[llvm-commits] CVS: llvm/lib/VMCore/Instructions.cpp iSwitch.cpp iOperators.cpp iMemory.cpp iCall.cpp iBranch.cpp

Alkis Evlogimenos alkis at cs.uiuc.edu
Thu Jul 29 05:33:36 PDT 2004



Changes in directory llvm/lib/VMCore:

Instructions.cpp added (r1.1)
iSwitch.cpp (r1.14) removed
iOperators.cpp (r1.30) removed
iMemory.cpp (r1.44) removed
iCall.cpp (r1.28) removed
iBranch.cpp (r1.15) removed

---
Log message:

Merge i*.cpp definitions into Instructions.cpp as part of bug403: http://llvm.cs.uiuc.edu/PR403 .


---
Diffs of the changes:  (+802 -0)

Index: llvm/lib/VMCore/Instructions.cpp
diff -c /dev/null llvm/lib/VMCore/Instructions.cpp:1.1
*** /dev/null	Thu Jul 29 07:33:36 2004
--- llvm/lib/VMCore/Instructions.cpp	Thu Jul 29 07:33:25 2004
***************
*** 0 ****
--- 1,802 ----
+ //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
+ // 
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ // 
+ //===----------------------------------------------------------------------===//
+ //
+ // This file implements the LLVM instructions...
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #include "llvm/BasicBlock.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/Function.h"
+ #include "llvm/Instructions.h"
+ #include "llvm/Support/CallSite.h"
+ using namespace llvm;
+ 
+ //===----------------------------------------------------------------------===//
+ //                        CallInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ void CallInst::init(Value *Func, const std::vector<Value*> &Params)
+ {
+   Operands.reserve(1+Params.size());
+   Operands.push_back(Use(Func, this));
+ 
+   const FunctionType *FTy = 
+     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
+ 
+   assert((Params.size() == FTy->getNumParams() || 
+           (FTy->isVarArg() && Params.size() > FTy->getNumParams())) &&
+          "Calling a function with bad signature");
+   for (unsigned i = 0; i != Params.size(); i++)
+     Operands.push_back(Use(Params[i], this));
+ }
+ 
+ void CallInst::init(Value *Func, Value *Actual1, Value *Actual2)
+ {
+   Operands.reserve(3);
+   Operands.push_back(Use(Func, this));
+   
+   const FunctionType *MTy = 
+     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
+ 
+   assert((MTy->getNumParams() == 2 ||
+           (MTy->isVarArg() && MTy->getNumParams() == 0)) &&
+          "Calling a function with bad signature");
+   Operands.push_back(Use(Actual1, this));
+   Operands.push_back(Use(Actual2, this));
+ }
+ 
+ void CallInst::init(Value *Func, Value *Actual)
+ {
+   Operands.reserve(2);
+   Operands.push_back(Use(Func, this));
+   
+   const FunctionType *MTy = 
+     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
+ 
+   assert((MTy->getNumParams() == 1 ||
+           (MTy->isVarArg() && MTy->getNumParams() == 0)) &&
+          "Calling a function with bad signature");
+   Operands.push_back(Use(Actual, this));
+ }
+ 
+ void CallInst::init(Value *Func)
+ {
+   Operands.reserve(1);
+   Operands.push_back(Use(Func, this));
+   
+   const FunctionType *MTy = 
+     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
+ 
+   assert(MTy->getNumParams() == 0 && "Calling a function with bad signature");
+ }
+ 
+ CallInst::CallInst(Value *Func, const std::vector<Value*> &Params, 
+                    const std::string &Name, Instruction *InsertBefore) 
+   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+                                  ->getElementType())->getReturnType(),
+                 Instruction::Call, Name, InsertBefore) {
+   init(Func, Params);
+ }
+ 
+ CallInst::CallInst(Value *Func, const std::vector<Value*> &Params, 
+                    const std::string &Name, BasicBlock *InsertAtEnd) 
+   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+                                  ->getElementType())->getReturnType(),
+                 Instruction::Call, Name, InsertAtEnd) {
+   init(Func, Params);
+ }
+ 
+ CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
+                    const std::string &Name, Instruction  *InsertBefore)
+   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+                                    ->getElementType())->getReturnType(),
+                 Instruction::Call, Name, InsertBefore) {
+   init(Func, Actual1, Actual2);
+ }
+ 
+ CallInst::CallInst(Value *Func, Value *Actual1, Value *Actual2,
+                    const std::string &Name, BasicBlock  *InsertAtEnd)
