[llvm-commits] CVS: llvm/lib/Transforms/IPO/FunctionInlining.cpp

Chris Lattner lattner at cs.uiuc.edu
Thu May 29 10:12:06 PDT 2003


Changes in directory llvm/lib/Transforms/IPO:

FunctionInlining.cpp updated: 1.44 -> 1.45

---
Log message:

* Separate all of the grunt work of inlining out into the Utils library.
* Make the function inliner _significantly_ smarter.  :)



---
Diffs of the changes:

Index: llvm/lib/Transforms/IPO/FunctionInlining.cpp
diff -u llvm/lib/Transforms/IPO/FunctionInlining.cpp:1.44 llvm/lib/Transforms/IPO/FunctionInlining.cpp:1.45
--- llvm/lib/Transforms/IPO/FunctionInlining.cpp:1.44	Wed May  7 21:36:43 2003
+++ llvm/lib/Transforms/IPO/FunctionInlining.cpp	Thu May 29 10:11:31 2003
@@ -1,15 +1,6 @@
 //===- FunctionInlining.cpp - Code to perform function inlining -----------===//
 //
-// This file implements inlining of functions.
-//
-// Specifically, this:
-//   * Exports functionality to inline any function call
-//   * Inlines functions that consist of a single basic block
-//   * Is able to inline ANY function call
-//   . Has a smart heuristic for when to inline a function
-//
-// FIXME: This pass should transform alloca instructions in the called function
-//        into malloc/free pairs!  Or perhaps it should refuse to inline them!
+// This file implements bottom-up inlining of functions into callees.
 //
 //===----------------------------------------------------------------------===//
 
@@ -17,194 +8,161 @@
 #include "llvm/Transforms/Utils/Cloning.h"
 #include "llvm/Module.h"
 #include "llvm/Pass.h"
-#include "llvm/iTerminators.h"
-#include "llvm/iPHINode.h"
 #include "llvm/iOther.h"
-#include "llvm/DerivedTypes.h"
+#include "llvm/iMemory.h"
 #include "Support/Statistic.h"
-#include <algorithm>
+#include <set>
 
-static Statistic<> NumInlined("inline", "Number of functions inlined");
+namespace {
+  Statistic<> NumInlined("inline", "Number of functions inlined");
 
-// InlineFunction - This function forcibly inlines the called function into the
-// basic block of the caller.  This returns false if it is not possible to
-// inline this call.  The program is still in a well defined state if this 
-// occurs though.
-//
-// Note that this only does one level of inlining.  For example, if the 
-// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 
-// exists in the instruction stream.  Similiarly this will inline a recursive
-// function by one level.
-//
-bool InlineFunction(CallInst *CI) {
-  assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes");
-  assert(CI->getParent() && "Instruction not embedded in basic block!");
-  assert(CI->getParent()->getParent() && "Instruction not in function!");
-
-  const Function *CalledFunc = CI->getCalledFunction();
-  if (CalledFunc == 0 ||          // Can't inline external function or indirect
-      CalledFunc->isExternal() || // call, or call to a vararg function!
-      CalledFunc->getFunctionType()->isVarArg()) return false;
-
-  //std::cerr << "Inlining " << CalledFunc->getName() << " into " 
-  //     << CurrentMeth->getName() << "\n";
-
-  BasicBlock *OrigBB = CI->getParent();
-
-  // Call splitBasicBlock - The original basic block now ends at the instruction
-  // immediately before the call.  The original basic block now ends with an
-  // unconditional branch to NewBB, and NewBB starts with the call instruction.
-  //
-  BasicBlock *NewBB = OrigBB->splitBasicBlock(CI);
-  NewBB->setName("InlinedFunctionReturnNode");
+  struct FunctionInlining : public Pass {
+    virtual bool run(Module &M) {
+      bool Changed = false;
+      for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
+        Changed |= doInlining(I);
+      ProcessedFunctions.clear();
+      return Changed;
+    }
 
-  // Remove (unlink) the CallInst from the start of the new basic block.  
-  NewBB->getInstList().remove(CI);
+  private:
+    std::set<Function*> ProcessedFunctions;  // Prevent infinite recursion
+    bool doInlining(Function *F);
+  };
+  RegisterOpt<FunctionInlining> X("inline", "Function Integration/Inlining");
+}
 
-  // If we have a return value generated by this call, convert it into a PHI 
-  // node that gets values from each of the old RET instructions in the original
-  // function.
-  //
-  PHINode *PHI = 0;
-  if (!CI->use_empty()) {
-    // The PHI node should go at the front of the new basic block to merge all 
-    // possible incoming values.
-    //
-    PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(),
-                      NewBB->begin());
+Pass *createFunctionInliningPass() { return new FunctionInlining(); }
 
