isValidConst);
+     if (isValidConst) {
+       bool needNeg = false;
+       if (C < 0) {
+         needNeg = true;
+         C = -C;
+       }
+       
+       if (C == 1) {
+         mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg)
+                        .addRegDef(destVal));
+       } else if (isPowerOf2(C, pow)) {
+         unsigned opCode;
+         Value* shiftOperand;
+         unsigned opSize = target.getTargetData().getTypeSize(resultType);
+ 
+         if (resultType->isSigned()) {
+           // For N / 2^k, if the operand N is negative,
+           // we need to add (2^k - 1) before right-shifting by k, i.e.,
+           // 
+           //    (N / 2^k) = N >> k,               if N >= 0;
+           //                (N + 2^k - 1) >> k,   if N < 0
+           // 
+           // If N is <= 32 bits, use:
+           //    sra N, 31, t1           // t1 = ~0,         if N < 0,  0 else
+           //    srl t1, 32-k, t2        // t2 = 2^k - 1,    if N < 0,  0 else
+           //    add t2, N, t3           // t3 = N + 2^k -1, if N < 0,  N else
+ 	  //    sra t3, k, result       // result = N / 2^k
+           // 
+           // If N is 64 bits, use:
+           //    srax N,  k-1,  t1       // t1 = sign bit in high k positions
+           //    srlx t1, 64-k, t2       // t2 = 2^k - 1,    if N < 0,  0 else
+           //    add t2, N, t3           // t3 = N + 2^k -1, if N < 0,  N else
+ 	  //    sra t3, k, result       // result = N / 2^k
+           TmpInstruction *sraTmp, *srlTmp, *addTmp;
+           MachineCodeForInstruction& mcfi
+             = MachineCodeForInstruction::get(destVal);
+           sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign");
+           srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1");
+           addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg");
+ 
+           // Create the SRA or SRAX instruction to get the sign bit
+           mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3)
+                          .addReg(LHS)
+                          .addSImm((resultType==Type::LongTy)? pow-1 : 31)
+                          .addRegDef(sraTmp));
+ 
+           // Create the SRL or SRLX instruction to get the sign bit
+           mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3)
+                          .addReg(sraTmp)
+                          .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow)
+                          .addRegDef(srlTmp));
+ 
+           // Create the ADD instruction to add 2^pow-1 for negative values
+           mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp)
+                          .addRegDef(addTmp));
+ 
+           // Get the shift operand and "right-shift" opcode to do the divide
+           shiftOperand = addTmp;
+           opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5;
+         } else {
+           // Get the shift operand and "right-shift" opcode to do the divide
+           shiftOperand = LHS;
+           opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5;
+         }
+ 
+         // Now do the actual shift!
+         mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow)
+                        .addRegDef(destVal));
+       }
+           
+       if (needNeg && (C == 1 || isPowerOf2(C, pow))) {
+         // insert <reg = SUB 0, reg> after the instr to flip the sign
+         mvec.push_back(CreateIntNegInstruction(target, destVal));
+       }
+     }
+   } else {
+     if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
+       double dval = FPC->getValue();
+       if (fabs(dval) == 1) {
+         unsigned opCode = 
+           (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
+           : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
+               
+         mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal));
+       } 
+     }
+   }
+ }
+ 
+ static void CreateCodeForVariableSizeAlloca(const TargetMachine& target,
+                                             Instruction* result, unsigned tsize,
+                                             Value* numElementsVal,
+                                             std::vector<MachineInstr*>& getMvec)
+ {
+   Value* totalSizeVal;
+   MachineInstr* M;
+   MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result);
+   Function *F = result->getParent()->getParent();
+ 
+   // Enforce the alignment constraints on the stack pointer at
+   // compile time if the total size is a known constant.
+   if (isa<Constant>(numElementsVal)) {
+     bool isValid;
+     int64_t numElem = (int64_t)
+       ConvertConstantToIntType(target, numElementsVal,
+                                numElementsVal->getType(), isValid);
+     assert(isValid && "Unexpectedly large array dimension in alloca!");
+     int64_t total = numElem * tsize;
+     if (int extra= total % target.getFrameInfo()->getStackFrameSizeAlignment())
+       total += target.getFrameInfo()->getStackFrameSizeAlignment() - extra;
+     totalSizeVal = ConstantSInt::get(Type::IntTy, total);
+   } else {
+     // The size is not a constant.  Generate code to compute it and
+     // code to pad the size for stack alignment.
+     // Create a Value to hold the (constant) element size
+     Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);
+ 
+     // Create temporary values to hold the result of MUL, SLL, SRL
+     // To pad `size' to next smallest multiple of 16:
+     //          size = (size + 15) & (-16 = 0xfffffffffffffff0)
+     TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal);
+     TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd);
+     TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15);
+ 
+     // Instruction 1: mul numElements, typeSize -> tmpProd
+     // This will optimize the MUL as far as possible.
+     CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec,
+                          mcfi, -1);
+ 
+     // Instruction 2: andn tmpProd, 0x0f -> tmpAndn
+     getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15)
+                       .addReg(tmpAdd15, MachineOperand::Def));
+ 
+     // Instruction 3: add tmpAndn, 0x10 -> tmpAdd16
+     getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16)
+                       .addReg(tmpAndf0, MachineOperand::Def));
+ 
+     totalSizeVal = tmpAndf0;
+   }
+ 
+   // Get the constant offset from SP for dynamically allocated storage
+   // and create a temporary Value to hold it.
+   MachineFunction& mcInfo = MachineFunction::get(F);
+   bool growUp;
+   ConstantSInt* dynamicAreaOffset =
+     ConstantSInt::get(Type::IntTy,
+                     target.getFrameInfo()->getDynamicAreaOffset(mcInfo,growUp));
+   assert(! growUp && "Has SPARC v9 stack frame convention changed?");
+ 
+   unsigned SPReg = target.getRegInfo()->getStackPointer();
+ 
+   // Instruction 2: sub %sp, totalSizeVal -> %sp
+   getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal)
+                     .addMReg(SPReg,MachineOperand::Def));
+ 
+   // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
+   getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset)
+                     .addRegDef(result));
+ }        
+ 
+ static void
+ CreateCodeForFixedSizeAlloca(const TargetMachine& target,
+                              Instruction* result, unsigned tsize,
+                              unsigned numElements,
+                              std::vector<MachineInstr*>& getMvec) {
+   assert(result && result->getParent() &&
+          "Result value is not part of a function?");
+   Function *F = result->getParent()->getParent();
+   MachineFunction &mcInfo = MachineFunction::get(F);
+ 
+   // If the alloca is of zero bytes (which is perfectly legal) we bump it up to
+   // one byte.  This is unnecessary, but I really don't want to break any
+   // fragile logic in this code.  FIXME.
+   if (tsize == 0)
+     tsize = 1;
+ 
+   // Put the variable in the dynamically sized area of the frame if either:
+   // (a) The offset is too large to use as an immediate in load/stores
+   //     (check LDX because all load/stores have the same-size immed. field).
+   // (b) The object is "large", so it could cause many other locals,
+   //     spills, and temporaries to have large offsets.
+   //     NOTE: We use LARGE = 8 * argSlotSize = 64 bytes.
+   // You've gotta love having only 13 bits for constant offset values :-|.
+   // 
+   unsigned paddedSize;
+   int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result,
+                                                                 paddedSize,
+                                                          tsize * numElements);
+ 
+   if (((int)paddedSize) > 8 * target.getFrameInfo()->getSizeOfEachArgOnStack()||
+       !target.getInstrInfo()->constantFitsInImmedField(V9::LDXi,offsetFromFP)) {
+     CreateCodeForVariableSizeAlloca(target, result, tsize, 
+ 				    ConstantSInt::get(Type::IntTy,numElements),
+ 				    getMvec);
+     return;
+   }
+   
+   // else offset fits in immediate field so go ahead and allocate it.
+   offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements);
+   
+   // Create a temporary Value to hold the constant offset.
+   // This is needed because it may not fit in the immediate field.
+   ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
+   
+   // Instruction 1: add %fp, offsetFromFP -> result
+   unsigned FPReg = target.getRegInfo()->getFramePointer();
+   getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal)
+                     .addRegDef(result));
+ }
+ 
+ /// SetOperandsForMemInstr - Choose addressing mode for the given load or store
+ /// instruction.  Use [reg+reg] if it is an indexed reference, and the index
+ /// offset is not a constant or if it cannot fit in the offset field.  Use
+ /// [reg+offset] in all other cases.  This assumes that all array refs are
+ /// "lowered" to one of these forms:
+ ///    %x = load (subarray*) ptr, constant	; single constant offset
+ ///    %x = load (subarray*) ptr, offsetVal	; single non-constant offset
+ /// Generally, this should happen via strength reduction + LICM.  Also, strength
+ /// reduction should take care of using the same register for the loop index
+ /// variable and an array index, when that is profitable.
+ ///
+ static void SetOperandsForMemInstr(unsigned Opcode,
+                                    std::vector<MachineInstr*>& mvec,
+                                    InstructionNode* vmInstrNode,
+                                    const TargetMachine& target) {
+   Instruction* memInst = vmInstrNode->getInstruction();
+   // Index vector, ptr value, and flag if all indices are const.
+   std::vector<Value*> idxVec;
+   bool allConstantIndices;
+   Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices);
+ 
+   // Now create the appropriate operands for the machine instruction.
+   // First, initialize so we default to storing the offset in a register.
+   int64_t smallConstOffset = 0;
+   Value* valueForRegOffset = NULL;
+   MachineOperand::MachineOperandType offsetOpType =
+     MachineOperand::MO_VirtualRegister;
+ 
+   // Check if there is an index vector and if so, compute the
+   // right offset for structures and for arrays 
+   if (!idxVec.empty()) {
+     const PointerType* ptrType = cast<PointerType>(ptrVal->getType());
+       
+     // If all indices are constant, compute the combined offset directly.
+     if (allConstantIndices) {
+       // Compute the offset value using the index vector. Create a
+       // virtual reg. for it since it may not fit in the immed field.
+       uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec);
+       valueForRegOffset = ConstantSInt::get(Type::LongTy, offset);
+     } else {
+       // There is at least one non-constant offset.  Therefore, this must
+       // be an array ref, and must have been lowered to a single non-zero
+       // offset.  (An extra leading zero offset, if any, can be ignored.)
+       // Generate code sequence to compute address from index.
+       bool firstIdxIsZero = IsZero(idxVec[0]);
+       assert(idxVec.size() == 1U + firstIdxIsZero 
+              && "Array refs must be lowered before Instruction Selection");
+ 
+       Value* idxVal = idxVec[firstIdxIsZero];
+ 
+       std::vector<MachineInstr*> mulVec;
+       Instruction* addr =
+         new TmpInstruction(MachineCodeForInstruction::get(memInst),
+                            Type::ULongTy, memInst);
+ 
+       // Get the array type indexed by idxVal, and compute its element size.
+       // The call to getTypeSize() will fail if size is not constant.
+       const Type* vecType = (firstIdxIsZero
+                              ? GetElementPtrInst::getIndexedType(ptrType,
+                                            std::vector<Value*>(1U, idxVec[0]),
+                                            /*AllowCompositeLeaf*/ true)
+                                  : ptrType);
+       const Type* eltType = cast<SequentialType>(vecType)->getElementType();
+       ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy,
+                                    target.getTargetData().getTypeSize(eltType));
+ 
+       // CreateMulInstruction() folds constants intelligently enough.
