[llvm-commits] CVS: llvm/lib/Transforms/Scalar/LowerGC.cpp

Chris Lattner lattner at cs.uiuc.edu
Sun May 23 16:21:01 PDT 2004


Changes in directory llvm/lib/Transforms/Scalar:

LowerGC.cpp added (r1.1)

---
Log message:

Implement the -lowergc pass which is used by code generators (like the CBE) 
that do not have builtin support for garbage collection.


---
Diffs of the changes:  (+326 -0)

Index: llvm/lib/Transforms/Scalar/LowerGC.cpp
diff -c /dev/null llvm/lib/Transforms/Scalar/LowerGC.cpp:1.1
*** /dev/null	Sun May 23 16:19:32 2004
--- llvm/lib/Transforms/Scalar/LowerGC.cpp	Sun May 23 16:19:22 2004
***************
*** 0 ****
--- 1,326 ----
+ //===-- LowerGC.cpp - Provide GC support for targets that don't -----------===//
+ //
+ //                     The LLVM Compiler Infrastructure
+ //
+ // This file was developed by the LLVM research group and is distributed under
+ // the University of Illinois Open Source License. See LICENSE.TXT for details.
+ //
+ //===----------------------------------------------------------------------===//
+ //
+ // This file implements lowering for the llvm.gc* intrinsics for targets that do
+ // not natively support them (which includes the C backend).  Note that the code
+ // generated is not as efficient as it would be for targets that natively
+ // support the GC intrinsics, but it is useful for getting new targets
+ // up-and-running quickly.
+ //
+ // This pass implements the code transformation described in this paper:
+ //   "Accurate Garbage Collection in an Uncooperative Environment"
+ //   Fergus Hendersen, ISMM, 2002
+ //
+ //===----------------------------------------------------------------------===//
+ 
+ #define DEBUG_TYPE "lowergc"
+ #include "llvm/Transforms/Scalar.h"
+ #include "llvm/Constants.h"
+ #include "llvm/DerivedTypes.h"
+ #include "llvm/Instructions.h"
+ #include "llvm/Module.h"
+ #include "llvm/Pass.h"
+ #include "llvm/Transforms/Utils/Cloning.h"
+ using namespace llvm;
+ 
+ namespace {
+   class LowerGC : public FunctionPass {
+     /// GCRootInt, GCReadInt, GCWriteInt - The function prototypes for the
+     /// llvm.gcread/llvm.gcwrite/llvm.gcroot intrinsics.
+     Function *GCRootInt, *GCReadInt, *GCWriteInt;
+ 
+     /// GCRead/GCWrite - These are the functions provided by the garbage
+     /// collector for read/write barriers.
+     Function *GCRead, *GCWrite;
+ 
+     /// RootChain - This is the global linked-list that contains the chain of GC
+     /// roots.
+     GlobalVariable *RootChain;
+ 
+     /// MainRootRecordType - This is the type for a function root entry if it
+     /// had zero roots.
+     const Type *MainRootRecordType;
+   public:
+     LowerGC() : GCRootInt(0), GCReadInt(0), GCWriteInt(0), 
+                 GCRead(0), GCWrite(0), RootChain(0), MainRootRecordType(0) {}
+     virtual bool doInitialization(Module &M);
+     virtual bool runOnFunction(Function &F);
+ 
+   private:
+     const StructType *getRootRecordType(unsigned NumRoots);
+   };
+ 
+   RegisterOpt<LowerGC>
+   X("lowergc", "Lower GC intrinsics, for GCless code generators");
+ }
+ 
+ /// createLowerGCPass - This function returns an instance of the "lowergc"
+ /// pass, which lowers garbage collection intrinsics to normal LLVM code.
+ FunctionPass *llvm::createLowerGCPass() {
+   return new LowerGC();
+ }
+ 
+ /// getRootRecordType - This function creates and returns the type for a root
+ /// record containing 'NumRoots' roots.
+ const StructType *LowerGC::getRootRecordType(unsigned NumRoots) {
+   // Build a struct that is a type used for meta-data/root pairs.
+   std::vector<const Type *> ST;
+   ST.push_back(GCRootInt->getFunctionType()->getParamType(0));
+   ST.push_back(GCRootInt->getFunctionType()->getParamType(1));