-    // Anything that used the result of the function call should now use the PHI
-    // node as their operand.
-    //
-    CI->replaceAllUsesWith(PHI);
-  }
 
-  // Get a pointer to the last basic block in the function, which will have the
-  // new function inlined after it.
-  //
-  Function::iterator LastBlock = &OrigBB->getParent()->back();
+// ShouldInlineFunction - The heuristic used to determine if we should inline
+// the function call or not.
+//
+static inline bool ShouldInlineFunction(const CallInst *CI) {
+  assert(CI->getParent() && CI->getParent()->getParent() && 
+	 "Call not embedded into a function!");
 
-  // Calculate the vector of arguments to pass into the function cloner...
-  std::map<const Value*, Value*> ValueMap;
-  assert((unsigned)std::distance(CalledFunc->abegin(), CalledFunc->aend()) == 
-         CI->getNumOperands()-1 && "No varargs calls can be inlined yet!");
-
-  unsigned i = 1;
-  for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
-       I != E; ++I, ++i)
-    ValueMap[I] = CI->getOperand(i);
-
-  // Since we are now done with the CallInst, we can delete it.
-  delete CI;
-
-  // Make a vector to capture the return instructions in the cloned function...
-  std::vector<ReturnInst*> Returns;
-
-  // Populate the value map with all of the globals in the program.
-  Module &M = *OrigBB->getParent()->getParent();
-  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
-    ValueMap[I] = I;
-  for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
-    ValueMap[I] = I;
-
-  // Do all of the hard part of cloning the callee into the caller...
-  CloneFunctionInto(OrigBB->getParent(), CalledFunc, ValueMap, Returns, ".i");
-
-  // Loop over all of the return instructions, turning them into unconditional
-  // branches to the merge point now...
-  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
-    ReturnInst *RI = Returns[i];
-    BasicBlock *BB = RI->getParent();
-
-    // Add a branch to the merge point where the PHI node would live...
-    new BranchInst(NewBB, RI);
-
-    if (PHI) {   // The PHI node should include this value!
-      assert(RI->getReturnValue() && "Ret should have value!");
-      assert(RI->getReturnValue()->getType() == PHI->getType() && 
-             "Ret value not consistent in function!");
-      PHI->addIncoming(RI->getReturnValue(), BB);
-    }
+  const Function *Callee = CI->getCalledFunction();
+  if (Callee == 0 || Callee->isExternal())
+    return false;  // Cannot inline an indirect call... or external function.
 
-    // Delete the return instruction now
-    BB->getInstList().erase(RI);
-  }
+  // Don't inline a recursive call.
+  const Function *Caller = CI->getParent()->getParent();
+  if (Caller == Callee) return false;
 
-  // Check to see if the PHI node only has one argument.  This is a common
-  // case resulting from there only being a single return instruction in the
-  // function call.  Because this is so common, eliminate the PHI node.
+  // InlineQuality - This value measures how good of an inline candidate this
+  // call site is to inline.  The initial value determines how aggressive the
+  // inliner is.  If this value is negative after the final computation,
+  // inlining is not performed.
   //
-  if (PHI && PHI->getNumIncomingValues() == 1) {
-    PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
-    PHI->getParent()->getInstList().erase(PHI);
-  }
+  int InlineQuality = 200;            // FIXME: This is VERY conservative
 
-  // Change the branch that used to go to NewBB to branch to the first basic 
-  // block of the inlined function.
+  // If there is only one call of the function, and it has internal linkage,
+  // make it almost guaranteed to be inlined.
   //
-  TerminatorInst *Br = OrigBB->getTerminator();
-  assert(Br && Br->getOpcode() == Instruction::Br && 
-	 "splitBasicBlock broken!");
-  Br->setOperand(0, ++LastBlock);
-  return true;
-}
+  if (Callee->use_size() == 1 && Callee->hasInternalLinkage())
+    InlineQuality += 30000;
 
-static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) {
-  assert(CI->getParent() && CI->getParent()->getParent() && 
-	 "Call not embedded into a function!");
-
-  // Don't inline a recursive call.
-  if (CI->getParent()->getParent() == F) return false;
+  // Add to the inline quality for properties that make the call valueable to
+  // inline.  This includes factors that indicate that the result of inlining
+  // the function will be optimizable.  Currently this just looks at arguments
+  // passed into the function.
+  //
+  for (User::const_op_iterator I = CI->op_begin()+1, E = CI->op_end();
+       I != E; ++I){
+    // Each argument passed in has a cost at both the caller and the callee
+    // sides.  This favors functions that take many arguments over functions
+    // that take few arguments.
+    InlineQuality += 20;
+
+    // If this is a function being passed in, it is very likely that we will be
+    // able to turn an indirect function call into a direct function call.
+    if (isa<Function>(I))
+      InlineQuality += 100;
+
+    // If a constant, global variable or alloca is passed in, inlining this
+    // function is likely to allow significant future optimization possibilities
+    // (constant propagation, scalar promotion, and scalarization), so encourage
+    // the inlining of the function.
+    //
+    else if (isa<Constant>(I) || isa<GlobalVariable>(I) || isa<AllocaInst>(I))
+      InlineQuality += 60;
+  }
 
