
Let’s Move to GitHub!
Survey Results

235 Answers

30 Orgs205 individuals

73 Active Contributors 
(>10 commits over the last 2 years)

The Survey

24 Organizations

11-25

26-50

2-10
Mainly consume,

but contribute some
code upstream

Do not contribute
back

Has active
upstream

contributors
Has core devs,

contributed a lot of
code, design,
direction, …

51+

What is your contribution to LLVM?How Many devs do you have in your team?

I have
occasional patches

I am a core
developer

I am
an active
developer

Past contributor
not active right now

I do not
contribute

at all

What is your contribution to LLVM?

Active ContributorsAll Individuals

Past contributor
not active right now

Consume LLVM
but do not
contribute

back

I have
occasional
 patches

I am
an active
developer

I am a core
developer

Everything we do
is downstreamEverything we

do is upstream

Most is
downstream,

but have
upstream

components
Evenly

distributed
between

upstream and
 downstream

Most is upstream, but
have downstream

components

LLVM is a major
part of one or more
products / projects

On a
product or

pet/academic
projectOn a pet-project

/ academic work

Just interested
in its

development

LLVM was used,
but not anymore

How do you use LLVM?

OrgsAll Individuals

Never

Sometimes

Frequently

Always

Sometimes

Frequently

Always

How often do you work on a small LLVM sub-project without LLVM itself?

Active ContributorsAll Individuals

Don't commit
across repositories

Commit across
repositories,

rarely get trouble,
fixing would

be nice

Commit across
repositories,

rarely get trouble,
doesn't matter if

fixed

Commit across
repositories,

often get trouble,
must fix

How often do you to commit across repo?

Active ContributorsAll Individuals

Important.

Vital, already using
custom mono-repo

Irrelevant

Nice-to-have.

How important is it to have multiple projects in one repo?

Active ContributorsAll Individuals Organizations

Not at all

Not very
 important.

Somewhat important

Very
important

How important is it that we save as much space as possible? (clone/checkout)

Not at all

Active ContributorsAll Individuals Organizations

Already using Git,
SVN slows us down

Use the Git mirror,
main repository in SVN
makes little difference

We mainly use
SVN, but wouldn't
mind moving to Git

Use SVN,
move to Git is
a major hassle

Use the Git
mirror, but SVN
worth keeping

Do you believe the LLVM project would be better with a main Git repository, or
keeping it in SVN would still be better?

Active ContributorsAll Individuals Organizations

Use it for
bisection only

I don't
contribute.

Use it for
day-to-day dev

Integrate it into
our downstream

fork.

Use it for
upstream
contribs.

Actively
contribute

tooling
improvements
to improve it.

The multi-repo variant provides read-only umbrella repository to coordinate commits between the split
sub-project repositories using Git sub-modules. Assuming multi-repo gets adopted, how do you expect

to use the umbrella?

Active ContributorsAll Individuals Organizations

Using the Git repos directly,
sub-modules only for bisecting, etc.

I don't
contribute.

Using the
SVN bridges.

If multi-repo is adopted, how do you plan to contribute to upstream?

Using Git sub-modules
for everything
except commit Using Git sub-modules

for everything
except commit

Using the
SVN bridges.

Using the Git repos
directly, sub-modules

only for bisecting

Active ContributorsAll Individuals

Using the Git repos
directly, sub-modules

only for bisecting

Nothing consequential.

A little, but
it'll be fine.

A lot, but
it’ll get done
somehow.

Too much. We
may stop

contributing to
 LLVM.

If multi-repo is adopted, how much pain will there be in your transition?

Active ContributorsAll Individuals Organizations

Use the monorepo
when canonical

Use the monorepo
ASAP, even before

canonical

I don’t
contribute.

Use a git-svn
on separated
sub-projects

forever

Transition to
monorepo
eventually

Use the SVN
bridge

on separated
sub-projects

forever

The mono-repo variant provides read/write access to sub-projects via an SVN bridge and git-svn. Contributors
will have the option to continue using repositories split on project boundaries. Assuming mono-repo gets

adopted, how do you plan to contribute?

