[llvm-commits] CVS: llvm/docs/CodeGenerator.html

Chris Lattner lattner at cs.uiuc.edu
Thu Jun 3 19:20:12 PDT 2004


Changes in directory llvm/docs:

CodeGenerator.html updated: 1.5 -> 1.6

---
Log message:

Fix PR356: http://llvm.cs.uiuc.edu/PR356 : [doc] lib/Target/X86/README.txt needs update

Also add some documentation about how instructions work



---
Diffs of the changes:  (+281 -2)

Index: llvm/docs/CodeGenerator.html
diff -u llvm/docs/CodeGenerator.html:1.5 llvm/docs/CodeGenerator.html:1.6
--- llvm/docs/CodeGenerator.html:1.5	Thu Jun  3 11:55:57 2004
+++ llvm/docs/CodeGenerator.html	Thu Jun  3 19:16:02 2004
@@ -30,6 +30,9 @@
     </ul>
   </li>
   <li><a href="#codegendesc">Machine code description classes</a>
+    <ul>
+      <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
+    </ul>
   </li>
   <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
   </li>
@@ -61,7 +64,7 @@
 suite of reusable components for translating the LLVM internal representation to
 the machine code for a specified target -- either in assembly form (suitable for
 a static compiler) or in binary machine code format (usable for a JIT compiler).
-The LLVM target-independent code generator consists of four main components:</p>
+The LLVM target-independent code generator consists of five main components:</p>
 
 <ol>
 <li><a href="#targetdesc">Abstract target description</a> interfaces which
@@ -84,6 +87,11 @@
 target-specific passes, to build complete code generators for a specific target.
 Target descriptions live in <tt>lib/Target/</tt>.</li>
 
+<li><a href="#jit">The target-independent JIT components</a>.  The LLVM JIT is
+completely target independent (it uses the <tt>TargetJITInfo</tt> structure to
+interface for target-specific issues.  The code for the target-independent
+JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
+
 </ol>
 
 <p>
@@ -345,7 +353,278 @@
 </div>
 <!-- *********************************************************************** -->
 
+<div class="doc_text">
+
+<p>
+At the high-level, LLVM code is translated to a machine specific representation
+formed out of MachineFunction, MachineBasicBlock, and <a 
+href="#machineinstr"><tt>MachineInstr</tt></a> instances
+(defined in include/llvm/CodeGen).  This representation is completely target
+agnostic, representing instructions in their most abstract form: an opcode and a
+series of operands.  This representation is designed to support both SSA
+representation for machine code, as well as a register allocated, non-SSA form.
+</p>
+
+</div>
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
+</div>
+
+<div class="doc_text">
+
+<p>Target machine instructions are represented as instances of the
+<tt>MachineInstr</tt> class.  This class is an extremely abstract way of
+representing machine instructions.  In particular, all it keeps track of is 
+an opcode number and some number of operands.</p>
+
+<p>The opcode number is an simple unsigned number that only has meaning to a 
+specific backend.  All of the instructions for a target should be defined in 
+the <tt>*InstrInfo.td</tt> file for the target, and the opcode enum values
+are autogenerated from this description.  The <tt>MachineInstr</tt> class does
+not have any information about how to intepret the instruction (i.e., what the 
+semantics of the instruction are): for that you must refer to the 
+<tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p> 
+
+<p>The operands of a machine instruction can be of several different types:
+they can be a register reference, constant integer, basic block reference, etc.
+In addition, a machine operand should be marked as a def or a use of the value
+(though only registers are allowed to be defs).</p>
+
+<p>By convention, the LLVM code generator orders instruction operands so that
+all register definitions come before the register uses, even on architectures
+that are normally printed in other orders.  For example, the sparc add 
+instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
+and stores the result into the "%i3" register.  In the LLVM code generator,
+the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the destination
+first.</p>
+
+<p>Keeping destination operands at the beginning of the operand list has several
+advantages.  In particular, the debugging printer will print the instruction 
+like this:</p>
+
+<pre>
+  %r3 = add %i1, %i2
+</pre>
+
+<p>If the first operand is a def, and it is also easier to <a 
+href="#buildmi">create instructions</a> whose only def is the first 
+operand.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
+</div>
+
+<div class="doc_text">
+
+<p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
+located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file.  The
+<tt>BuildMI</tt> functions make it easy to build arbitrary machine 
+instructions.  Usage of the <tt>BuildMI</tt> functions look like this: 
+</p>
+
+<pre>
+  // Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
+  // instruction.  The '1' specifies how many operands will be added.
+  MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
+
+  // Create the same instr, but insert it at the end of a basic block.
+  MachineBasicBlock &MBB = ...
+  BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
+
+  // Create the same instr, but insert it before a specified iterator point.
+  MachineBasicBlock::iterator MBBI = ...
+  BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
+
+  // Create a 'cmp Reg, 0' instruction, no destination reg.
+  MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
+  // Create an 'sahf' instruction which takes no operands and stores nothing.
+  MI = BuildMI(X86::SAHF, 0);
+
+  // Create a self looping branch instruction.
+  BuildMI(MBB, X86::JNE, 1).addMBB(&MBB);
+</pre>
+
+<p>
+The key thing to remember with the <tt>BuildMI</tt> functions is that you have
+to specify the number of operands that the machine instruction will take 
+(allowing efficient memory allocation).  Also, if operands default to be uses
+of values, not definitions.  If you need to add a definition operand (other 
+than the optional destination register), you must explicitly mark it as such.
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="fixedregs">Fixed (aka preassigned) registers</a>
+</div>
+
+<div class="doc_text">
+
+<p>One important issue that the code generator needs to be aware of is the
+presence of fixed registers.  In particular, there are often places in the 
+instruction stream where the register allocator <em>must</em> arrange for a
+particular value to be in a particular register.  This can occur due to 
+limitations in the instruction set (e.g., the X86 can only do a 32-bit divide 
+with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like calling
+conventions.  In any case, the instruction selector should emit code that 
+copies a virtual register into or out of a physical register when needed.</p>
+
+<p>For example, consider this simple LLVM example:</p>
+
+<pre>
+  int %test(int %X, int %Y) {
+    %Z = div int %X, %Y
+    ret int %Z
+  }
+</pre>
+
+<p>The X86 instruction selector produces this machine code for the div 
+and ret (use 
+"<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to get this):</p>
+
+<pre>
+        ;; Start of div
+        %EAX = mov %reg1024           ;; Copy X (in reg1024) into EAX
+        %reg1027 = sar %reg1024, 31
+        %EDX = mov %reg1027           ;; Sign extend X into EDX
+        idiv %reg1025                 ;; Divide by Y (in reg1025)
+        %reg1026 = mov %EAX           ;; Read the result (Z) out of EAX
+
+        ;; Start of ret
+        %EAX = mov %reg1026           ;; 32-bit return value goes in EAX
+        ret
+</pre>
+
+<p>By the end of code generation, the register allocator has coallesced
+the registers and deleted the resultant identity moves, producing the
+following code:</p>
+
+<pre>
+        ;; X is in EAX, Y is in ECX
+        mov %EAX, %EDX
+        sar %EDX, 31
+        idiv %ECX
+        ret 
+</pre>
+
+<p>This approach is extremely general (if it can handle the X86 architecture, 
+it can handle anything!) and allows all of the target specific
+knowledge about the instruction stream to be isolated in the instruction 
+selector.  Note that physical registers should have a short lifetime for good 
+code generation, and all physical registers are assumed dead on entry and
+exit of basic blocks (before register allocation).  Thus if you need a value
+to be live across basic block boundaries, it <em>must</em> live in a virtual 
+register.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="ssa">Machine code SSA form</a>
+</div>
+
+<div class="doc_text">
+
+<p><tt>MachineInstr</tt>'s are initially instruction selected in SSA-form, and
+are maintained in SSA-form until register allocation happens.  For the most 
+part, this is trivially simple since LLVM is already in SSA form: LLVM PHI nodes
+become machine code PHI nodes, and virtual registers are only allowed to have a
+single definition.</p>
+
+<p>After register allocation, machine code is no longer in SSA-form, as there 
+are no virtual registers left in the code.</p>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section">
+  <a name="targetimpls">Target description implementations</a>
+</div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>This section of the document explains any features or design decisions that
+are specific to the code generator for a particular target.</p>
+
+</div>
+
+
+<!-- ======================================================================= -->
+<div class="doc_subsection">
+  <a name="x86">The X86 backend</a>
+</div>
 