-  // Don't inline something too big.  This is a really crappy heuristic
-  if (F->size() > 3) return false;
+  // Now that we have considered all of the factors that make the call site more
+  // likely to be inlined, look at factors that make us not want to inline it.
+  // As soon as the inline quality gets negative, bail out.
+
+  // Look at the size of the callee.  Each basic block counts as 20 units, and
+  // each instruction counts as 10.
+  for (Function::const_iterator BB = Callee->begin(), E = Callee->end();
+       BB != E; ++BB) {
+    InlineQuality -= BB->size()*10 + 20;
+    if (InlineQuality < 0) return false;
+  }
 
-  // Don't inline into something too big. This is a **really** crappy heuristic
-  if (CI->getParent()->getParent()->size() > 10) return false;
+  // Don't inline into something too big, which would make it bigger.  Here, we
+  // count each basic block as a single unit.
+  for (Function::const_iterator BB = Caller->begin(), E = Caller->end();
+       BB != E; ++BB) {
+    --InlineQuality;
+    if (InlineQuality < 0) return false;
+  }
 
-  // Go ahead and try just about anything else.
+  // If we get here, this call site is high enough "quality" to inline.
+  DEBUG(std::cerr << "Inlining in '" << Caller->getName()
+                  << "', quality = " << InlineQuality << ": " << *CI);
   return true;
 }
 
 
-static inline bool DoFunctionInlining(BasicBlock *BB) {
-  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
-    if (CallInst *CI = dyn_cast<CallInst>(I)) {
-      // Check to see if we should inline this function
-      Function *F = CI->getCalledFunction();
-      if (F && ShouldInlineFunction(CI, F)) {
-	return InlineFunction(CI);
-      }
-    }
-  }
-  return false;
-}
-
-// doFunctionInlining - Use a heuristic based approach to inline functions that
-// seem to look good.
+// doInlining - Use a heuristic based approach to inline functions that seem to
+// look good.
 //
-static bool doFunctionInlining(Function &F) {
-  bool Changed = false;
+bool FunctionInlining::doInlining(Function *F) {
+  // If we have already processed this function (ie, it is recursive) don't
+  // revisit.
+  std::set<Function*>::iterator PFI = ProcessedFunctions.lower_bound(F);
+  if (PFI != ProcessedFunctions.end() && *PFI == F) return false;
+
+  // Insert the function in the set so it doesn't get revisited.
+  ProcessedFunctions.insert(PFI, F);
 
-  // Loop through now and inline instructions a basic block at a time...
-  for (Function::iterator I = F.begin(); I != F.end(); )
-    if (DoFunctionInlining(I)) {
-      ++NumInlined;
-      Changed = true;
-    } else {
-      ++I;
+  bool Changed = false;
+  for (Function::iterator BB = F->begin(); BB != F->end(); ++BB)
+    for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
+      bool ShouldInc = true;
+      // Found a call instruction? FIXME: This should also handle INVOKEs
+      if (CallInst *CI = dyn_cast<CallInst>(I)) {
+        if (Function *Callee = CI->getCalledFunction())
+          doInlining(Callee);  // Inline in callees before callers!
+
+        // Decide whether we should inline this function...
+        if (ShouldInlineFunction(CI)) {
+          // Save an iterator to the instruction before the call if it exists,
+          // otherwise get an iterator at the end of the block... because the
+          // call will be destroyed.
+          //
+          BasicBlock::iterator SI;
+          if (I != BB->begin()) {
+            SI = I; --SI;           // Instruction before the call...
+          } else {
+            SI = BB->end();
+          }
+
+          // Attempt to inline the function...
+          if (InlineFunction(CI)) {
+            ++NumInlined;
+            Changed = true;
+            // Move to instruction before the call...
+            I = (SI == BB->end()) ? BB->begin() : SI;
+            ShouldInc = false;  // Don't increment iterator until next time
+          }
+        }
+      }
+      if (ShouldInc) ++I;
     }
 
   return Changed;
 }
 
-namespace {
-  struct FunctionInlining : public FunctionPass {
-    virtual bool runOnFunction(Function &F) {
-      return doFunctionInlining(F);
-    }
-  };
-  RegisterOpt<FunctionInlining> X("inline", "Function Integration/Inlining");
-}
-
-Pass *createFunctionInliningPass() { return new FunctionInlining(); }





More information about the llvm-commits mailing list