+   StructType *PairTy = StructType::get(ST);
+ 
+   // Build the array of pairs.
+   ArrayType *PairArrTy = ArrayType::get(PairTy, NumRoots);
+ 
+   // Now build the recursive list type.
+   PATypeHolder RootListH =
+     MainRootRecordType ? (Type*)MainRootRecordType : (Type*)OpaqueType::get();
+   ST.clear();
+   ST.push_back(PointerType::get(RootListH));         // Prev pointer
+   ST.push_back(Type::UIntTy);                        // NumElements in array
+   ST.push_back(PairArrTy);                           // The pairs
+   StructType *RootList = StructType::get(ST);
+   if (MainRootRecordType)
+     return RootList;
+ 
+   assert(NumRoots == 0 && "The main struct type should have zero entries!");
+   cast<OpaqueType>((Type*)RootListH.get())->refineAbstractTypeTo(RootList);
+   MainRootRecordType = RootListH;
+   return cast<StructType>(RootListH.get());
+ }
+ 
+ /// doInitialization - If this module uses the GC intrinsics, find them now.  If
+ /// not, this pass does not do anything.
+ bool LowerGC::doInitialization(Module &M) {
+   GCRootInt  = M.getNamedFunction("llvm.gcroot");
+   GCReadInt  = M.getNamedFunction("llvm.gcread");
+   GCWriteInt = M.getNamedFunction("llvm.gcwrite");
+   if (!GCRootInt && !GCReadInt && !GCWriteInt) return false;
+ 
+   PointerType *VoidPtr = PointerType::get(Type::SByteTy);
+   PointerType *VoidPtrPtr = PointerType::get(VoidPtr);
+ 
+   // If the program is using read/write barriers, find the implementations of
+   // them from the GC runtime library.
+   if (GCReadInt)        // Make:  sbyte* %llvm_gc_read(sbyte**)
+     GCRead = M.getOrInsertFunction("llvm_gc_read", VoidPtr, VoidPtrPtr, 0);
+   if (GCWriteInt)       // Make:  void %llvm_gc_write(sbyte*, sbyte**)
+     GCWrite = M.getOrInsertFunction("llvm_gc_write", Type::VoidTy,
+                                     VoidPtr, VoidPtrPtr, 0);
+ 
+   // If the program has GC roots, get or create the global root list.
+   if (GCRootInt) {
+     const StructType *RootListTy = getRootRecordType(0);
+     const Type *PRLTy = PointerType::get(RootListTy);
+     M.addTypeName("llvm_gc_root_ty", RootListTy);
+ 
+     // Get the root chain if it already exists.
+     RootChain = M.getGlobalVariable("llvm_gc_root_chain", PRLTy);
+     if (RootChain == 0) {
+       // If the root chain does not exist, insert a new one with linkonce
+       // linkage!
+       RootChain = new GlobalVariable(PRLTy, false, GlobalValue::LinkOnceLinkage,
+                                      Constant::getNullValue(RootListTy),
+                                      "llvm_gc_root_chain", &M);
+     } else if (RootChain->hasExternalLinkage() && RootChain->isExternal()) {
+       RootChain->setInitializer(Constant::getNullValue(PRLTy));
+       RootChain->setLinkage(GlobalValue::LinkOnceLinkage);
+     }
+   }
+   return true;
+ }
+ 
+ /// Coerce - If the specified operand number of the specified instruction does
+ /// not have the specified type, insert a cast.
+ static void Coerce(Instruction *I, unsigned OpNum, Type *Ty) {
+   if (I->getOperand(OpNum)->getType() != Ty) {
+     if (Constant *C = dyn_cast<Constant>(I->getOperand(OpNum)))
+       I->setOperand(OpNum, ConstantExpr::getCast(C, Ty));
+     else {
+       CastInst *C = new CastInst(I->getOperand(OpNum), Ty, "", I);
+       I->setOperand(OpNum, C);
+     }
+   }
+ }
+ 
+ /// runOnFunction - If the program is using GC intrinsics, replace any
+ /// read/write intrinsics with the appropriate read/write barrier calls, then
+ /// inline them.  Finally, build the data structures for 
+ bool LowerGC::runOnFunction(Function &F) {
+   // Quick exit for programs that are not using GC mechanisms.
+   if (!GCRootInt && !GCReadInt && !GCWriteInt) return false;
+ 