+   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+                                    ->getElementType())->getReturnType(),
+                 Instruction::Call, Name, InsertAtEnd) {
+   init(Func, Actual1, Actual2);
+ }
+ 
+ CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
+                    Instruction  *InsertBefore)
+   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+                                    ->getElementType())->getReturnType(),
+                 Instruction::Call, Name, InsertBefore) {
+   init(Func, Actual);
+ }
+ 
+ CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
+                    BasicBlock  *InsertAtEnd)
+   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+                                    ->getElementType())->getReturnType(),
+                 Instruction::Call, Name, InsertAtEnd) {
+   init(Func, Actual);
+ }
+ 
+ CallInst::CallInst(Value *Func, const std::string &Name,
+                    Instruction *InsertBefore)
+   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+                                    ->getElementType())->getReturnType(),
+                 Instruction::Call, Name, InsertBefore) {
+   init(Func);
+ }
+ 
+ CallInst::CallInst(Value *Func, const std::string &Name,
+                    BasicBlock *InsertAtEnd)
+   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
+                                    ->getElementType())->getReturnType(),
+                 Instruction::Call, Name, InsertAtEnd) {
+   init(Func);
+ }
+ 
+ CallInst::CallInst(const CallInst &CI) 
+   : Instruction(CI.getType(), Instruction::Call) {
+   Operands.reserve(CI.Operands.size());
+   for (unsigned i = 0; i < CI.Operands.size(); ++i)
+     Operands.push_back(Use(CI.Operands[i], this));
+ }
+ 
+ const Function *CallInst::getCalledFunction() const {
+   if (const Function *F = dyn_cast<Function>(Operands[0]))
+     return F;
+   return 0;
+ }
+ Function *CallInst::getCalledFunction() {
+   if (Function *F = dyn_cast<Function>(Operands[0]))
+     return F;
+   return 0;
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //                        InvokeInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
+                       const std::vector<Value*> &Params)
+ {
+   Operands.reserve(3+Params.size());
+   Operands.push_back(Use(Fn, this));
+   Operands.push_back(Use((Value*)IfNormal, this));
+   Operands.push_back(Use((Value*)IfException, this));
+   const FunctionType *MTy = 
+     cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
+   
+   assert((Params.size() == MTy->getNumParams()) || 
+          (MTy->isVarArg() && Params.size() > MTy->getNumParams()) &&
+          "Calling a function with bad signature");
+   
+   for (unsigned i = 0; i < Params.size(); i++)
+     Operands.push_back(Use(Params[i], this));
+ }
+ 
+ InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
+                        BasicBlock *IfException,
+                        const std::vector<Value*> &Params,
+                        const std::string &Name, Instruction *InsertBefore)
+   : TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
+                                     ->getElementType())->getReturnType(),
+                    Instruction::Invoke, Name, InsertBefore) {
+   init(Fn, IfNormal, IfException, Params);
+ }
+ 
+ InvokeInst::InvokeInst(Value *Fn, BasicBlock *IfNormal,
+                        BasicBlock *IfException,
+                        const std::vector<Value*> &Params,
+                        const std::string &Name, BasicBlock *InsertAtEnd)
+   : TerminatorInst(cast<FunctionType>(cast<PointerType>(Fn->getType())
+                                     ->getElementType())->getReturnType(),
+                    Instruction::Invoke, Name, InsertAtEnd) {
+   init(Fn, IfNormal, IfException, Params);
+ }
+ 
+ InvokeInst::InvokeInst(const InvokeInst &CI) 
+   : TerminatorInst(CI.getType(), Instruction::Invoke) {
+   Operands.reserve(CI.Operands.size());
+   for (unsigned i = 0; i < CI.Operands.size(); ++i)
+     Operands.push_back(Use(CI.Operands[i], this));
+ }
+ 
+ const Function *InvokeInst::getCalledFunction() const {
+   if (const Function *F = dyn_cast<Function>(Operands[0]))
+     return F;
+   return 0;
+ }
+ Function *InvokeInst::getCalledFunction() {
+   if (Function *F = dyn_cast<Function>(Operands[0]))
+     return F;
+   return 0;
+ }
+ 
+ // FIXME: Is this supposed to be here?