Transition to
monorepo
eventually

Use a git-svn
on separated
sub-projects

forever

Use the SVN bridge
on separated
sub-projects

forever

Use the
monorepo

ASAP, even
before

canonical.

Use the monorepo
when canonical

Active ContributorsAll Individuals

We'll switch to
pulling from

monorepo eventually.

There is no
downstream

We'll switch to pulling
from monorepo during
the transition period.

We already
use monorepo.

We'll integrate from
the split sub-project

Git mirror forever.

We'll integrate
from the SVN

bridge forever.

If mono-repo is adopted, how do you plan to integrate it downstream?

Active ContributorsAll Individuals Organizations

Nothing consequential.

A little, but
it'll be fine

A lot, but it’ll
get done
somehow

Too much. We may
stop contributing

to LLVM.

If mono-repo is adopted, how much pain will there be in your transition?

Active ContributorsAll Individuals Organizations

Revision-locked
plus run times.

All in
one.

Any of
those is

unacceptable.

Revision-locked
only.

None of those,
but we’ll

deal with it.

There were concerns over which projects could stay out of the mono-repo to make it more malleable. What
would be the best ratio for you?

Active ContributorsAll Individuals Organizations

Git: multi-repo variant.

Git: mono-repo variant.

Subversion
as today.

Other

Subversion as a
single project

(trunk/<sub-project>)

If we could go back in time and restart the project with today's technologies, which
repository scheme would be best for the LLVM project?

Active ContributorsAll Individuals

Quotes
About Git itself

The existing linear history is extremely convenient, and I hope it stays that way 
(perhaps enforced by a pre-commit check, which can be done through GH integration).

Note: GitHub does not allow standard pre-commit hook

We will lose integer revision numbers. Sad, but tolerable

if version locked repositories aren't well handled, I'll be adamantly opposed to it. I cannot effectively work without that.
Even when changes can be cleanly split between repositories today, the ability to monotonically apply them such that

bisection and regression analysis works is *essential*."

As long as checkout + commit works via this git svn bridge idea I guess everything will be fine.

The most popular Version Control System on the planet will help people get interested in [LLVM] more

I have to learn to use Git.

I will not see any personal benefit from a switch, only more busy-work.

The linear history that SVN provides is important. Git with a nice linear history would be fine.

Quotes
About Git itself: is it worth it?

All of the tooling and CI infrastructure would have to be redesigned.
We'll need to re-write a some infrastructure to keep bisection over internal compiler artifacts working.

I want to avoid this. We would need to modify our daily update, build, and tests scripts. We really
appreciate the ability to pin down changes to a specific numbered change/checkin.

Major changes to all of our systems will be needed to make this happen. Major changes to LNT,
lab.llvm.org, Green Dragon, cloud bisection, plus many of Apple's internal systems. This proposal
does not even enumerate the scope and depth of the changes needed to those systems. It won't

"just work". There is months of man hours need to make this change, for what is minor benefit.
Further, there is no concrete proposal for where the effort to do all these change would come from.

All of our custom tooling will need to be revisited. That's acceptable.

Quotes
About GitHub

It'll be great to get the official sources from Github.
No more looking around where to clone what and what is supported.

Github checkouts are slower then the current git mirror hosted by llvm.

Good experience of GitHub with Boost repository.

GitHub is not "free" if you actually want responsibility for your data. If you cannot afford
to lose the repo, then you may need to pay for a commercial QoS.

GitHub is great! :)

I look forward towards the move to github however it might be nice to have
a daily-synced backup git repo on llvm servers just in case.

would like to keep URLs pointing at llvm.org (or a subdomain) so that they're in llvm's control so
we can minimize disruption in case we need to switch providers again.

I would prefer self-hosted. it's damaging to Free software generally to have
so many projects cluster around a single provider.

