<table border="1" cellspacing="0" cellpadding="8">
    <tr>
        <th>Issue</th>
        <td>
            <a href=https://github.com/llvm/llvm-project/issues/69846>69846</a>
        </td>
    </tr>

    <tr>
        <th>Summary</th>
        <td>
            BOLT and shared libraries
        </td>
    </tr>

    <tr>
      <th>Labels</th>
      <td>
            BOLT
      </td>
    </tr>

    <tr>
      <th>Assignees</th>
      <td>
      </td>
    </tr>

    <tr>
      <th>Reporter</th>
      <td>
          zamazan4ik
      </td>
    </tr>
</table>

<pre>
    Hi!

>From the [README](https://github.com/llvm/llvm-project/blob/main/bolt/README.md) file right now it's not clear how to use BOLT properly for optimizing shared libraries.

I have a case where I want to optimize with BOLT a shared library but I have no possibility to instrument the calling this binary library (because it could be simply a Python interpreter).

Is it possible in this case to optimize the library with BOLT? If yes, are there any special additional steps for that? I have tried to instrument the library and call it from a non-instrumented binary - no profiles are written to the disk.

I expect something like it's already done for the Instrumentation PGO in Clang (PGO profiles are dumped to the disk for each instrumented shared library after the library unload).
</pre>
<img width="1px" height="1px" alt="" src="http://email.email.llvm.org/o/eJyUlMGO2zYQhp-GugxiyLTklQ467GbjdoEWCYq-wEgcmdOlSIEcxdU-fUF5ncRpL73YoEB-8_8_Z4gp8dkTdap-UvVzgYvYELs3nPANfcWvRR_M2v3KSu9V-azKx-vvKYYJxBKo-umPT4_Pv39S9bPSjRWZkzo8Kn1S-nRmsUu_G8Kk9Mm5r7e_D3MMf9EgSp96F3qlTxOyz6vg8scrcTcZpVsY2RFEPlsBHy7AovRDAh8EBkcYwYYLSIAlETx9_u1PmGOYKboVxhAhzMITv7E_Q7IYyYDjPmJkSrsf_byAxa8ECAMmgoulSPACF_SS2e8UgguLvVbBe94K_SLwTvEB5pAS9-xY1gxgnyQuE2WcJRjQuSxJLCfo2efzN47STU8DZjssMITFGegJEk-zWwHhyyo2eGAvFOdIQlHp9t5LyievChwB-2udzdmPZrKSW9VvxtThBC8jrJSU_ggYt22RAP0KaaaB0QEaw8LBo4MkNKctabEo2-FrBhKZzH9YvxVEb7YYstQxNxOCD_7D991kbsl82AKNITdC2iRdIouQz_jMNJxef7pN-numQSCFicTmqB2_0q130EVCs4IJnt61E7x8q4zZG3z55XOO7qNDf86Xktd3IswyzVeLNw0bi3CwcGfjp0bBUSjeZbF4FzD3-q4w3cG0hxYL6vbH9qFpm_pYFbZ7MA-NKet2rNvaDGV_qA7ViHVJpUEcsCy406U-7Eu931e61dWu6Uc69o0ux30zmiOpqqQJ2e3yAO5CPBec0kLdsW2qY-GwJ5e2V0DrrQ-0zu9B7LZ57ZdzUlXpOEn6DhAWR911HLz514AVS3Td_34QNlVJ6dMm7J8AAAD__72VkUg">