+   PointerType *VoidPtr    = PointerType::get(Type::SByteTy);
+   PointerType *VoidPtrPtr = PointerType::get(VoidPtr);
+ 
+   // If there are read/write barriers in the program, perform a quick pass over
+   // the function eliminating them.  While we are at it, remember where we see
+   // calls to llvm.gcroot.
+   std::vector<CallInst*> GCRoots;
+   std::vector<CallInst*> NormalCalls;
+ 
+   bool MadeChange = false;
+   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
+       if (CallInst *CI = dyn_cast<CallInst>(II++)) {
+         if (!CI->getCalledFunction() ||
+             !CI->getCalledFunction()->getIntrinsicID())
+           NormalCalls.push_back(CI);   // Remember all normal function calls.
+ 
+         if (Function *F = CI->getCalledFunction())
+           if (F == GCRootInt)
+             GCRoots.push_back(CI);
+           else if (F == GCReadInt || F == GCWriteInt) {
+             if (F == GCWriteInt) {
+               // Change a llvm.gcwrite call to call llvm_gc_write instead.
+               CI->setOperand(0, GCWrite);
+               // Insert casts of the operands as needed.
+               Coerce(CI, 1, VoidPtr);
+               Coerce(CI, 2, VoidPtrPtr);
+             } else {
+               Coerce(CI, 1, VoidPtrPtr);
+               if (CI->getType() == VoidPtr) {
+                 CI->setOperand(0, GCRead);
+               } else {
+                 // Create a whole new call to replace the old one.
+                 CallInst *NC = new CallInst(GCRead, CI->getOperand(1),
+                                             CI->getName(), CI);
+                 Value *NV = new CastInst(NC, CI->getType(), "", CI);
+                 CI->replaceAllUsesWith(NV);
+                 BB->getInstList().erase(CI);
+                 CI = NC;
+               }
+             }
+ 
+             // Now that we made the replacement, inline expand the call if
+             // possible, otherwise things will be too horribly expensive.
+             InlineFunction(CI);
+             MadeChange = true;
+           }
+       }
+   
+   // If there are no GC roots in this function, then there is no need to create
+   // a GC list record for it.
+   if (GCRoots.empty()) return MadeChange;
+ 
+   // Okay, there are GC roots in this function.  On entry to the function, add a
+   // record to the llvm_gc_root_chain, and remove it on exit.
+ 
+   // Create the alloca, and zero it out.
+   const StructType *RootListTy = getRootRecordType(GCRoots.size());
+   AllocaInst *AI = new AllocaInst(RootListTy, 0, "gcroots", F.begin()->begin());
+ 
+   // Insert the memset call after all of the allocas in the function.
+   BasicBlock::iterator IP = AI;
+   while (isa<AllocaInst>(IP)) ++IP;
+ 
+   Constant *Zero = ConstantUInt::get(Type::UIntTy, 0);
+   Constant *One  = ConstantUInt::get(Type::UIntTy, 1);
+ 
+   // Get a pointer to the prev pointer.
+   std::vector<Value*> Par;
+   Par.push_back(Zero);
+   Par.push_back(Zero);
+   Value *PrevPtrPtr = new GetElementPtrInst(AI, Par, "prevptrptr", IP);
+ 
+   // Load the previous pointer.
+   Value *PrevPtr = new LoadInst(RootChain, "prevptr", IP);
+   // Store the previous pointer into the prevptrptr
+   new StoreInst(PrevPtr, PrevPtrPtr, IP);
+ 
+   // Set the number of elements in this record.
+   Par[1] = ConstantUInt::get(Type::UIntTy, 1);
+   Value *NumEltsPtr = new GetElementPtrInst(AI, Par, "numeltsptr", IP);
+   new StoreInst(ConstantUInt::get(Type::UIntTy, GCRoots.size()), NumEltsPtr,IP);
+ 
+   Par[1] = ConstantUInt::get(Type::UIntTy, 2);
+   Par.resize(4);
+ 
+   const PointerType *PtrLocTy =
+     cast<PointerType>(GCRootInt->getFunctionType()->getParamType(0));
+   Constant *Null = ConstantPointerNull::get(PtrLocTy);
+ 