+ Function *CallSite::getCalledFunction() const {
+   Value *Callee = getCalledValue();
+   if (Function *F = dyn_cast<Function>(Callee))
+     return F;
+   return 0;
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                        ReturnInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ // Out-of-line ReturnInst method, put here so the C++ compiler can choose to
+ // emit the vtable for the class in this translation unit.
+ void ReturnInst::setSuccessor(unsigned idx, BasicBlock *NewSucc) {
+   assert(0 && "ReturnInst has no successors!");
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                        UnwindInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ // Likewise for UnwindInst
+ void UnwindInst::setSuccessor(unsigned idx, BasicBlock *NewSucc) {
+   assert(0 && "UnwindInst has no successors!");
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                        BranchInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ void BranchInst::init(BasicBlock *IfTrue)
+ {
+   assert(IfTrue != 0 && "Branch destination may not be null!");
+   Operands.reserve(1);
+   Operands.push_back(Use(IfTrue, this));
+ }
+ 
+ void BranchInst::init(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond)
+ {
+   assert(IfTrue && IfFalse && Cond &&
+          "Branch destinations and condition may not be null!");
+   assert(Cond && Cond->getType() == Type::BoolTy && 
+          "May only branch on boolean predicates!");
+   Operands.reserve(3);
+   Operands.push_back(Use(IfTrue, this));
+   Operands.push_back(Use(IfFalse, this));
+   Operands.push_back(Use(Cond, this));
+ }
+ 
+ BranchInst::BranchInst(const BranchInst &BI) : TerminatorInst(Instruction::Br) {
+   Operands.reserve(BI.Operands.size());
+   Operands.push_back(Use(BI.Operands[0], this));
+   if (BI.Operands.size() != 1) {
+     assert(BI.Operands.size() == 3 && "BR can have 1 or 3 operands!");
+     Operands.push_back(Use(BI.Operands[1], this));
+     Operands.push_back(Use(BI.Operands[2], this));
+   }
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                        AllocationInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ void AllocationInst::init(const Type *Ty, Value *ArraySize, unsigned iTy) {
+   assert(Ty != Type::VoidTy && "Cannot allocate void elements!");
+   // ArraySize defaults to 1.
+   if (!ArraySize) ArraySize = ConstantUInt::get(Type::UIntTy, 1);
+ 
+   Operands.reserve(1);
+   assert(ArraySize->getType() == Type::UIntTy &&
+          "Malloc/Allocation array size != UIntTy!");
+ 
+   Operands.push_back(Use(ArraySize, this));
+ }
+ 
+ AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, 
+                                const std::string &Name,
+                                Instruction *InsertBefore)
+   : Instruction(PointerType::get(Ty), iTy, Name, InsertBefore) {
+   init(Ty, ArraySize, iTy);
+ }
+ 
+ AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, 
+                                const std::string &Name,
+                                BasicBlock *InsertAtEnd)
+   : Instruction(PointerType::get(Ty), iTy, Name, InsertAtEnd) {
+   init(Ty, ArraySize, iTy);
+ }
+ 
+ bool AllocationInst::isArrayAllocation() const {
+   return getOperand(0) != ConstantUInt::get(Type::UIntTy, 1);
+ }
+ 
+ const Type *AllocationInst::getAllocatedType() const {
+   return getType()->getElementType();
+ }
+ 
+ AllocaInst::AllocaInst(const AllocaInst &AI)
+   : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
+                    Instruction::Alloca) {
+ }
+ 
+ MallocInst::MallocInst(const MallocInst &MI)
+   : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
+                    Instruction::Malloc) {
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                             FreeInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ void FreeInst::init(Value *Ptr)
+ {
+   assert(Ptr && isa<PointerType>(Ptr->getType()) && "Can't free nonpointer!");
+   Operands.reserve(1);
+   Operands.push_back(Use(Ptr, this));
+ }
+ 
+ FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
+   : Instruction(Type::VoidTy, Free, "", InsertBefore) {
+   init(Ptr);
+ }
+ 
+ FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
+   : Instruction(Type::VoidTy, Free, "", InsertAtEnd) {
+   init(Ptr);
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //                           LoadInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ void LoadInst::init(Value *Ptr) {
+   assert(Ptr && isa<PointerType>(Ptr->getType()) && 
+          "Ptr must have pointer type.");
+   Operands.reserve(1);