+       CreateMulInstruction(target, memInst->getParent()->getParent(),
+                            idxVal,         /* lval, not likely to be const*/
+                            eltSizeVal,     /* rval, likely to be constant */
+                            addr,           /* result */
+                            mulVec, MachineCodeForInstruction::get(memInst),
+                            -1);
+ 
+       assert(mulVec.size() > 0 && "No multiply code created?");
+       mvec.insert(mvec.end(), mulVec.begin(), mulVec.end());
+       
+       valueForRegOffset = addr;
+     }
+   } else {
+     offsetOpType = MachineOperand::MO_SignExtendedImmed;
+     smallConstOffset = 0;
+   }
+ 
+   // For STORE:
+   //   Operand 0 is value, operand 1 is ptr, operand 2 is offset
+   // For LOAD or GET_ELEMENT_PTR,
+   //   Operand 0 is ptr, operand 1 is offset, operand 2 is result.
+   unsigned offsetOpNum, ptrOpNum;
+   MachineInstr *MI;
+   if (memInst->getOpcode() == Instruction::Store) {
+     if (offsetOpType == MachineOperand::MO_VirtualRegister) {
+       MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
+                              .addReg(ptrVal).addReg(valueForRegOffset);
+     } else {
+       Opcode = convertOpcodeFromRegToImm(Opcode);
+       MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
+                              .addReg(ptrVal).addSImm(smallConstOffset);
+     }
+   } else {
+     if (offsetOpType == MachineOperand::MO_VirtualRegister) {
+       MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset)
+                              .addRegDef(memInst);
+     } else {
+       Opcode = convertOpcodeFromRegToImm(Opcode);
+       MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset)
+                              .addRegDef(memInst);
+     }
+   }
+   mvec.push_back(MI);
+ }
+ 
+ /// ForwardOperand - Substitute operand `operandNum' of the instruction in
+ /// node `treeNode' in place of the use(s) of that instruction in node `parent'.
+ /// Check both explicit and implicit operands!  Also make sure to skip over a
+ /// parent who: (1) is a list node in the Burg tree, or (2) itself had its
+ /// results forwarded to its parent.
+ /// 
+ static void ForwardOperand (InstructionNode *treeNode, InstrTreeNode *parent,
+                             int operandNum) {
+   assert(treeNode && parent && "Invalid invocation of ForwardOperand");
+   
+   Instruction* unusedOp = treeNode->getInstruction();
+   Value* fwdOp = unusedOp->getOperand(operandNum);
+ 
+   // The parent itself may be a list node, so find the real parent instruction
+   while (parent->getNodeType() != InstrTreeNode::NTInstructionNode) {
+     parent = parent->parent();
+     assert(parent && "ERROR: Non-instruction node has no parent in tree.");
+   }
+   InstructionNode* parentInstrNode = (InstructionNode*) parent;
+   
+   Instruction* userInstr = parentInstrNode->getInstruction();
+   MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr);
+ 
+   // The parent's mvec would be empty if it was itself forwarded.
+   // Recursively call ForwardOperand in that case...
+   //
+   if (mvec.size() == 0) {
+     assert(parent->parent() != NULL &&
+            "Parent could not have been forwarded, yet has no instructions?");
+     ForwardOperand(treeNode, parent->parent(), operandNum);
+   } else {
+     for (unsigned i=0, N=mvec.size(); i < N; i++) {
+       MachineInstr* minstr = mvec[i];
+       for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) {
+         const MachineOperand& mop = minstr->getOperand(i);
+         if (mop.getType() == MachineOperand::MO_VirtualRegister &&
+             mop.getVRegValue() == unusedOp) {
+           minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister,
+                                        fwdOp);
+         }
+       }
+           
+       for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i)
+         if (minstr->getImplicitRef(i) == unusedOp)
+           minstr->setImplicitRef(i, fwdOp);
+     }
+   }
+ }
+ 
+ /// AllUsesAreBranches - Returns true if all the uses of I are
+ /// Branch instructions, false otherwise.
+ /// 
+ inline bool AllUsesAreBranches(const Instruction* I) {
+   for (Value::use_const_iterator UI=I->use_begin(), UE=I->use_end();
+        UI != UE; ++UI)
+     if (! isa<TmpInstruction>(*UI)     // ignore tmp instructions here
+         && cast<Instruction>(*UI)->getOpcode() != Instruction::Br)
+       return false;
+   return true;
+ }
+ 
+ /// CodeGenIntrinsic - Generate code for any intrinsic that needs a special
+ /// code sequence instead of a regular call.  If not that kind of intrinsic, do
+ /// nothing. Returns true if code was generated, otherwise false.
+ /// 
+ static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr,
+                              TargetMachine &target,
+                              std::vector<MachineInstr*>& mvec) {
+   switch (iid) {
+   default:
+     assert(0 && "Unknown intrinsic function call should have been lowered!");
+   case Intrinsic::vastart: {
+     // Get the address of the first incoming vararg argument on the stack
+     bool ignore;
+     Function* func = cast<Function>(callInstr.getParent()->getParent());
+     int numFixedArgs   = func->getFunctionType()->getNumParams();
+     int fpReg          = target.getFrameInfo()->getIncomingArgBaseRegNum();
+     int argSize        = target.getFrameInfo()->getSizeOfEachArgOnStack();
+     int firstVarArgOff = numFixedArgs * argSize + target.getFrameInfo()->
+       getFirstIncomingArgOffset(MachineFunction::get(func), ignore);
+     mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff).
+                    addRegDef(&callInstr));
+     return true;
+   }
+ 
+   case Intrinsic::vaend:
+     return true;                        // no-op on SparcV9
+ 
+   case Intrinsic::vacopy:
+     // Simple copy of current va_list (arg1) to new va_list (result)
+     mvec.push_back(BuildMI(V9::ORr, 3).
+                    addMReg(target.getRegInfo()->getZeroRegNum()).
+                    addReg(callInstr.getOperand(1)).
+                    addRegDef(&callInstr));
+     return true;
+   }
+ }
+ 
+ /// ThisIsAChainRule - returns true if the given  BURG rule is a chain rule.
+ /// 
+ extern bool ThisIsAChainRule(int eruleno) {
+   switch(eruleno) {
+     case 111:	// stmt:  reg
+     case 123:
+     case 124:
+     case 125:
+     case 126:
+     case 127:
+     case 128:
+     case 129:
+     case 130:
+     case 131:
+     case 132:
+     case 133:
+     case 155:
+     case 221:
+     case 222:
+     case 241:
+     case 242:
+     case 243:
+     case 244:
+     case 245:
+     case 321:
+       return true; break;
+ 
+     default:
+       return false; break;
+     }
+ }
+ 
+ /// GetInstructionsByRule - Choose machine instructions for the
+ /// SPARC V9 according to the patterns chosen by the BURG-generated parser.
+ /// This is where most of the work in the V9 instruction selector gets done.
+ /// 
+ void GetInstructionsByRule(InstructionNode* subtreeRoot, int ruleForNode,
+                            short* nts, TargetMachine &target,
+                            std::vector<MachineInstr*>& mvec) {
+   bool checkCast = false;		// initialize here to use fall-through
+   bool maskUnsignedResult = false;
+   int nextRule;
+   int forwardOperandNum = -1;
+   unsigned allocaSize = 0;
+   MachineInstr* M, *M2;
+   unsigned L;
+   bool foldCase = false;
+ 
+   mvec.clear(); 
+   
+   // If the code for this instruction was folded into the parent (user),
+   // then do nothing!
+   if (subtreeRoot->isFoldedIntoParent())
+     return;
+   
+   // Let's check for chain rules outside the switch so that we don't have
+   // to duplicate the list of chain rule production numbers here again
+   if (ThisIsAChainRule(ruleForNode)) {
+     // Chain rules have a single nonterminal on the RHS.
+     // Get the rule that matches the RHS non-terminal and use that instead.
+     assert(nts[0] && ! nts[1]
+            && "A chain rule should have only one RHS non-terminal!");
+     nextRule = burm_rule(subtreeRoot->state, nts[0]);
+     nts = burm_nts[nextRule];
+     GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec);
+   } else {
+     switch(ruleForNode) {
+       case 1:   // stmt:   Ret
+       case 2:   // stmt:   RetValue(reg)
+       {         // NOTE: Prepass of register allocation is responsible
+                 //	 for moving return value to appropriate register.
+                 // Copy the return value to the required return register.
+                 // Mark the return Value as an implicit ref of the RET instr..
+                 // Mark the return-address register as a hidden virtual reg.
+          	// Finally put a NOP in the delay slot.
+         ReturnInst *returnInstr=cast<ReturnInst>(subtreeRoot->getInstruction());
+         Value* retVal = returnInstr->getReturnValue();
+         MachineCodeForInstruction& mcfi =
+           MachineCodeForInstruction::get(returnInstr);
+ 
+         // Create a hidden virtual reg to represent the return address register
+         // used by the machine instruction but not represented in LLVM.
+         Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr);
+ 
+         MachineInstr* retMI = 
+           BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8)
+           .addMReg(target.getRegInfo()->getZeroRegNum(), MachineOperand::Def);
+       
+         // If there is a value to return, we need to:
+         // (a) Sign-extend the value if it is smaller than 8 bytes (reg size)
+         // (b) Insert a copy to copy the return value to the appropriate reg.
+         //     -- For FP values, create a FMOVS or FMOVD instruction
+         //     -- For non-FP values, create an add-with-0 instruction
+         if (retVal != NULL) {
+           const SparcV9RegInfo& regInfo =
+             (SparcV9RegInfo&) *target.getRegInfo();
+           const Type* retType = retVal->getType();
+           unsigned regClassID = regInfo.getRegClassIDOfType(retType);
+           unsigned retRegNum = (retType->isFloatingPoint()
+                                 ? (unsigned) SparcV9FloatRegClass::f0
+                                 : (unsigned) SparcV9IntRegClass::i0);
+           retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum);
+ 
+           // Insert sign-extension instructions for small signed values.
+           Value* retValToUse = retVal;
+           if (retType->isIntegral() && retType->isSigned()) {
+             unsigned retSize = target.getTargetData().getTypeSize(retType);
+             if (retSize <= 4) {
+               // Create a temporary virtual reg. to hold the sign-extension.
+               retValToUse = new TmpInstruction(mcfi, retVal);
+ 
+               // Sign-extend retVal and put the result in the temporary reg.
+               CreateSignExtensionInstructions
+                 (target, returnInstr->getParent()->getParent(),
+                  retVal, retValToUse, 8*retSize, mvec, mcfi);
+             }
+           }
+ 
+           // (b) Now, insert a copy to to the appropriate register:
+           //     -- For FP values, create a FMOVS or FMOVD instruction
+           //     -- For non-FP values, create an add-with-0 instruction
+           // First, create a virtual register to represent the register and
+           // mark this vreg as being an implicit operand of the ret MI.