+   // Initialize all of the gcroot records now, and eliminate them as we go.
+   for (unsigned i = 0, e = GCRoots.size(); i != e; ++i) {
+     // Initialize the meta-data pointer.
+     Par[2] = ConstantUInt::get(Type::UIntTy, i);
+     Par[3] = One;
+     Value *MetaDataPtr = new GetElementPtrInst(AI, Par, "MetaDataPtr", IP);
+     assert(isa<Constant>(GCRoots[i]->getOperand(2)) || 
+            isa<GlobalValue>(GCRoots[i]->getOperand(2)));
+     new StoreInst(GCRoots[i]->getOperand(2), MetaDataPtr, IP);
+ 
+     // Initialize the root pointer to null on entry to the function.
+     Par[3] = Zero;
+     Value *RootPtrPtr = new GetElementPtrInst(AI, Par, "RootEntPtr", IP);
+     new StoreInst(Null, RootPtrPtr, IP);
+     
+     // Each occurrance of the llvm.gcroot intrinsic now turns into an
+     // initialization of the slot with the address and a zeroing out of the
+     // address specified.
+     new StoreInst(Constant::getNullValue(PtrLocTy->getElementType()),
+                   GCRoots[i]->getOperand(1), GCRoots[i]);
+     new StoreInst(GCRoots[i]->getOperand(1), RootPtrPtr, GCRoots[i]);
+     GCRoots[i]->getParent()->getInstList().erase(GCRoots[i]);
+   }
+ 
+   // Now that the record is all initialized, store the pointer into the global
+   // pointer.
+   Value *C = new CastInst(AI, PointerType::get(MainRootRecordType), "", IP);
+   new StoreInst(C, RootChain, IP);
+ 
+   // On exit from the function we have to remove the entry from the GC root
+   // chain.  Doing this is straight-forward for return and unwind instructions:
+   // just insert the appropriate copy.
+   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+     if (isa<UnwindInst>(BB->getTerminator()) ||
+         isa<ReturnInst>(BB->getTerminator())) {
+       // We could reuse the PrevPtr loaded on entry to the function, but this
+       // would make the value live for the whole function, which is probably a
+       // bad idea.  Just reload the value out of our stack entry.
+       PrevPtr = new LoadInst(PrevPtrPtr, "prevptr", BB->getTerminator());
+       new StoreInst(PrevPtr, RootChain, BB->getTerminator());
+     }
+ 
+   // If an exception is thrown from a callee we have to make sure to
+   // unconditionally take the record off the stack.  For this reason, we turn
+   // all call instructions into invoke whose cleanup pops the entry off the
+   // stack.  We only insert one cleanup block, which is shared by all invokes.
+   if (!NormalCalls.empty()) {
+     // Create the shared cleanup block.
+     BasicBlock *Cleanup = new BasicBlock("gc_cleanup", &F);
+     UnwindInst *UI = new UnwindInst(Cleanup);
+     PrevPtr = new LoadInst(PrevPtrPtr, "prevptr", UI);
+     new StoreInst(PrevPtr, RootChain, UI);
+   
+     // Loop over all of the function calls, turning them into invokes.
+     while (!NormalCalls.empty()) {
+       CallInst *CI = NormalCalls.back();
+       BasicBlock *CBB = CI->getParent();
+       NormalCalls.pop_back();
+ 
+       // Split the basic block containing the function call.
+       BasicBlock *NewBB = CBB->splitBasicBlock(CI, CBB->getName()+".cont");
+ 
+       // Remove the unconditional branch inserted at the end of the CBB.
+       CBB->getInstList().pop_back();
+       NewBB->getInstList().remove(CI);
+       
+       // Create a new invoke instruction.
+       Value *II = new InvokeInst(CI->getCalledValue(), NewBB, Cleanup,
+                                  std::vector<Value*>(CI->op_begin()+1,
+                                                      CI->op_end()),
+                                  CI->getName(), CBB);
+       CI->replaceAllUsesWith(II);
+       delete CI;
+     }
+   }
+ 
+   return true;
+ }





More information about the llvm-commits mailing list