+   Operands.push_back(Use(Ptr, this));
+ }
+ 
+ LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
+   : Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                 Load, Name, InsertBef), Volatile(false) {
+   init(Ptr);
+ }
+ 
+ LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
+   : Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                 Load, Name, InsertAE), Volatile(false) {
+   init(Ptr);
+ }
+ 
+ LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
+                    Instruction *InsertBef)
+   : Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                 Load, Name, InsertBef), Volatile(isVolatile) {
+   init(Ptr);
+ }
+ 
+ LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
+                    BasicBlock *InsertAE)
+   : Instruction(cast<PointerType>(Ptr->getType())->getElementType(),
+                 Load, Name, InsertAE), Volatile(isVolatile) {
+   init(Ptr);
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //                           StoreInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ StoreInst::StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore)
+   : Instruction(Type::VoidTy, Store, "", InsertBefore), Volatile(false) {
+   init(Val, Ptr);
+ }
+ 
+ StoreInst::StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd)
+   : Instruction(Type::VoidTy, Store, "", InsertAtEnd), Volatile(false) {
+   init(Val, Ptr);
+ }
+ 
+ StoreInst::StoreInst(Value *Val, Value *Ptr, bool isVolatile, 
+                      Instruction *InsertBefore)
+   : Instruction(Type::VoidTy, Store, "", InsertBefore), Volatile(isVolatile) {
+   init(Val, Ptr);
+ }
+ 
+ StoreInst::StoreInst(Value *Val, Value *Ptr, bool isVolatile, 
+                      BasicBlock *InsertAtEnd)
+   : Instruction(Type::VoidTy, Store, "", InsertAtEnd), Volatile(isVolatile) {
+   init(Val, Ptr);
+ }
+ 
+ void StoreInst::init(Value *Val, Value *Ptr) {
+   assert(isa<PointerType>(Ptr->getType()) &&
+          Val->getType() == cast<PointerType>(Ptr->getType())->getElementType()
+          && "Ptr must have pointer type.");
+ 
+   Operands.reserve(2);
+   Operands.push_back(Use(Val, this));
+   Operands.push_back(Use(Ptr, this));
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                       GetElementPtrInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ // checkType - Simple wrapper function to give a better assertion failure
+ // message on bad indexes for a gep instruction.
+ //
+ static inline const Type *checkType(const Type *Ty) {
+   assert(Ty && "Invalid indices for type!");
+   return Ty;
+ }
+ 
+ void GetElementPtrInst::init(Value *Ptr, const std::vector<Value*> &Idx)
+ {
+   Operands.reserve(1+Idx.size());
+   Operands.push_back(Use(Ptr, this));
+ 
+   for (unsigned i = 0, E = Idx.size(); i != E; ++i)
+     Operands.push_back(Use(Idx[i], this));
+ }
+ 
+ void GetElementPtrInst::init(Value *Ptr, Value *Idx0, Value *Idx1) {
+   Operands.reserve(3);
+   Operands.push_back(Use(Ptr, this));
+   Operands.push_back(Use(Idx0, this));
+   Operands.push_back(Use(Idx1, this));
+ }
+ 
+ GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
+ 				     const std::string &Name, Instruction *InBe)
+   : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
+                                                           Idx, true))),
+                 GetElementPtr, Name, InBe) {
+   init(Ptr, Idx);
+ }
+ 
+ GetElementPtrInst::GetElementPtrInst(Value *Ptr, const std::vector<Value*> &Idx,
+ 				     const std::string &Name, BasicBlock *IAE)
+   : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
+                                                           Idx, true))),
+                 GetElementPtr, Name, IAE) {
+   init(Ptr, Idx);
+ }
+ 
+ GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
+                                      const std::string &Name, Instruction *InBe)
+   : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
+                                                           Idx0, Idx1, true))),
+                 GetElementPtr, Name, InBe) {
+   init(Ptr, Idx0, Idx1);
+ }
+ 
+ GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx0, Value *Idx1,
+ 		                     const std::string &Name, BasicBlock *IAE)
+   : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),
+                                                           Idx0, Idx1, true))),
+                 GetElementPtr, Name, IAE) {
+   init(Ptr, Idx0, Idx1);
+ }
+ 
+ // getIndexedType - Returns the type of the element that would be loaded with
+ // a load instruction with the specified parameters.