+           TmpInstruction* retVReg = 
+             new TmpInstruction(mcfi, retValToUse, NULL, "argReg");
+           
+           retMI->addImplicitRef(retVReg);
+           
+           if (retType->isFloatingPoint())
+             M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
+                  .addReg(retValToUse).addReg(retVReg, MachineOperand::Def));
+           else
+             M = (BuildMI(ChooseAddInstructionByType(retType), 3)
+                  .addReg(retValToUse).addSImm((int64_t) 0)
+                  .addReg(retVReg, MachineOperand::Def));
+ 
+           // Mark the operand with the register it should be assigned
+           M->SetRegForOperand(M->getNumOperands()-1, retRegNum);
+           retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum);
+ 
+           mvec.push_back(M);
+         }
+         
+         // Now insert the RET instruction and a NOP for the delay slot
+         mvec.push_back(retMI);
+         mvec.push_back(BuildMI(V9::NOP, 0));
+         
+         break;
+       }  
+         
+       case 3:	// stmt:   Store(reg,reg)
+       case 4:	// stmt:   Store(reg,ptrreg)
+         SetOperandsForMemInstr(ChooseStoreInstruction(
+                         subtreeRoot->leftChild()->getValue()->getType()),
+                                mvec, subtreeRoot, target);
+         break;
+ 
+       case 5:	// stmt:   BrUncond
+         {
+           BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
+           mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0)));
+         
+           // delay slot
+           mvec.push_back(BuildMI(V9::NOP, 0));
+           break;
+         }
+ 
+       case 206:	// stmt:   BrCond(setCCconst)
+       { // setCCconst => boolean was computed with `%b = setCC type reg1 const'
+         // If the constant is ZERO, we can use the branch-on-integer-register
+         // instructions and avoid the SUBcc instruction entirely.
+         // Otherwise this is just the same as case 5, so just fall through.
+         // 
+         InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
+         assert(constNode &&
+                constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+         Constant *constVal = cast<Constant>(constNode->getValue());
+         bool isValidConst;
+         
+         if ((constVal->getType()->isInteger()
+              || isa<PointerType>(constVal->getType()))
+             && ConvertConstantToIntType(target,
+                              constVal, constVal->getType(), isValidConst) == 0
+             && isValidConst)
+           {
+             // That constant is a zero after all...
+             // Use the left child of setCC as the first argument!
+             // Mark the setCC node so that no code is generated for it.
+             InstructionNode* setCCNode = (InstructionNode*)
+                                          subtreeRoot->leftChild();
+             assert(setCCNode->getOpLabel() == SetCCOp);
+             setCCNode->markFoldedIntoParent();
+             
+             BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
+             
+             M = BuildMI(ChooseBprInstruction(subtreeRoot), 2)
+                                 .addReg(setCCNode->leftChild()->getValue())
+                                 .addPCDisp(brInst->getSuccessor(0));
+             mvec.push_back(M);
+             
+             // delay slot
+             mvec.push_back(BuildMI(V9::NOP, 0));
+ 
+             // false branch
+             mvec.push_back(BuildMI(V9::BA, 1)
+                            .addPCDisp(brInst->getSuccessor(1)));
+             
+             // delay slot
+             mvec.push_back(BuildMI(V9::NOP, 0));
+             break;
+           }
+         // ELSE FALL THROUGH
+       }
+ 
+       case 6:	// stmt:   BrCond(setCC)
+       { // bool => boolean was computed with SetCC.
+         // The branch to use depends on whether it is FP, signed, or unsigned.
+         // If it is an integer CC, we also need to find the unique
+         // TmpInstruction representing that CC.
+         // 
+         BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
+         const Type* setCCType;
+         unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType);
+         Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
+                                      brInst->getParent()->getParent(),
+                                      setCCType,
+                                      MachineCodeForInstruction::get(brInst));
+         M = BuildMI(Opcode, 2).addCCReg(ccValue)
+                               .addPCDisp(brInst->getSuccessor(0));
+         mvec.push_back(M);
+ 
+         // delay slot
+         mvec.push_back(BuildMI(V9::NOP, 0));
+ 
+         // false branch
+         mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1)));
+ 
+         // delay slot
+         mvec.push_back(BuildMI(V9::NOP, 0));
+         break;
+       }
+         
+       case 208:	// stmt:   BrCond(boolconst)
+       {
+         // boolconst => boolean is a constant; use BA to first or second label
+         Constant* constVal = 
+           cast<Constant>(subtreeRoot->leftChild()->getValue());
+         unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
+         
+         M = BuildMI(V9::BA, 1).addPCDisp(
+           cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest));
+         mvec.push_back(M);
+         
+         // delay slot
+         mvec.push_back(BuildMI(V9::NOP, 0));
+         break;
+       }
+         
+       case   8:	// stmt:   BrCond(boolreg)
+       { // boolreg   => boolean is recorded in an integer register.
+         //              Use branch-on-integer-register instruction.
+         // 
+         BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
+         M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue())
+           .addPCDisp(BI->getSuccessor(0));
+         mvec.push_back(M);
+ 
+         // delay slot
+         mvec.push_back(BuildMI(V9::NOP, 0));
+ 
+         // false branch
+         mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1)));
+         
+         // delay slot
+         mvec.push_back(BuildMI(V9::NOP, 0));
+         break;
+       }  
+       
+       case 9:	// stmt:   Switch(reg)
+         assert(0 && "*** SWITCH instruction is not implemented yet.");
+         break;
+ 
+       case 10:	// reg:   VRegList(reg, reg)
+         assert(0 && "VRegList should never be the topmost non-chain rule");
+         break;
+ 
+       case 21:	// bool:  Not(bool,reg): Compute with a conditional-move-on-reg
+       { // First find the unary operand. It may be left or right, usually right.
+         Instruction* notI = subtreeRoot->getInstruction();
+         Value* notArg = BinaryOperator::getNotArgument(
+                            cast<BinaryOperator>(subtreeRoot->getInstruction()));
+         unsigned ZeroReg = target.getRegInfo()->getZeroRegNum();
+ 
+         // Unconditionally set register to 0
+         mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI));
+ 
+         // Now conditionally move 1 into the register.
+         // Mark the register as a use (as well as a def) because the old
+         // value will be retained if the condition is false.
+         mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1)
+                        .addReg(notI, MachineOperand::UseAndDef));
+ 
+         break;
+       }
+ 
+       case 421:	// reg:   BNot(reg,reg): Compute as reg = reg XOR-NOT 0
+       { // First find the unary operand. It may be left or right, usually right.
+         Value* notArg = BinaryOperator::getNotArgument(
+                            cast<BinaryOperator>(subtreeRoot->getInstruction()));
+         unsigned ZeroReg = target.getRegInfo()->getZeroRegNum();
+         mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg)
+                                        .addRegDef(subtreeRoot->getValue()));
+         break;
+       }
+ 
+       case 322:	// reg:   Not(tobool, reg):
+         // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool
+         foldCase = true;
+         // Just fall through!
+ 
+       case 22:	// reg:   ToBoolTy(reg):
+       {
+         Instruction* castI = subtreeRoot->getInstruction();
+         Value* opVal = subtreeRoot->leftChild()->getValue();
+         assert(opVal->getType()->isIntegral() ||
+                isa<PointerType>(opVal->getType()));
+ 
+         // Unconditionally set register to 0
+         mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI));
+ 
+         // Now conditionally move 1 into the register.
+         // Mark the register as a use (as well as a def) because the old
+         // value will be retained if the condition is false.
+         MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi;
+         mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1)
+                        .addReg(castI, MachineOperand::UseAndDef));
+ 
+         break;
+       }
+       
+       case 23:	// reg:   ToUByteTy(reg)
+       case 24:	// reg:   ToSByteTy(reg)
+       case 25:	// reg:   ToUShortTy(reg)
+       case 26:	// reg:   ToShortTy(reg)
+       case 27:	// reg:   ToUIntTy(reg)
+       case 28:	// reg:   ToIntTy(reg)
+       case 29:	// reg:   ToULongTy(reg)
+       case 30:	// reg:   ToLongTy(reg)
+       {
+         //======================================================================
+         // Rules for integer conversions:
+         // 
+         //--------
+         // From ISO 1998 C++ Standard, Sec. 4.7:
+         //
+         // 2. If the destination type is unsigned, the resulting value is
+         // the least unsigned integer congruent to the source integer
+         // (modulo 2n where n is the number of bits used to represent the
+         // unsigned type). [Note: In a two s complement representation,
+         // this conversion is conceptual and there is no change in the
+         // bit pattern (if there is no truncation). ]
+         // 
+         // 3. If the destination type is signed, the value is unchanged if
+         // it can be represented in the destination type (and bitfield width);
+         // otherwise, the value is implementation-defined.
+         //--------
+         // 
+         // Since we assume 2s complement representations, this implies:
+         // 
+         // -- If operand is smaller than destination, zero-extend or sign-extend
+         //    according to the signedness of the *operand*: source decides:
+         //    (1) If operand is signed, sign-extend it.
+         //        If dest is unsigned, zero-ext the result!
+         //    (2) If operand is unsigned, our current invariant is that
+         //        it's high bits are correct, so zero-extension is not needed.
+         // 
+         // -- If operand is same size as or larger than destination,
+         //    zero-extend or sign-extend according to the signedness of
+         //    the *destination*: destination decides:
+         //    (1) If destination is signed, sign-extend (truncating if needed)
+         //        This choice is implementation defined.  We sign-extend the
+         //        operand, which matches both Sun's cc and gcc3.2.
+         //    (2) If destination is unsigned, zero-extend (truncating if needed)
+         //======================================================================
+ 
+         Instruction* destI =  subtreeRoot->getInstruction();
+         Function* currentFunc = destI->getParent()->getParent();
+         MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI);
+ 
+         Value* opVal = subtreeRoot->leftChild()->getValue();
+         const Type* opType = opVal->getType();
+         const Type* destType = destI->getType();
+         unsigned opSize   = target.getTargetData().getTypeSize(opType);
+         unsigned destSize = target.getTargetData().getTypeSize(destType);
+         
+         bool isIntegral = opType->isIntegral() || isa<PointerType>(opType);
+ 
+         if (opType == Type::BoolTy ||
+             opType == destType ||
+             isIntegral && opSize == destSize && opSize == 8) {
+           // nothing to do in all these cases
+           forwardOperandNum = 0;          // forward first operand to user
+ 
+         } else if (opType->isFloatingPoint()) {
+ 
+           CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi);
+           if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy)
+             maskUnsignedResult = true; // not handled by fp->int code
+ 
+         } else if (isIntegral) {
+ 
+           bool opSigned     = opType->isSigned();
+           bool destSigned   = destType->isSigned();
+           unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize);
+ 
+           assert(! (opSize == destSize && opSigned == destSigned) &&
+                  "How can different int types have same size and signedness?");
+ 
+           bool signExtend = (opSize <  destSize && opSigned ||
+                              opSize >= destSize && destSigned);
+ 
+           bool signAndZeroExtend = (opSize < destSize && destSize < 8u &&
+                                     opSigned && !destSigned);
+           assert(!signAndZeroExtend || signExtend);
+ 
+           bool zeroExtendOnly = opSize >= destSize && !destSigned;
+           assert(!zeroExtendOnly || !signExtend);
+ 
+           if (signExtend) {
+             Value* signExtDest = (signAndZeroExtend
+                                   ? new TmpInstruction(mcfi, destType, opVal)
+                                   : destI);
+ 
+             CreateSignExtensionInstructions
+               (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi);
+ 
+             if (signAndZeroExtend)
+               CreateZeroExtensionInstructions
+               (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi);
+           }
+           else if (zeroExtendOnly) {
+             CreateZeroExtensionInstructions
+               (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi);
+           }
+           else
+             forwardOperandNum = 0;          // forward first operand to user
+ 
+         } else
+           assert(0 && "Unrecognized operand type for convert-to-integer");
+ 
+         break;
+       }
+       
+       case  31:	// reg:   ToFloatTy(reg):
+       case  32:	// reg:   ToDoubleTy(reg):
+       case 232:	// reg:   ToDoubleTy(Constant):
+       
+         // If this instruction has a parent (a user) in the tree 
+         // and the user is translated as an FsMULd instruction,
+         // then the cast is unnecessary.  So check that first.