+<div class="doc_text">
+
+<p>
+The X86 code generator lives in the <tt>lib/Target/X86</tt> directory.  This
+code generator currently targets a generic P6-like processor.  As such, it
+produces a few P6-and-above instructions (like conditional moves), but it does
+not make use of newer features like MMX or SSE.  In the future, the X86 backend
+will have subtarget support added for specific processor families and 
+implementations.</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+The x86 has a very, uhm, flexible, way of accessing memory.  It is capable of
+forming memory addresses of the following expression directly in integer
+instructions (which use ModR/M addressing):</p>
+
+<pre>
+   Base+[1,2,4,8]*IndexReg+Disp32
+</pre>
+
+<p>Wow, that's crazy.  In order to represent this, LLVM tracks no less that 4
+operands for each memory operand of this form.  This means that the "load" form
+of 'mov' has the following "Operands" in this order:</p>
+
+<pre>
+Index:        0     |    1        2       3           4
+Meaning:   DestReg, | BaseReg,  Scale, IndexReg, Displacement
+OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg,   SignExtImm
+</pre>
+
+<p>Stores and all other instructions treat the four memory operands in the same
+way, in the same order.</p>
+</p>
+
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="x86_names">Instruction naming</a>
+</div>
+
+<div class="doc_text">
+
+<p>
+An instruction name consists of the base name, a default operand size
+followed by a character per operand with an optional special size. For
+example:</p>
+
+<p>
+<tt>ADD8rr</tt> -> add, 8-bit register, 8-bit register<br>
+<tt>IMUL16rmi</tt> -> imul, 16-bit register, 16-bit memory, 16-bit immediate<br>
+<tt>IMUL16rmi8</tt> -> imul, 16-bit register, 16-bit memory, 8-bit immediate<br>
+<tt>MOVSX32rm16</tt> -> movsx, 32-bit register, 16-bit memory
+</p>
+
+</div>
 
 <!-- *********************************************************************** -->
 <hr>
@@ -357,7 +636,7 @@
 
   <a href="mailto:sabre at nondot.org">Chris Lattner</a><br>
   <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date: 2004/06/03 16:55:57 $
+  Last modified: $Date: 2004/06/04 00:16:02 $
 </address>
 
 </body>





More information about the llvm-commits mailing list