+ //
+ // A null type is returned if the indices are invalid for the specified 
+ // pointer type.
+ //
+ const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, 
+                                               const std::vector<Value*> &Idx,
+                                               bool AllowCompositeLeaf) {
+   if (!isa<PointerType>(Ptr)) return 0;   // Type isn't a pointer type!
+ 
+   // Handle the special case of the empty set index set...
+   if (Idx.empty())
+     if (AllowCompositeLeaf ||
+         cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
+       return cast<PointerType>(Ptr)->getElementType();
+     else
+       return 0;
+  
+   unsigned CurIdx = 0;
+   while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
+     if (Idx.size() == CurIdx) {
+       if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
+       return 0;   // Can't load a whole structure or array!?!?
+     }
+ 
+     Value *Index = Idx[CurIdx++];
+     if (isa<PointerType>(CT) && CurIdx != 1)
+       return 0;  // Can only index into pointer types at the first index!
+     if (!CT->indexValid(Index)) return 0;
+     Ptr = CT->getTypeAtIndex(Index);
+ 
+     // If the new type forwards to another type, then it is in the middle
+     // of being refined to another type (and hence, may have dropped all
+     // references to what it was using before).  So, use the new forwarded
+     // type.
+     if (const Type * Ty = Ptr->getForwardedType()) {
+       Ptr = Ty;
+     }
+   }
+   return CurIdx == Idx.size() ? Ptr : 0;
+ }
+ 
+ const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, 
+                                               Value *Idx0, Value *Idx1,
+                                               bool AllowCompositeLeaf) {
+   const PointerType *PTy = dyn_cast<PointerType>(Ptr);
+   if (!PTy) return 0;   // Type isn't a pointer type!
+ 
+   // Check the pointer index.
+   if (!PTy->indexValid(Idx0)) return 0;
+ 
+   const CompositeType *CT = dyn_cast<CompositeType>(PTy->getElementType());
+   if (!CT || !CT->indexValid(Idx1)) return 0;
+ 
+   const Type *ElTy = CT->getTypeAtIndex(Idx1);
+   if (AllowCompositeLeaf || ElTy->isFirstClassType())
+     return ElTy;
+   return 0;
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                             BinaryOperator Class
+ //===----------------------------------------------------------------------===//
+ 
+ void BinaryOperator::init(BinaryOps iType, Value *S1, Value *S2)
+ {
+   Operands.reserve(2);
+   Operands.push_back(Use(S1, this));
+   Operands.push_back(Use(S2, this));
+   assert(S1 && S2 && S1->getType() == S2->getType());
+ 
+ #ifndef NDEBUG
+   switch (iType) {
+   case Add: case Sub:
+   case Mul: case Div:
+   case Rem:
+     assert(getType() == S1->getType() &&
+            "Arithmetic operation should return same type as operands!");
+     assert((getType()->isInteger() || getType()->isFloatingPoint()) && 
+            "Tried to create an arithmetic operation on a non-arithmetic type!");
+     break;
+   case And: case Or:
+   case Xor:
+     assert(getType() == S1->getType() &&
+            "Logical operation should return same type as operands!");
+     assert(getType()->isIntegral() &&
+            "Tried to create an logical operation on a non-integral type!");
+     break;
+   case SetLT: case SetGT: case SetLE:
+   case SetGE: case SetEQ: case SetNE:
+     assert(getType() == Type::BoolTy && "Setcc must return bool!");
+   default:
+     break;
+   }
+ #endif
+ }
+ 
+ BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
+ 				       const std::string &Name,
+                                        Instruction *InsertBefore) {
+   assert(S1->getType() == S2->getType() &&
+          "Cannot create binary operator with two operands of differing type!");
+   switch (Op) {
+   // Binary comparison operators...