+         // In the future, we'll want to do the same for the FdMULq instruction,
+         // so do the check here instead of only for ToFloatTy(reg).
+         // 
+         if (subtreeRoot->parent() != NULL) {
+           const MachineCodeForInstruction& mcfi =
+             MachineCodeForInstruction::get(
+                 cast<InstructionNode>(subtreeRoot->parent())->getInstruction());
+           if (mcfi.size() == 0 || mcfi.front()->getOpcode() == V9::FSMULD)
+             forwardOperandNum = 0;    // forward first operand to user
+         }
+ 
+         if (forwardOperandNum != 0) {    // we do need the cast
+           Value* leftVal = subtreeRoot->leftChild()->getValue();
+           const Type* opType = leftVal->getType();
+           MachineOpCode opCode=ChooseConvertToFloatInstr(target,
+                                        subtreeRoot->getOpLabel(), opType);
+           if (opCode == V9::NOP) {      // no conversion needed
+             forwardOperandNum = 0;      // forward first operand to user
+           } else {
+             // If the source operand is a non-FP type it must be
+             // first copied from int to float register via memory!
+             Instruction *dest = subtreeRoot->getInstruction();
+             Value* srcForCast;
+             int n = 0;
+             if (! opType->isFloatingPoint()) {
+               // Create a temporary to represent the FP register
+               // into which the integer will be copied via memory.
+               // The type of this temporary will determine the FP
+               // register used: single-prec for a 32-bit int or smaller,
+               // double-prec for a 64-bit int.
+               // 
+               uint64_t srcSize =
+                 target.getTargetData().getTypeSize(leftVal->getType());
+               Type* tmpTypeToUse =
+                 (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
+               MachineCodeForInstruction &destMCFI = 
+                 MachineCodeForInstruction::get(dest);
+               srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest);
+ 
+               CreateCodeToCopyIntToFloat(target,
+                          dest->getParent()->getParent(),
+                          leftVal, cast<Instruction>(srcForCast),
+                          mvec, destMCFI);
+             } else
+               srcForCast = leftVal;
+ 
+             M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest);
+             mvec.push_back(M);
+           }
+         }
+         break;
+ 
+       case 19:	// reg:   ToArrayTy(reg):
+       case 20:	// reg:   ToPointerTy(reg):
+         forwardOperandNum = 0;          // forward first operand to user
+         break;
+ 
+       case 233:	// reg:   Add(reg, Constant)
+         maskUnsignedResult = true;
+         M = CreateAddConstInstruction(subtreeRoot);
+         if (M != NULL) {
+           mvec.push_back(M);
+           break;
+         }
+         // ELSE FALL THROUGH
+         
+       case 33:	// reg:   Add(reg, reg)
+         maskUnsignedResult = true;
+         Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec);
+         break;
+ 
+       case 234:	// reg:   Sub(reg, Constant)
+         maskUnsignedResult = true;
+         M = CreateSubConstInstruction(subtreeRoot);
+         if (M != NULL) {
+           mvec.push_back(M);
+           break;
+         }
+         // ELSE FALL THROUGH
+         
+       case 34:	// reg:   Sub(reg, reg)
+         maskUnsignedResult = true;
+         Add3OperandInstr(ChooseSubInstructionByType(
+                                    subtreeRoot->getInstruction()->getType()),
+                          subtreeRoot, mvec);
+         break;
+ 
+       case 135:	// reg:   Mul(todouble, todouble)
+         checkCast = true;
+         // FALL THROUGH 
+ 
+       case 35:	// reg:   Mul(reg, reg)
+       {
+         maskUnsignedResult = true;
+         MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
+                                  ? (MachineOpCode)V9::FSMULD
+                                  : -1);
+         Instruction* mulInstr = subtreeRoot->getInstruction();
+         CreateMulInstruction(target, mulInstr->getParent()->getParent(),
+                              subtreeRoot->leftChild()->getValue(),
+                              subtreeRoot->rightChild()->getValue(),
+                              mulInstr, mvec,
+                              MachineCodeForInstruction::get(mulInstr),forceOp);
+         break;
+       }
+       case 335:	// reg:   Mul(todouble, todoubleConst)
+         checkCast = true;
+         // FALL THROUGH 
+ 
+       case 235:	// reg:   Mul(reg, Constant)
+       {
+         maskUnsignedResult = true;
+         MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
+                                  ? (MachineOpCode)V9::FSMULD
+                                  : -1);
+         Instruction* mulInstr = subtreeRoot->getInstruction();
+         CreateMulInstruction(target, mulInstr->getParent()->getParent(),
+                              subtreeRoot->leftChild()->getValue(),
+                              subtreeRoot->rightChild()->getValue(),
+                              mulInstr, mvec,
+                              MachineCodeForInstruction::get(mulInstr),
+                              forceOp);
+         break;
+       }
+       case 236:	// reg:   Div(reg, Constant)
+         maskUnsignedResult = true;
+         L = mvec.size();
+         CreateDivConstInstruction(target, subtreeRoot, mvec);
+         if (mvec.size() > L)
+           break;
+         // ELSE FALL THROUGH
+       
+       case 36:	// reg:   Div(reg, reg)
+       {
+         maskUnsignedResult = true;
+ 
+         // If either operand of divide is smaller than 64 bits, we have
+         // to make sure the unused top bits are correct because they affect
+         // the result.  These bits are already correct for unsigned values.
+         // They may be incorrect for signed values, so sign extend to fill in.
+         Instruction* divI = subtreeRoot->getInstruction();
+         Value* divOp1 = subtreeRoot->leftChild()->getValue();
+         Value* divOp2 = subtreeRoot->rightChild()->getValue();
+         Value* divOp1ToUse = divOp1;
+         Value* divOp2ToUse = divOp2;
+         if (divI->getType()->isSigned()) {
+           unsigned opSize=target.getTargetData().getTypeSize(divI->getType());
+           if (opSize < 8) {
+             MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI);
+             divOp1ToUse = new TmpInstruction(mcfi, divOp1);
+             divOp2ToUse = new TmpInstruction(mcfi, divOp2);
+             CreateSignExtensionInstructions(target,
+                                               divI->getParent()->getParent(),
+                                               divOp1, divOp1ToUse,
+                                               8*opSize, mvec, mcfi);
+             CreateSignExtensionInstructions(target,
+                                               divI->getParent()->getParent(),
+                                               divOp2, divOp2ToUse,
+                                               8*opSize, mvec, mcfi);
+           }
+         }
+ 
+         mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
+                        .addReg(divOp1ToUse)
+                        .addReg(divOp2ToUse)
+                        .addRegDef(divI));
+ 
+         break;
+       }
+ 
+       case  37:	// reg:   Rem(reg, reg)
+       case 237:	// reg:   Rem(reg, Constant)
+       {
+         maskUnsignedResult = true;
+ 
+         Instruction* remI   = subtreeRoot->getInstruction();
+         Value* divOp1 = subtreeRoot->leftChild()->getValue();
+         Value* divOp2 = subtreeRoot->rightChild()->getValue();
+ 
+         MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI);
+         
+         // If second operand of divide is smaller than 64 bits, we have
+         // to make sure the unused top bits are correct because they affect
+         // the result.  These bits are already correct for unsigned values.
+         // They may be incorrect for signed values, so sign extend to fill in.
+         // 
+         Value* divOpToUse = divOp2;
+         if (divOp2->getType()->isSigned()) {
+           unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType());
+           if (opSize < 8) {
+             divOpToUse = new TmpInstruction(mcfi, divOp2);
+             CreateSignExtensionInstructions(target,
+                                               remI->getParent()->getParent(),
+                                               divOp2, divOpToUse,
+                                               8*opSize, mvec, mcfi);
+           }
+         }
+ 
+         // Now compute: result = rem V1, V2 as:
+         //      result = V1 - (V1 / signExtend(V2)) * signExtend(V2)
+         // 
+         TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse);
+         TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse);
+ 
+         mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
+                        .addReg(divOp1).addReg(divOpToUse).addRegDef(quot));
+         
+         mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3)
+                        .addReg(quot).addReg(divOpToUse).addRegDef(prod));
+         
+         mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3)
+                        .addReg(divOp1).addReg(prod).addRegDef(remI));
+         
+         break;
+       }
+       
+       case  38:	// bool:   And(bool, bool)
+       case 138:	// bool:   And(bool, not)
+       case 238:	// bool:   And(bool, boolconst)
+       case 338:	// reg :   BAnd(reg, reg)
+       case 538:	// reg :   BAnd(reg, Constant)
+         Add3OperandInstr(V9::ANDr, subtreeRoot, mvec);
+         break;
+ 
+       case 438:	// bool:   BAnd(bool, bnot)
+       { // Use the argument of NOT as the second argument!
+         // Mark the NOT node so that no code is generated for it.
+         // If the type is boolean, set 1 or 0 in the result register.
+         InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
+         Value* notArg = BinaryOperator::getNotArgument(
+                            cast<BinaryOperator>(notNode->getInstruction()));
+         notNode->markFoldedIntoParent();
+         Value *lhs = subtreeRoot->leftChild()->getValue();
+         Value *dest = subtreeRoot->getValue();
+         mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg)
+                                        .addReg(dest, MachineOperand::Def));
+ 
+         if (notArg->getType() == Type::BoolTy) {
+           // set 1 in result register if result of above is non-zero
+           mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
+                          .addReg(dest, MachineOperand::UseAndDef));
+         }
+ 
+         break;
+       }
+ 
+       case  39:	// bool:   Or(bool, bool)
+       case 139:	// bool:   Or(bool, not)
+       case 239:	// bool:   Or(bool, boolconst)
+       case 339:	// reg :   BOr(reg, reg)
+       case 539:	// reg :   BOr(reg, Constant)
+         Add3OperandInstr(V9::ORr, subtreeRoot, mvec);
+         break;
+ 
+       case 439:	// bool:   BOr(bool, bnot)
+       { // Use the argument of NOT as the second argument!
+         // Mark the NOT node so that no code is generated for it.
+         // If the type is boolean, set 1 or 0 in the result register.
