<table border="1" cellspacing="0" cellpadding="8">
<tr>
<th>Issue</th>
<td>
<a href=http://email.email.llvm.org/c/eJy1VE1vnDAQ_TVwsWoZf2EOHDaJcsoqkZq2ZwMGHHkxMpA0_77GYVkrm56qIkuMPX4zz37jqWzzXj73yimgJyDBqFxr3UkOtQJOdU5Nk7YD0AOYewVuZKXM99kpeQJyHI2u5by633o1gGXSQwceRzUcn4BtW2Nl41cg-BEct0YOXZaFOHEW24alOJxnsi611hj75rEJOSToLkGHhKNthOn9MtQB4L_jzfuspgTfT6r2M084wcLbCS5Wr_wNzt_hVTnZqWB_xLm14_vZy7IcUwFRjgFAEKEM0bC-2oSI3c4y9gE-LgZcwIznAjLBrsGYsQiMP8CHprmAOeE5gazItk2UXACMR_Z2_Gen5RnOGOHEe8kO3rP5OBGYk-3Qd3beU2e4KDIBi_V86y6aXVL769ht6qN-qcSvXhu1VcDDw88jyCjo9Kv6JCQYllOl3PS_BL2WkxKCRAGL_VKj02CRX-5lPfq1oJRgkXGIWX4NJyyG0zM8lpRyQUUOUVFs29aq2iCMR0wQ2tnHqtKcekUh39nn6KIFispDsKicY2ULnnMCeSilkDWqQo5YxIaAz9KmTUmaghQylcvcW1e-9ItXj6eLM2U_z2PQEd_70enZ-2BtT35izOv592109kXVs5_qaVqCnr5SaZb2JRYNZ1zmHFFJGiaFUhQxkvvXU1eYVqlZu81UJuwmwdj6vnIavZGwu_Tf0-sSI-yHL2_sX6mAOa0rhVCrUFO1Rd0kFKmT1AaucaB1XerKELJausk7jZ7m6eKUvk92g1Ib2-2mNrqzno0qt874uHdG8PTXZhs12jQwLwPtP8rWgPs>53641</a>
</td>
</tr>
<tr>
<th>Summary</th>
<td>
OpenMP Offloading Performance regression in BabelStream
</td>
</tr>
<tr>
<th>Labels</th>
<td>
openmp
</td>
</tr>
<tr>
<th>Assignees</th>
<td>
jhuber6
</td>
</tr>
<tr>
<th>Reporter</th>
<td>
jhuber6
</td>
</tr>
</table>
<pre>
There is a performance regression in the BabelStream application when using OpenMP offloading. Using Clang11 the performance of the application is the following:
```
Function MBytes/sec Min (sec) Max Average
Copy 517248.072 0.00104 0.00338 0.00115
Mul 515678.585 0.00104 0.00255 0.00112
Add 563673.591 0.00143 0.00156 0.00150
Triad 553630.031 0.00145 0.01436 0.00163
Dot 129918.938 0.00413 0.00724 0.00445
```
While using LLVM 14 gives the following numbers:
```
Function MBytes/sec Min (sec) Max Average
Copy 433089.991 0.00124 0.00287 0.00138
Mul 432816.257 0.00124 0.00357 0.00134
Add 468487.099 0.00172 0.00564 0.00200
Triad 474031.691 0.00170 0.00403 0.00185
Dot 96763.643 0.00555 0.00605 0.00563
```
</pre>
<img width="1px" height="1px" alt="" src="http://email.email.llvm.org/o/eJy1VMtunDAU_RrYWLX8tlmwmEmUVUaJ1LRdGzCPyIORgaT5-xrCMFamXRZZ4j587sPn2oWrPvKX1ngDuhFoMBhfO3_WfWmAN40349i5HnQ9mFoDjrow9vvkjT4DPQy2K_W0uN9b04N57PoGPA2mPz0DV9fW6SpYIPixOu6s7huM1zhxFlevpjhcqGQx1c5a9x6wCT0k6D5Bh0Sgba3qw9yXKyB8p-PHZMaEPIymDFooOCEqyAnJFq_-DS7f4c143ZhV_oxz54aPi5djSZiCSBIAEEQII7baF5lStcsY80_wabbgCuZCKsgVvwUTziMw-QQfquoKFlRICnmGt02MXgFcRPLW_ovv9AXOORU0eOkO3rOFOBFY0K3pezftqTHJMqxgtvS37GL4mjocxy6zEPWvTPxqO2u2CXh8_HkCmIGmezNfiAT9fC6MH_8Xobd0MkqRymC2H2rUDVHyei5L67eEMkoUFpBweQunPIazCzymlAnFlIQoy7Zty1RtEC6iShDaq49ZZZIFRqHYq5foygWKxkPxaJxjZjMhBYViHaU1azSFAvGoGgq-UptWOa0ymul06iZr8u1qP-1XGzz_87WIXop09jZvp2lYaScPYTXd1M4FLN05KNa-XX7fBu9eTTkFtRvHeaU_DDbDaZtjVWVVJWlRMIUqjpTGkqtSmkJXgtUmtUvKMU_4MSHEhVrPQxASfp92OUEkrDDLJFxJBSUrC4NQbVBV1FlZJQyZs-4sXIqAzjepz9d6irkZg9N24zRenTq02fTGbLleQy_Giy2ZnqfW-Xwzpmsf-drEHxT0bFA">