+   case SetLT: case SetGT: case SetLE:
+   case SetGE: case SetEQ: case SetNE:
+     return new SetCondInst(Op, S1, S2, Name, InsertBefore);
+ 
+   default:
+     return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
+   }
+ }
+ 
+ BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
+ 				       const std::string &Name,
+                                        BasicBlock *InsertAtEnd) {
+   BinaryOperator *Res = create(Op, S1, S2, Name);
+   InsertAtEnd->getInstList().push_back(Res);
+   return Res;
+ }
+ 
+ BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
+                                           Instruction *InsertBefore) {
+   if (!Op->getType()->isFloatingPoint())
+     return new BinaryOperator(Instruction::Sub,
+                               Constant::getNullValue(Op->getType()), Op,
+                               Op->getType(), Name, InsertBefore);
+   else
+     return new BinaryOperator(Instruction::Sub,
+                               ConstantFP::get(Op->getType(), -0.0), Op,
+                               Op->getType(), Name, InsertBefore);
+ }
+ 
+ BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
+                                           BasicBlock *InsertAtEnd) {
+   if (!Op->getType()->isFloatingPoint())
+     return new BinaryOperator(Instruction::Sub,
+                               Constant::getNullValue(Op->getType()), Op,
+                               Op->getType(), Name, InsertAtEnd);
+   else
+     return new BinaryOperator(Instruction::Sub,
+                               ConstantFP::get(Op->getType(), -0.0), Op,
+                               Op->getType(), Name, InsertAtEnd);
+ }
+ 
+ BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
+                                           Instruction *InsertBefore) {
+   return new BinaryOperator(Instruction::Xor, Op,
+                             ConstantIntegral::getAllOnesValue(Op->getType()),
+                             Op->getType(), Name, InsertBefore);
+ }
+ 
+ BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
+                                           BasicBlock *InsertAtEnd) {
+   return new BinaryOperator(Instruction::Xor, Op,
+                             ConstantIntegral::getAllOnesValue(Op->getType()),
+                             Op->getType(), Name, InsertAtEnd);
+ }
+ 
+ 
+ // isConstantAllOnes - Helper function for several functions below
+ static inline bool isConstantAllOnes(const Value *V) {
+   return isa<ConstantIntegral>(V) &&cast<ConstantIntegral>(V)->isAllOnesValue();
+ }
+ 
+ bool BinaryOperator::isNeg(const Value *V) {
+   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
+     if (Bop->getOpcode() == Instruction::Sub)
+       if (!V->getType()->isFloatingPoint())
+         return Bop->getOperand(0) == Constant::getNullValue(Bop->getType());
+       else
+         return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0);
+   return false;
+ }
+ 
+ bool BinaryOperator::isNot(const Value *V) {
+   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
+     return (Bop->getOpcode() == Instruction::Xor &&
+             (isConstantAllOnes(Bop->getOperand(1)) ||
+              isConstantAllOnes(Bop->getOperand(0))));
+   return false;
+ }
+ 
+ Value *BinaryOperator::getNegArgument(BinaryOperator *Bop) {
+   assert(isNeg(Bop) && "getNegArgument from non-'neg' instruction!");
+   return Bop->getOperand(1);
+ }
+ 
+ const Value *BinaryOperator::getNegArgument(const BinaryOperator *Bop) {
+   return getNegArgument((BinaryOperator*)Bop);
+ }
+ 
+ Value *BinaryOperator::getNotArgument(BinaryOperator *Bop) {
+   assert(isNot(Bop) && "getNotArgument on non-'not' instruction!");
+   Value *Op0 = Bop->getOperand(0);
+   Value *Op1 = Bop->getOperand(1);
+   if (isConstantAllOnes(Op0)) return Op1;
+ 
+   assert(isConstantAllOnes(Op1));
+   return Op0;
+ }
+ 
+ const Value *BinaryOperator::getNotArgument(const BinaryOperator *Bop) {
+   return getNotArgument((BinaryOperator*)Bop);
+ }
+ 
+ 
+ // swapOperands - Exchange the two operands to this instruction.  This
+ // instruction is safe to use on any binary instruction and does not
+ // modify the semantics of the instruction.  If the instruction is
+ // order dependent (SetLT f.e.) the opcode is changed.