+         InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
+         Value* notArg = BinaryOperator::getNotArgument(
+                            cast<BinaryOperator>(notNode->getInstruction()));
+         notNode->markFoldedIntoParent();
+         Value *lhs = subtreeRoot->leftChild()->getValue();
+         Value *dest = subtreeRoot->getValue();
+ 
+         mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg)
+                        .addReg(dest, MachineOperand::Def));
+ 
+         if (notArg->getType() == Type::BoolTy) {
+           // set 1 in result register if result of above is non-zero
+           mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
+                          .addReg(dest, MachineOperand::UseAndDef));
+         }
+ 
+         break;
+       }
+ 
+       case  40:	// bool:   Xor(bool, bool)
+       case 140:	// bool:   Xor(bool, not)
+       case 240:	// bool:   Xor(bool, boolconst)
+       case 340:	// reg :   BXor(reg, reg)
+       case 540:	// reg :   BXor(reg, Constant)
+         Add3OperandInstr(V9::XORr, subtreeRoot, mvec);
+         break;
+ 
+       case 440:	// bool:   BXor(bool, bnot)
+       { // Use the argument of NOT as the second argument!
+         // Mark the NOT node so that no code is generated for it.
+         // If the type is boolean, set 1 or 0 in the result register.
+         InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
+         Value* notArg = BinaryOperator::getNotArgument(
+                            cast<BinaryOperator>(notNode->getInstruction()));
+         notNode->markFoldedIntoParent();
+         Value *lhs = subtreeRoot->leftChild()->getValue();
+         Value *dest = subtreeRoot->getValue();
+         mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg)
+                        .addReg(dest, MachineOperand::Def));
+ 
+         if (notArg->getType() == Type::BoolTy) {
+           // set 1 in result register if result of above is non-zero
+           mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
+                          .addReg(dest, MachineOperand::UseAndDef));
+         }
+         break;
+       }
+ 
+       case 41:	// setCCconst:   SetCC(reg, Constant)
+       { // Comparison is with a constant:
+         // 
+         // If the bool result must be computed into a register (see below),
+         // and the constant is int ZERO, we can use the MOVR[op] instructions
+         // and avoid the SUBcc instruction entirely.
+         // Otherwise this is just the same as case 42, so just fall through.
+         // 
+         // The result of the SetCC must be computed and stored in a register if
+         // it is used outside the current basic block (so it must be computed
+         // as a boolreg) or it is used by anything other than a branch.
+         // We will use a conditional move to do this.
+         // 
+         Instruction* setCCInstr = subtreeRoot->getInstruction();
+         bool computeBoolVal = (subtreeRoot->parent() == NULL ||
+                                ! AllUsesAreBranches(setCCInstr));
+ 
+         if (computeBoolVal) {
+           InstrTreeNode* constNode = subtreeRoot->rightChild();
+           assert(constNode &&
+                  constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+           Constant *constVal = cast<Constant>(constNode->getValue());
+           bool isValidConst;
+           
+           if ((constVal->getType()->isInteger()
+                || isa<PointerType>(constVal->getType()))
+               && ConvertConstantToIntType(target,
+                              constVal, constVal->getType(), isValidConst) == 0
+               && isValidConst)
+           {
+             // That constant is an integer zero after all...
+             // Use a MOVR[op] to compute the boolean result
+             // Unconditionally set register to 0
+             mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0)
+                            .addRegDef(setCCInstr));
+                 
+             // Now conditionally move 1 into the register.
+             // Mark the register as a use (as well as a def) because the old
+             // value will be retained if the condition is false.
+             MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot);
+             mvec.push_back(BuildMI(movOpCode, 3)
+                            .addReg(subtreeRoot->leftChild()->getValue())
+                            .addZImm(1)
+                            .addReg(setCCInstr, MachineOperand::UseAndDef));
+                 
+             break;
+           }
+         }
+         // ELSE FALL THROUGH
+       }
+ 
+       case 42:	// bool:   SetCC(reg, reg):
+       {
+         // This generates a SUBCC instruction, putting the difference in a
+         // result reg. if needed, and/or setting a condition code if needed.
+         // 
+         Instruction* setCCInstr = subtreeRoot->getInstruction();
+         Value* leftVal  = subtreeRoot->leftChild()->getValue();
+         Value* rightVal = subtreeRoot->rightChild()->getValue();
+         const Type* opType = leftVal->getType();
+         bool isFPCompare = opType->isFloatingPoint();
+         
+         // If the boolean result of the SetCC is used outside the current basic
+         // block (so it must be computed as a boolreg) or is used by anything
+         // other than a branch, the boolean must be computed and stored
+         // in a result register.  We will use a conditional move to do this.
+         // 
+         bool computeBoolVal = (subtreeRoot->parent() == NULL ||
+                                ! AllUsesAreBranches(setCCInstr));
+         
+         // A TmpInstruction is created to represent the CC "result".
+         // Unlike other instances of TmpInstruction, this one is used
+         // by machine code of multiple LLVM instructions, viz.,
+         // the SetCC and the branch.  Make sure to get the same one!
+         // Note that we do this even for FP CC registers even though they
+         // are explicit operands, because the type of the operand
+         // needs to be a floating point condition code, not an integer
+         // condition code.  Think of this as casting the bool result to
+         // a FP condition code register.
+         // Later, we mark the 4th operand as being a CC register, and as a def.
+         // 
+         TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
+                                     setCCInstr->getParent()->getParent(),
+                                     leftVal->getType(),
+                                     MachineCodeForInstruction::get(setCCInstr));
+ 
+         // If the operands are signed values smaller than 4 bytes, then they
+         // must be sign-extended in order to do a valid 32-bit comparison
+         // and get the right result in the 32-bit CC register (%icc).
+         // 
+         Value* leftOpToUse  = leftVal;
+         Value* rightOpToUse = rightVal;
+         if (opType->isIntegral() && opType->isSigned()) {
+           unsigned opSize = target.getTargetData().getTypeSize(opType);
+           if (opSize < 4) {
+             MachineCodeForInstruction& mcfi =
+               MachineCodeForInstruction::get(setCCInstr); 
+ 
+             // create temporary virtual regs. to hold the sign-extensions
+             leftOpToUse  = new TmpInstruction(mcfi, leftVal);
+             rightOpToUse = new TmpInstruction(mcfi, rightVal);
+             
+             // sign-extend each operand and put the result in the temporary reg.
+             CreateSignExtensionInstructions
+               (target, setCCInstr->getParent()->getParent(),
+                leftVal, leftOpToUse, 8*opSize, mvec, mcfi);
+             CreateSignExtensionInstructions
+               (target, setCCInstr->getParent()->getParent(),
+                rightVal, rightOpToUse, 8*opSize, mvec, mcfi);
+           }
+         }
+ 
+         if (! isFPCompare) {
+           // Integer condition: set CC and discard result.
+           mvec.push_back(BuildMI(V9::SUBccr, 4)
+                          .addReg(leftOpToUse)
+                          .addReg(rightOpToUse)
+                          .addMReg(target.getRegInfo()->
+                                    getZeroRegNum(), MachineOperand::Def)
+                          .addCCReg(tmpForCC, MachineOperand::Def));
+         } else {
+           // FP condition: dest of FCMP should be some FCCn register
+           mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3)
+                          .addCCReg(tmpForCC, MachineOperand::Def)
+                          .addReg(leftOpToUse)
+                          .addReg(rightOpToUse));
+         }
+         
+         if (computeBoolVal) {
+           MachineOpCode movOpCode = (isFPCompare
+                                      ? ChooseMovFpcciInstruction(subtreeRoot)
+                                      : ChooseMovpcciForSetCC(subtreeRoot));
+ 
+           // Unconditionally set register to 0
+           M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr);
+           mvec.push_back(M);
+           
+           // Now conditionally move 1 into the register.
+           // Mark the register as a use (as well as a def) because the old
+           // value will be retained if the condition is false.
+           M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1)
+                .addReg(setCCInstr, MachineOperand::UseAndDef));
+           mvec.push_back(M);
+         }
+         break;
+       }    
+       
+       case 51:	// reg:   Load(reg)
+       case 52:	// reg:   Load(ptrreg)
+         SetOperandsForMemInstr(ChooseLoadInstruction(
+                                    subtreeRoot->getValue()->getType()),
+                                mvec, subtreeRoot, target);
+         break;
+ 
+       case 55:	// reg:   GetElemPtr(reg)
+       case 56:	// reg:   GetElemPtrIdx(reg,reg)
+         // If the GetElemPtr was folded into the user (parent), it will be
+         // caught above.  For other cases, we have to compute the address.
+         SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target);
+         break;
+ 
+       case 57:	// reg:  Alloca: Implement as 1 instruction:
+       {         //	    add %fp, offsetFromFP -> result
+         AllocationInst* instr =
+           cast<AllocationInst>(subtreeRoot->getInstruction());
+         unsigned tsize =
+           target.getTargetData().getTypeSize(instr->getAllocatedType());
+         assert(tsize != 0);
+         CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec);
+         break;
+       }
+ 
+       case 58:	// reg:   Alloca(reg): Implement as 3 instructions:
+                 //	mul num, typeSz -> tmp
+                 //	sub %sp, tmp    -> %sp
+       {         //	add %sp, frameSizeBelowDynamicArea -> result
+         AllocationInst* instr =
+           cast<AllocationInst>(subtreeRoot->getInstruction());
+         const Type* eltType = instr->getAllocatedType();
+         
+         // If #elements is constant, use simpler code for fixed-size allocas
+         int tsize = (int) target.getTargetData().getTypeSize(eltType);
+         Value* numElementsVal = NULL;
+         bool isArray = instr->isArrayAllocation();
+         
+         if (!isArray || isa<Constant>(numElementsVal = instr->getArraySize())) {
+           // total size is constant: generate code for fixed-size alloca
+           unsigned numElements = isArray? 
+             cast<ConstantUInt>(numElementsVal)->getValue() : 1;
+           CreateCodeForFixedSizeAlloca(target, instr, tsize,
+                                        numElements, mvec);
+         } else {
+           // total size is not constant.
+           CreateCodeForVariableSizeAlloca(target, instr, tsize,
+                                           numElementsVal, mvec);
+         }
+         break;
+       }
+ 
+       case 61:	// reg:   Call
+       {         // Generate a direct (CALL) or indirect (JMPL) call.
+                 // Mark the return-address register, the indirection
+                 // register (for indirect calls), the operands of the Call,
+                 // and the return value (if any) as implicit operands
+                 // of the machine instruction.
+                 // 
+                 // If this is a varargs function, floating point arguments
+                 // have to passed in integer registers so insert
+                 // copy-float-to-int instructions for each float operand.
+                 // 
+         CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
+         Value *callee = callInstr->getCalledValue();
+         Function* calledFunc = dyn_cast<Function>(callee);
+ 
+         // Check if this is an intrinsic function that needs a special code
+         // sequence (e.g., va_start).  Indirect calls cannot be special.
+         // 
+         bool specialIntrinsic = false;
+         Intrinsic::ID iid;
+         if (calledFunc && (iid=(Intrinsic::ID)calledFunc->getIntrinsicID()))
+           specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec);
+ 
+         // If not, generate the normal call sequence for the function.
+         // This can also handle any intrinsics that are just function calls.
+         // 
+         if (! specialIntrinsic) {
+           Function* currentFunc = callInstr->getParent()->getParent();
+           MachineFunction& MF = MachineFunction::get(currentFunc);
+           MachineCodeForInstruction& mcfi =
+             MachineCodeForInstruction::get(callInstr); 
+           const SparcV9RegInfo& regInfo =
+             (SparcV9RegInfo&) *target.getRegInfo();
+           const TargetFrameInfo& frameInfo = *target.getFrameInfo();
+ 
+           // Create hidden virtual register for return address with type void*
+           TmpInstruction* retAddrReg =
+             new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr);
+ 
+           // Generate the machine instruction and its operands.
+           // Use CALL for direct function calls; this optimistically assumes
+           // the PC-relative address fits in the CALL address field (22 bits).
+           // Use JMPL for indirect calls.
+           // This will be added to mvec later, after operand copies.
+           // 
+           MachineInstr* callMI;
+           if (calledFunc)             // direct function call
+             callMI = BuildMI(V9::CALL, 1).addPCDisp(callee);
+           else                        // indirect function call
+             callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee)
+                       .addSImm((int64_t)0).addRegDef(retAddrReg));
+ 
+           const FunctionType* funcType =
+             cast<FunctionType>(cast<PointerType>(callee->getType())
+                                ->getElementType());
+           bool isVarArgs = funcType->isVarArg();
+           bool noPrototype = isVarArgs && funcType->getNumParams() == 0;
+         
+           // Use a descriptor to pass information about call arguments
+           // to the register allocator.  This descriptor will be "owned"
+           // and freed automatically when the MachineCodeForInstruction
+           // object for the callInstr goes away.
+           CallArgsDescriptor* argDesc =
+             new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype);
+           assert(callInstr->getOperand(0) == callee
+                  && "This is assumed in the loop below!");
+ 
+           // Insert sign-extension instructions for small signed values,
+           // if this is an unknown function (i.e., called via a funcptr)
+           // or an external one (i.e., which may not be compiled by llc).
+           // 
+           if (calledFunc == NULL || calledFunc->isExternal()) {
+             for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
+               Value* argVal = callInstr->getOperand(i);
+               const Type* argType = argVal->getType();
+               if (argType->isIntegral() && argType->isSigned()) {
+                 unsigned argSize = target.getTargetData().getTypeSize(argType);
+                 if (argSize <= 4) {
+                   // create a temporary virtual reg. to hold the sign-extension
+                   TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal);
+ 
+                   // sign-extend argVal and put the result in the temporary reg.
+                   CreateSignExtensionInstructions
+                     (target, currentFunc, argVal, argExtend,
+                      8*argSize, mvec, mcfi);
+ 
+                   // replace argVal with argExtend in CallArgsDescriptor
+                   argDesc->getArgInfo(i-1).replaceArgVal(argExtend);
+                 }
+               }
+             }
+           }
+ 
+           // Insert copy instructions to get all the arguments into
+           // all the places that they need to be.
+           // 
+           for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
+             int argNo = i-1;
+             CallArgInfo& argInfo = argDesc->getArgInfo(argNo);
+             Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here
+             const Type* argType = argVal->getType();
+             unsigned regType = regInfo.getRegTypeForDataType(argType);
+             unsigned argSize = target.getTargetData().getTypeSize(argType);
+             int regNumForArg = SparcV9RegInfo::getInvalidRegNum();
+             unsigned regClassIDOfArgReg;
+ 
+             // Check for FP arguments to varargs functions.
+             // Any such argument in the first $K$ args must be passed in an
+             // integer register.  If there is no prototype, it must also
+             // be passed as an FP register.
+             // K = #integer argument registers.
+             bool isFPArg = argVal->getType()->isFloatingPoint();
+             if (isVarArgs && isFPArg) {
+ 
+               if (noPrototype) {
+                 // It is a function with no prototype: pass value
+                 // as an FP value as well as a varargs value.  The FP value
+                 // may go in a register or on the stack.  The copy instruction
+                 // to the outgoing reg/stack is created by the normal argument
+                 // handling code since this is the "normal" passing mode.
+                 // 
+                 regNumForArg = regInfo.regNumForFPArg(regType,
+                                                       false, false, argNo,
+                                                       regClassIDOfArgReg);
+                 if (regNumForArg == regInfo.getInvalidRegNum())
+                   argInfo.setUseStackSlot();
+                 else
+                   argInfo.setUseFPArgReg();
+               }
+               
+               // If this arg. is in the first $K$ regs, add special copy-
+               // float-to-int instructions to pass the value as an int.
+               // To check if it is in the first $K$, get the register
+               // number for the arg #i.  These copy instructions are
+               // generated here because they are extra cases and not needed
+               // for the normal argument handling (some code reuse is
+               // possible though -- later).
+               // 
+               int copyRegNum = regInfo.regNumForIntArg(false, false, argNo,
+                                                        regClassIDOfArgReg);
+               if (copyRegNum != regInfo.getInvalidRegNum()) {
+                 // Create a virtual register to represent copyReg. Mark
+                 // this vreg as being an implicit operand of the call MI
+                 const Type* loadTy = (argType == Type::FloatTy
+                                       ? Type::IntTy : Type::LongTy);
+                 TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy,
+                                                              argVal, NULL,
+                                                              "argRegCopy");
+                 callMI->addImplicitRef(argVReg);
+                 
+                 // Get a temp stack location to use to copy
+                 // float-to-int via the stack.
+                 // 
+                 // FIXME: For now, we allocate permanent space because
+                 // the stack frame manager does not allow locals to be
+                 // allocated (e.g., for alloca) after a temp is
+                 // allocated!
+                 // 
+                 // int tmpOffset = MF.getInfo()->pushTempValue(argSize);
+                 int tmpOffset = MF.getInfo()->allocateLocalVar(argVReg);
+                     
+                 // Generate the store from FP reg to stack
+                 unsigned StoreOpcode = ChooseStoreInstruction(argType);
+                 M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3)
+                   .addReg(argVal).addMReg(regInfo.getFramePointer())
+                   .addSImm(tmpOffset);
+                 mvec.push_back(M);
+                         
+                 // Generate the load from stack to int arg reg
+                 unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
+                 M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3)
+                   .addMReg(regInfo.getFramePointer()).addSImm(tmpOffset)
+                   .addReg(argVReg, MachineOperand::Def);
+ 
+                 // Mark operand with register it should be assigned
+                 // both for copy and for the callMI
+                 M->SetRegForOperand(M->getNumOperands()-1, copyRegNum);
+                 callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
+                                              copyRegNum);
+                 mvec.push_back(M);
+ 
+                 // Add info about the argument to the CallArgsDescriptor
+                 argInfo.setUseIntArgReg();
+                 argInfo.setArgCopy(copyRegNum);
+               } else {
+                 // Cannot fit in first $K$ regs so pass arg on stack
+                 argInfo.setUseStackSlot();
+               }
+             } else if (isFPArg) {
+               // Get the outgoing arg reg to see if there is one.
+               regNumForArg = regInfo.regNumForFPArg(regType, false, false,
+                                                     argNo, regClassIDOfArgReg);
+               if (regNumForArg == regInfo.getInvalidRegNum())
+                 argInfo.setUseStackSlot();
+               else {
+                 argInfo.setUseFPArgReg();
+                 regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
+                                                        regNumForArg);
+               }
+             } else {
+               // Get the outgoing arg reg to see if there is one.
+               regNumForArg = regInfo.regNumForIntArg(false,false,
+                                                      argNo, regClassIDOfArgReg);
+               if (regNumForArg == regInfo.getInvalidRegNum())
+                 argInfo.setUseStackSlot();
+               else {
+                 argInfo.setUseIntArgReg();
+                 regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
+                                                        regNumForArg);
+               }
+             }                
+ 
+             // 
+             // Now insert copy instructions to stack slot or arg. register
+             // 
+             if (argInfo.usesStackSlot()) {
+               // Get the stack offset for this argument slot.
+               // FP args on stack are right justified so adjust offset!
+               // int arguments are also right justified but they are
+               // always loaded as a full double-word so the offset does
+               // not need to be adjusted.
+               int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo);
+               if (argType->isFloatingPoint()) {
+                 unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
+                 assert(argSize <= slotSize && "Insufficient slot size!");
+                 argOffset += slotSize - argSize;
+               }
+ 
+               // Now generate instruction to copy argument to stack
+               MachineOpCode storeOpCode =
+                 (argType->isFloatingPoint()
+                  ? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi);
+ 
+               M = BuildMI(storeOpCode, 3).addReg(argVal)
+                 .addMReg(regInfo.getStackPointer()).addSImm(argOffset);
+               mvec.push_back(M);
+             }
+             else if (regNumForArg != regInfo.getInvalidRegNum()) {
+ 
+               // Create a virtual register to represent the arg reg. Mark
+               // this vreg as being an implicit operand of the call MI.
+               TmpInstruction* argVReg = 
+                 new TmpInstruction(mcfi, argVal, NULL, "argReg");
+ 
+               callMI->addImplicitRef(argVReg);
+               
+               // Generate the reg-to-reg copy into the outgoing arg reg.
+               // -- For FP values, create a FMOVS or FMOVD instruction
+               // -- For non-FP values, create an add-with-0 instruction
+               if (argType->isFloatingPoint())
+                 M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2)
+                    .addReg(argVal).addReg(argVReg, MachineOperand::Def));
+               else
+                 M = (BuildMI(ChooseAddInstructionByType(argType), 3)
+                      .addReg(argVal).addSImm((int64_t) 0)
+                      .addReg(argVReg, MachineOperand::Def));
+               
+               // Mark the operand with the register it should be assigned
+               M->SetRegForOperand(M->getNumOperands()-1, regNumForArg);
+               callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
+                                            regNumForArg);
+ 
+               mvec.push_back(M);
+             }
+             else
+               assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() &&
+                      "Arg. not in stack slot, primary or secondary register?");
+           }
+ 
+           // add call instruction and delay slot before copying return value
+           mvec.push_back(callMI);
+           mvec.push_back(BuildMI(V9::NOP, 0));
+ 
+           // Add the return value as an implicit ref.  The call operands
+           // were added above.  Also, add code to copy out the return value.
+           // This is always register-to-register for int or FP return values.
+           // 
+           if (callInstr->getType() != Type::VoidTy) { 
+             // Get the return value reg.
+             const Type* retType = callInstr->getType();
+ 
+             int regNum = (retType->isFloatingPoint()
+                           ? (unsigned) SparcV9FloatRegClass::f0 
+                           : (unsigned) SparcV9IntRegClass::o0);
+             unsigned regClassID = regInfo.getRegClassIDOfType(retType);
+             regNum = regInfo.getUnifiedRegNum(regClassID, regNum);
+ 
+             // Create a virtual register to represent it and mark
+             // this vreg as being an implicit operand of the call MI
+             TmpInstruction* retVReg = 
+               new TmpInstruction(mcfi, callInstr, NULL, "argReg");
+ 
+             callMI->addImplicitRef(retVReg, /*isDef*/ true);
+ 
+             // Generate the reg-to-reg copy from the return value reg.