+ //
+ bool BinaryOperator::swapOperands() {
+   if (isCommutative())
+     ;  // If the instruction is commutative, it is safe to swap the operands
+   else if (SetCondInst *SCI = dyn_cast<SetCondInst>(this))
+     /// FIXME: SetCC instructions shouldn't all have different opcodes.
+     setOpcode(SCI->getSwappedCondition());
+   else
+     return true;   // Can't commute operands
+ 
+   std::swap(Operands[0], Operands[1]);
+   return false;
+ }
+ 
+ 
+ //===----------------------------------------------------------------------===//
+ //                             SetCondInst Class
+ //===----------------------------------------------------------------------===//
+ 
+ SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2, 
+                          const std::string &Name, Instruction *InsertBefore)
+   : BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertBefore) {
+ 
+   // Make sure it's a valid type... getInverseCondition will assert out if not.
+   assert(getInverseCondition(Opcode));
+ }
+ 
+ SetCondInst::SetCondInst(BinaryOps Opcode, Value *S1, Value *S2, 
+                          const std::string &Name, BasicBlock *InsertAtEnd)
+   : BinaryOperator(Opcode, S1, S2, Type::BoolTy, Name, InsertAtEnd) {
+ 
+   // Make sure it's a valid type... getInverseCondition will assert out if not.
+   assert(getInverseCondition(Opcode));
+ }
+ 
+ // getInverseCondition - Return the inverse of the current condition opcode.
+ // For example seteq -> setne, setgt -> setle, setlt -> setge, etc...
+ //
+ Instruction::BinaryOps SetCondInst::getInverseCondition(BinaryOps Opcode) {
+   switch (Opcode) {
+   default:
+     assert(0 && "Unknown setcc opcode!");
+   case SetEQ: return SetNE;
+   case SetNE: return SetEQ;
+   case SetGT: return SetLE;
+   case SetLT: return SetGE;
+   case SetGE: return SetLT;
+   case SetLE: return SetGT;
+   }
+ }
+ 
+ // getSwappedCondition - Return the condition opcode that would be the result
+ // of exchanging the two operands of the setcc instruction without changing
+ // the result produced.  Thus, seteq->seteq, setle->setge, setlt->setgt, etc.
+ //
+ Instruction::BinaryOps SetCondInst::getSwappedCondition(BinaryOps Opcode) {
+   switch (Opcode) {
+   default: assert(0 && "Unknown setcc instruction!");
+   case SetEQ: case SetNE: return Opcode;
+   case SetGT: return SetLT;
+   case SetLT: return SetGT;
+   case SetGE: return SetLE;
+   case SetLE: return SetGE;
+   }
+ }
+ 
+ //===----------------------------------------------------------------------===//
+ //                        SwitchInst Implementation
+ //===----------------------------------------------------------------------===//
+ 
+ void SwitchInst::init(Value *Value, BasicBlock *Default)
+ {
+   assert(Value && Default);
+   Operands.push_back(Use(Value, this));
+   Operands.push_back(Use(Default, this));
+ }
+ 
+ SwitchInst::SwitchInst(const SwitchInst &SI) 
+   : TerminatorInst(Instruction::Switch) {
+   Operands.reserve(SI.Operands.size());
+ 
+   for (unsigned i = 0, E = SI.Operands.size(); i != E; i+=2) {
+     Operands.push_back(Use(SI.Operands[i], this));
+     Operands.push_back(Use(SI.Operands[i+1], this));
+   }
+ }
+ 
+ /// addCase - Add an entry to the switch instruction...
+ ///
+ void SwitchInst::addCase(Constant *OnVal, BasicBlock *Dest) {
+   Operands.push_back(Use((Value*)OnVal, this));
+   Operands.push_back(Use((Value*)Dest, this));
+ }
+ 
+ /// removeCase - This method removes the specified successor from the switch
+ /// instruction.  Note that this cannot be used to remove the default
+ /// destination (successor #0).
+ ///
+ void SwitchInst::removeCase(unsigned idx) {
+   assert(idx != 0 && "Cannot remove the default case!");
+   assert(idx*2 < Operands.size() && "Successor index out of range!!!");
+   Operands.erase(Operands.begin()+idx*2, Operands.begin()+(idx+1)*2);  
+ }





More information about the llvm-commits mailing list