+             // -- For FP values, create a FMOVS or FMOVD instruction
+             // -- For non-FP values, create an add-with-0 instruction
+             if (retType->isFloatingPoint())
+               M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
+                    .addReg(retVReg).addReg(callInstr, MachineOperand::Def));
+             else
+               M = (BuildMI(ChooseAddInstructionByType(retType), 3)
+                    .addReg(retVReg).addSImm((int64_t) 0)
+                    .addReg(callInstr, MachineOperand::Def));
+ 
+             // Mark the operand with the register it should be assigned
+             // Also mark the implicit ref of the call defining this operand
+             M->SetRegForOperand(0, regNum);
+             callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum);
+ 
+             mvec.push_back(M);
+           }
+ 
+           // For the CALL instruction, the ret. addr. reg. is also implicit
+           if (isa<Function>(callee))
+             callMI->addImplicitRef(retAddrReg, /*isDef*/ true);
+ 
+           MF.getInfo()->popAllTempValues();  // free temps used for this inst
+         }
+ 
+         break;
+       }
+       
+       case 62:	// reg:   Shl(reg, reg)
+       {
+         Value* argVal1 = subtreeRoot->leftChild()->getValue();
+         Value* argVal2 = subtreeRoot->rightChild()->getValue();
+         Instruction* shlInstr = subtreeRoot->getInstruction();
+         
+         const Type* opType = argVal1->getType();
+         assert((opType->isInteger() || isa<PointerType>(opType)) &&
+                "Shl unsupported for other types");
+         unsigned opSize = target.getTargetData().getTypeSize(opType);
+         
+         CreateShiftInstructions(target, shlInstr->getParent()->getParent(),
+                                 (opSize > 4)? V9::SLLXr6:V9::SLLr5,
+                                 argVal1, argVal2, 0, shlInstr, mvec,
+                                 MachineCodeForInstruction::get(shlInstr));
+         break;
+       }
+       
+       case 63:	// reg:   Shr(reg, reg)
+       { 
+         const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
+         assert((opType->isInteger() || isa<PointerType>(opType)) &&
+                "Shr unsupported for other types");
+         unsigned opSize = target.getTargetData().getTypeSize(opType);
+         Add3OperandInstr(opType->isSigned()
+                          ? (opSize > 4? V9::SRAXr6 : V9::SRAr5)
+                          : (opSize > 4? V9::SRLXr6 : V9::SRLr5),
+                          subtreeRoot, mvec);
+         break;
+       }
+       
+       case 64:	// reg:   Phi(reg,reg)
+         break;                          // don't forward the value
+ 
+       case 65:	// reg:   VANext(reg):  the va_next(va_list, type) instruction
+       { // Increment the va_list pointer register according to the type.
+         // All LLVM argument types are <= 64 bits, so use one doubleword.
+         Instruction* vaNextI = subtreeRoot->getInstruction();
+         assert(target.getTargetData().getTypeSize(vaNextI->getType()) <= 8 &&
+                "We assumed that all LLVM parameter types <= 8 bytes!");
+         int argSize = target.getFrameInfo()->getSizeOfEachArgOnStack();
+         mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaNextI->getOperand(0)).
+                        addSImm(argSize).addRegDef(vaNextI));
+         break;
+       }
+ 
+       case 66:	// reg:   VAArg (reg): the va_arg instruction
+       { // Load argument from stack using current va_list pointer value.
+         // Use 64-bit load for all non-FP args, and LDDF or double for FP.
+         Instruction* vaArgI = subtreeRoot->getInstruction();
+         MachineOpCode loadOp = (vaArgI->getType()->isFloatingPoint()
+                                 ? (vaArgI->getType() == Type::FloatTy
+                                    ? V9::LDFi : V9::LDDFi)
+                                 : V9::LDXi);
+         mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)).
+                        addSImm(0).addRegDef(vaArgI));
+         break;
+       }
+       
+       case 71:	// reg:     VReg
+       case 72:	// reg:     Constant
+         break;                          // don't forward the value
+ 
+       default:
+         assert(0 && "Unrecognized BURG rule");
+         break;
+       }
+     }
+ 
+   if (forwardOperandNum >= 0) {
+     // We did not generate a machine instruction but need to use operand.
+     // If user is in the same tree, replace Value in its machine operand.
+     // If not, insert a copy instruction which should get coalesced away
+     // by register allocation.
+     if (subtreeRoot->parent() != NULL)
+       ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
+     else {
+       std::vector<MachineInstr*> minstrVec;
+       Instruction* instr = subtreeRoot->getInstruction();
+       CreateCopyInstructionsByType(target,
+                                      instr->getParent()->getParent(),
+                                      instr->getOperand(forwardOperandNum),
+                                      instr, minstrVec,
+                                      MachineCodeForInstruction::get(instr));
+       assert(minstrVec.size() > 0);
+       mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
+     }
+   }
+ 
+   if (maskUnsignedResult) {
+     // If result is unsigned and smaller than int reg size,
+     // we need to clear high bits of result value.
+     assert(forwardOperandNum < 0 && "Need mask but no instruction generated");
+     Instruction* dest = subtreeRoot->getInstruction();
+     if (dest->getType()->isUnsigned()) {
+       unsigned destSize=target.getTargetData().getTypeSize(dest->getType());
+       if (destSize <= 4) {
+         // Mask high 64 - N bits, where N = 4*destSize.
+         
+         // Use a TmpInstruction to represent the
+         // intermediate result before masking.  Since those instructions
+         // have already been generated, go back and substitute tmpI
+         // for dest in the result position of each one of them.
+         // 
+         MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest);
+         TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(),
+                                                   dest, NULL, "maskHi");
+         Value* srlArgToUse = tmpI;
+ 
+         unsigned numSubst = 0;
+         for (unsigned i=0, N=mvec.size(); i < N; ++i) {
+ 
+           // Make sure we substitute all occurrences of dest in these instrs.
+           // Otherwise, we will have bogus code.
+           bool someArgsWereIgnored = false;
+ 
+           // Make sure not to substitute an upwards-exposed use -- that would
+           // introduce a use of `tmpI' with no preceding def.  Therefore,
+           // substitute a use or def-and-use operand only if a previous def
+           // operand has already been substituted (i.e., numSubst > 0).
+           // 
+           numSubst += mvec[i]->substituteValue(dest, tmpI,
+                                                /*defsOnly*/ numSubst == 0,
+                                                /*notDefsAndUses*/ numSubst > 0,
+                                                someArgsWereIgnored);
+           assert(!someArgsWereIgnored &&
+                  "Operand `dest' exists but not replaced: probably bogus!");
+         }
+         assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!");
+ 
+         // Left shift 32-N if size (N) is less than 32 bits.
+         // Use another tmp. virtual register to represent this result.
+         if (destSize < 4) {
+           srlArgToUse = new TmpInstruction(mcfi, dest->getType(),
+                                            tmpI, NULL, "maskHi2");
+           mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI)
+                          .addZImm(8*(4-destSize))
+                          .addReg(srlArgToUse, MachineOperand::Def));
+         }
+ 
+         // Logical right shift 32-N to get zero extension in top 64-N bits.
+         mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse)
+                          .addZImm(8*(4-destSize))
+                          .addReg(dest, MachineOperand::Def));
+ 
+       } else if (destSize < 8) {
+         assert(0 && "Unsupported type size: 32 < size < 64 bits");
+       }
+     }
+   }
+ }
+ 
+ } // End llvm namespace
+ 
+ //==------------------------------------------------------------------------==//
+ //                     Class V9ISel Implementation
+ //==------------------------------------------------------------------------==//
+ 
+ bool V9ISel::runOnFunction(Function &F) {
+   // First pass - Walk the function, lowering any calls to intrinsic functions
+   // which the instruction selector cannot handle.
+   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
+       if (CallInst *CI = dyn_cast<CallInst>(I++))
+         if (Function *F = CI->getCalledFunction())
+           switch (F->getIntrinsicID()) {
+           case Intrinsic::not_intrinsic:
+           case Intrinsic::vastart:
+           case Intrinsic::vacopy:
+           case Intrinsic::vaend:
+             // We directly implement these intrinsics.  Note that this knowledge
+             // is incestuously entangled with the code in
+             // SparcInstrSelection.cpp and must be updated when it is updated.
+             // Since ALL of the code in this library is incestuously intertwined
+             // with it already and sparc specific, we will live with this.
+             break;
+           default:
+             // All other intrinsic calls we must lower.
+             Instruction *Before = CI->getPrev();
+             Target.getIntrinsicLowering().LowerIntrinsicCall(CI);
+             if (Before) {        // Move iterator to instruction after call
+               I = Before;  ++I;
+             } else {
+               I = BB->begin();
+             }
+           }
+ 
+   // Build the instruction trees to be given as inputs to BURG.
+   InstrForest instrForest(&F);
+   if (SelectDebugLevel >= Select_DebugInstTrees) {
+     std::cerr << "\n\n*** Input to instruction selection for function "
+               << F.getName() << "\n\n" << F
+               << "\n\n*** Instruction trees for function "
+               << F.getName() << "\n\n";
+     instrForest.dump();
+   }
+   
+   // Invoke BURG instruction selection for each tree
+   for (InstrForest::const_root_iterator RI = instrForest.roots_begin();
+        RI != instrForest.roots_end(); ++RI) {
+     InstructionNode* basicNode = *RI;
+     assert(basicNode->parent() == NULL && "A `root' node has a parent?"); 
+       
+     // Invoke BURM to label each tree node with a state
+     burm_label(basicNode);
+     if (SelectDebugLevel >= Select_DebugBurgTrees) {
+       printcover(basicNode, 1, 0);
+       std::cerr << "\nCover cost == " << treecost(basicNode, 1, 0) <<"\n\n";
+       printMatches(basicNode);
+     }
+       
+     // Then recursively walk the tree to select instructions
+     SelectInstructionsForTree(basicNode, /*goalnt*/1);
+   }
+   
+   // Create the MachineBasicBlocks and add all of the MachineInstrs
+   // defined in the MachineCodeForInstruction objects to the MachineBasicBlocks.
+   MachineFunction &MF = MachineFunction::get(&F);
+   std::map<const BasicBlock *, MachineBasicBlock *> MBBMap;
+   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
+     MachineBasicBlock *MBB = new MachineBasicBlock(BI);
+     MF.getBasicBlockList().push_back(MBB);
+     MBBMap[BI] = MBB;
+ 
+     for (BasicBlock::iterator II = BI->begin(); II != BI->end(); ++II) {
+       MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(II);
+       MBB->insert(MBB->end(), mvec.begin(), mvec.end());
+     }
+   }
+ 
+   // Initialize Machine-CFG for the function.
+   for (MachineFunction::iterator i = MF.begin (), e = MF.end (); i != e; ++i) {
+     MachineBasicBlock &MBB = *i;
+     const BasicBlock *BB = MBB.getBasicBlock ();
+     // for each successor S of BB, add MBBMap[S] as a successor of MBB.
+     for (succ_const_iterator si = succ_begin(BB), se = succ_end(BB); si != se;
+          ++si) {
+       MachineBasicBlock *succMBB = MBBMap[*si];
+       assert (succMBB && "Can't find MachineBasicBlock for this successor");
+       MBB.addSuccessor (succMBB);
+     }
+   }
+ 
+   // Insert phi elimination code
+   InsertCodeForPhis(F);
+   
+   if (SelectDebugLevel >= Select_PrintMachineCode) {
+     std::cerr << "\n*** Machine instructions after INSTRUCTION SELECTION\n";
+     MachineFunction::get(&F).dump();
+   }
+   
+   return true;
+ }
+ 
+ /// InsertCodeForPhis - This method inserts Phi elimination code for
+ /// all Phi nodes in the given function.  After this method is called,
+ /// the Phi nodes still exist in the LLVM code, but copies are added to the
+ /// machine code.
+ ///
+ void V9ISel::InsertCodeForPhis(Function &F) {
+   // Iterate over every Phi node PN in F:
+   MachineFunction &MF = MachineFunction::get(&F);
+   for (MachineFunction::iterator BB = MF.begin(); BB != MF.end(); ++BB) {
+     for (BasicBlock::const_iterator IIt = BB->getBasicBlock()->begin();
+          const PHINode *PN = dyn_cast<PHINode>(IIt); ++IIt) {
+       // Create a new temporary register to hold the result of the Phi copy.
+       // The leak detector shouldn't track these nodes.  They are not garbage,
+       // even though their parent field is never filled in.
+       Value *PhiCpRes = new PHINode(PN->getType(), PN->getName() + ":PhiCp");
+       LeakDetector::removeGarbageObject(PhiCpRes);
+ 
+       // For each of PN's incoming values, insert a copy in the corresponding
+       // predecessor block.
+       MachineCodeForInstruction &MCforPN = MachineCodeForInstruction::get (PN);
+       for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
+         std::vector<MachineInstr*> mvec, CpVec;
+         Target.getRegInfo()->cpValue2Value(PN->getIncomingValue(i), 
+                                            PhiCpRes, mvec);
+         for (std::vector<MachineInstr*>::iterator MI=mvec.begin();
+              MI != mvec.end(); ++MI) {
+           std::vector<MachineInstr*> CpVec2 =
+             FixConstantOperandsForInstr(const_cast<PHINode*>(PN), *MI, Target);
+           CpVec2.push_back(*MI);
+           CpVec.insert(CpVec.end(), CpVec2.begin(), CpVec2.end());
+         }
+         // Insert the copy instructions into the predecessor BB.        
+         InsertPhiElimInstructions(PN->getIncomingBlock(i), CpVec);
+         MCforPN.insert (MCforPN.end (), CpVec.begin (), CpVec.end ());
+       }
+       // Insert a copy instruction from PhiCpRes to PN.
+       std::vector<MachineInstr*> mvec;
+       Target.getRegInfo()->cpValue2Value(PhiCpRes, const_cast<PHINode*>(PN),
+                                         mvec);
+       BB->insert(BB->begin(), mvec.begin(), mvec.end());
+       MCforPN.insert (MCforPN.end (), mvec.begin (), mvec.end ());
+     }  // for each Phi Instr in BB
+   } // for all BBs in function
+ }
+ 
+ /// InsertPhiElimInstructions - Inserts the instructions in CpVec into the
+ /// MachineBasicBlock corresponding to BB, just before its terminator
+ /// instruction. This is used by InsertCodeForPhis() to insert copies, above.
+ ///
+ void V9ISel::InsertPhiElimInstructions(BasicBlock *BB,
+                                        const std::vector<MachineInstr*>& CpVec)
+ { 
+   Instruction *TermInst = (Instruction*)BB->getTerminator();
+   MachineCodeForInstruction &MC4Term = MachineCodeForInstruction::get(TermInst);
+   MachineInstr *FirstMIOfTerm = MC4Term.front();
+   assert (FirstMIOfTerm && "No Machine Instrs for terminator");
+ 
+   MachineBasicBlock *MBB = FirstMIOfTerm->getParent();
+   assert(MBB && "Machine BB for predecessor's terminator not found");
+   MachineBasicBlock::iterator MCIt = FirstMIOfTerm;
+   assert(MCIt != MBB->end() && "Start inst of terminator not found");
+   
+   // Insert the copy instructions just before the first machine instruction
+   // generated for the terminator.
+   MBB->insert(MCIt, CpVec.begin(), CpVec.end());
+ }
+ 
+ /// SelectInstructionsForTree - Recursively walk the tree to select
+ /// instructions. Do this top-down so that child instructions can exploit
+ /// decisions made at the child instructions.
+ /// 
+ /// E.g., if br(setle(reg,const)) decides the constant is 0 and uses
+ /// a branch-on-integer-register instruction, then the setle node
+ /// can use that information to avoid generating the SUBcc instruction.
+ ///
+ /// Note that this cannot be done bottom-up because setle must do this
+ /// only if it is a child of the branch (otherwise, the result of setle
+ /// may be used by multiple instructions).
+ ///
+ void V9ISel::SelectInstructionsForTree(InstrTreeNode* treeRoot, int goalnt) {
+   // Get the rule that matches this node.
+   int ruleForNode = burm_rule(treeRoot->state, goalnt);
+   
+   if (ruleForNode == 0) {
+     std::cerr << "Could not match instruction tree for instr selection\n";
+     abort();
+   }
+   
+   // Get this rule's non-terminals and the corresponding child nodes (if any)
+   short *nts = burm_nts[ruleForNode];
+   
+   // First, select instructions for the current node and rule.
+   // (If this is a list node, not an instruction, then skip this step).
+   // This function is specific to the target architecture.
+   if (treeRoot->opLabel != VRegListOp) {
+     std::vector<MachineInstr*> minstrVec;
+     InstructionNode* instrNode = (InstructionNode*)treeRoot;
+     assert(instrNode->getNodeType() == InstrTreeNode::NTInstructionNode);
+     GetInstructionsByRule(instrNode, ruleForNode, nts, Target, minstrVec);
+     MachineCodeForInstruction &mvec = 
+       MachineCodeForInstruction::get(instrNode->getInstruction());
+     mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
+   }
+   
+   // Then, recursively compile the child nodes, if any.
+   // 
+   if (nts[0]) {
+     // i.e., there is at least one kid
+     InstrTreeNode* kids[2];
+     int currentRule = ruleForNode;
+     burm_kids(treeRoot, currentRule, kids);
+     
+     // First skip over any chain rules so that we don't visit
+     // the current node again.
+     while (ThisIsAChainRule(currentRule)) {
+       currentRule = burm_rule(treeRoot->state, nts[0]);
+       nts = burm_nts[currentRule];
+       burm_kids(treeRoot, currentRule, kids);
+     }
+       
+     // Now we have the first non-chain rule so we have found
+     // the actual child nodes.  Recursively compile them.
+     for (unsigned i = 0; nts[i]; i++) {
+       assert(i < 2);
+       InstrTreeNode::InstrTreeNodeType nodeType = kids[i]->getNodeType();
+       if (nodeType == InstrTreeNode::NTVRegListNode ||
+           nodeType == InstrTreeNode::NTInstructionNode)
+         SelectInstructionsForTree(kids[i], nts[i]);
+     }
+   }
+   
+   // Finally, do any post-processing on this node after its children
+   // have been translated.
+   if (treeRoot->opLabel != VRegListOp)
+     PostprocessMachineCodeForTree((InstructionNode*)treeRoot, ruleForNode, nts);
+ }
+ 
+ /// PostprocessMachineCodeForTree - Apply any final cleanups to
+ /// machine code for the root of a subtree after selection for all its
+ /// children has been completed.
+ ///
+ void V9ISel::PostprocessMachineCodeForTree(InstructionNode *instrNode,
+                                            int ruleForNode, short *nts) {
+   // Fix up any constant operands in the machine instructions to either
+   // use an immediate field or to load the constant into a register.
+   // Walk backwards and use direct indexes to allow insertion before current.
+   Instruction* vmInstr = instrNode->getInstruction();
+   MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(vmInstr);
+   for (unsigned i = mvec.size(); i != 0; --i) {
+     std::vector<MachineInstr*> loadConstVec =
+       FixConstantOperandsForInstr(vmInstr, mvec[i-1], Target);
+     mvec.insert(mvec.begin()+i-1, loadConstVec.begin(), loadConstVec.end());
+   }
+ }
+ 
+ /// createSparcV9BurgInstSelector - Creates and returns a new SparcV9
+ /// BURG-based instruction selection pass.
+ ///
+ FunctionPass *llvm::createSparcV9BurgInstSelector(TargetMachine &TM) {
+   return new V9ISel(TM);
+ }


Index: llvm/lib/Target/SparcV9/SparcV9BurgISel.h
diff -c /dev/null llvm/lib/Target/SparcV9/SparcV9BurgISel.h:1.1
*** /dev/null	Wed Aug  4 02:29:02 2004
--- llvm/lib/Target/SparcV9/SparcV9BurgISel.h	Wed Aug  4 02:28:51 2004
***************
*** 0 ****
--- 1,56 ----
+ //===-- SparcV9BurgISel.h ---------------------------------------*- C++ -*-===//
+ // 
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ // 
+ //===----------------------------------------------------------------------===//
+ //
+ // Global functions exposed by the BURG-based instruction selector
+ // for the SparcV9 target.
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #ifndef SPARCV9BURGISEL_H
+ #define SPARCV9BURGISEL_H
+ 
+ //#include "llvm/DerivedTypes.h"
+ //#include "llvm/Instruction.h"
+ //#include "SparcV9Internals.h"
+ 
+ namespace llvm {
+ 
+ class Constant;
+ class Instruction;
+ class TargetMachine;
+ class Function;
+ class Value;
+ class MachineInstr;
+ class MachineCodeForInstruction;
+ class FunctionPass;
+ 
+ /// ConstantMayNotFitInImmedField - Test if this constant may not fit in the
+ /// immediate field of the machine instructions (probably) generated for this
+ /// instruction.
+ ///
+ bool ConstantMayNotFitInImmedField (const Constant *CV, const Instruction *I);
+ 
+ /// CreateCodeToLoadConst - Create an instruction sequence to put the
+ /// constant `val' into the virtual register `dest'.  `val' may be a Constant
+ /// or a GlobalValue, viz., the constant address of a global variable or
+ /// function.  The generated instructions are returned in `mvec'.  Any temp.
+ /// registers (TmpInstruction) created are recorded in mcfi.
+ /// 
+ void CreateCodeToLoadConst (const TargetMachine &target, Function *F,
+   Value *val, Instruction *dest, std::vector<MachineInstr*> &mvec,
+   MachineCodeForInstruction &mcfi);
+ 
+ /// createSparcV9BurgInstSelector - Creates and returns a new SparcV9
+ /// BURG-based instruction selection pass.
+ ///
+ FunctionPass *createSparcV9BurgInstSelector(TargetMachine &TM);
+ 
+ } // End llvm namespace
+ 
+ #endif


Index: llvm/lib/Target/SparcV9/Makefile
diff -u llvm/lib/Target/SparcV9/Makefile:1.42 llvm/lib/Target/SparcV9/Makefile:1.43
--- llvm/lib/Target/SparcV9/Makefile:1.42	Sun Apr 25 02:04:49 2004
+++ llvm/lib/Target/SparcV9/Makefile	Wed Aug  4 02:28:51 2004
@@ -8,7 +8,7 @@
 ##===----------------------------------------------------------------------===##
 LEVEL = ../../..
 LIBRARYNAME = sparcv9
-DIRS = InstrSelection RegAlloc LiveVar
+DIRS = RegAlloc LiveVar
 
 ExtraSource = SparcV9.burm.cpp 
 






More information about the llvm-commits mailing list