GitHub itself is not open source, which makes it less trustworthy,

GitLab seems to open up more opportunities in the future
I have not found the existing infrastructure's stability to be a pain point,

Quotes
Mono-repo

All of the mainstream stuff should go in the mono-repo, and the "special" stuff like test-
suite, www, www-pubs, llvm-www-releases etc. should remain separate.

The main benefit for our workflow is cross-project code reviews in a downstream gerrit repository.

For a long time these have been ""almost"" separate because of licensing
issues. We're making great strides on fixing that and I'd like to avoid us

inserting a new barrier in the form of repo boundaries. "

I feel that the most important question in deciding whether to go with mono-repo or multi-repo is:
"Are these projects organizationally independent?" In LLVM's case, the core projects (revision-

locked plus runtimes) clearly are not, so it does not make sense to put them into separate
repositories either.

Quotes
Mono-repo: transition

We'll have to change the scripts around, treating the mono-repo as a single repository.

It invalidates all my clones. I'd have to dump any WIP to patches and rebuild it in the new repo.
 That's a pain but it's only a one-time thing.

This would require larger changes to our helper scripts, but in the end it will probably make them simpler.

Mono repo will certainly take more time to migrate to but it is the better way in my opinion.
We can eliminate all the tooling for state-keeping

(one less thing to break, which I believe it may take some to stabilize).

Quotes
Mono-repo: simplifies day-to-day development

It greatly simplifies my work […], and should accelerate the deployment/evolution of [my
work] out in the open if we have a single repository where synchronised changes across the

runtimes happens.

I favour mono-repo: already all too often I screw up and have incoherent projects, or "ag" from
the root forgetting that it ignores tools/ sub-projects. For sure I can work this way but it's a

source of paper cuts that I'd rather live without. Disks are cheap, networks are fast, but sadly my
brain is ever slower so I want to optimize for that.

Monorepo makes my life easier and saves me time where it matters (frequent
checkout/log/blame/commit/bisect/branch switch) and I'm willing to pay with extra

space and checkout time for that.

I am so sick of setting up everything to work across 5-7 repos.

 It allows easy bisection and blame without the faff of an umbrella repository.

Quotes
Mono-repo: better cross-project integration

I think that the mono-repo proposal better suits our current and future requirements. Disk space is
not a big issue […]. I think that with the mono-repo solution we will be able to better track live

LLVM changes in our out-of-tree implementation than we can currently with SVN or with the multi-
repo Git proposal.

"I believe mono-repo will be a boon to the LLVM project for a variety of reasons. There's one part
in particular which I think is not emphasized enough:

I believe putting all the projects into a mono-repo will allow the more-independent subprojects to
depend on ""LLVM"" itself *less* than they do today, by making it feasible to factor out common

infrastructure into a separate subdirectory, without it being a major pain to do so.

Mono repo provides an unified environment for all the LLVM developers and it is
easier to maintain. It also encourages code sharing, encourages improving API to

benefit other LLVM projects and helps better integration between projects.

Quotes
Mono-repo: other consequences

Apple downstream internal CI will be simplified a lot [with monorepo]

The cost of a mono-repo checkout only needs to be paid once; any other checkouts can use git clone --reference.

We have some workflows that would be much more efficient in a mono-repo scenario.

Monorepo would make maintaining our current multi-repo automation *much* simpler and less
error prone.

100% in agreement, this matches my existing workflow very closely and I don't foresee any major disruption at all.

I'm already using monorepo, and it simplifies my day-to-day development.

I could get rid of my "create mono repo script" \o/

Quotes
Mono-repo: concerns

 Mono-repo would discourage contributions and work on projects that use LLVM by student
and hobby developers because it focuses on too many things in one main repository.

We have a hard dependency on LLVM and Clang, but nothing else (~compiler-rt),
so the size of checkouts could become a problem here.

I don't think there is an acceptable combination of projects.
Putting all of them in there makes the repo too large.

 As you accrete code and projects, the mono-repo approach won't scale well across a
number of dimensions which is who I'd go with the multi-repo approach.

Quotes
Mono-repo: concerns

I'm worried about the single-repo git, where I won't be able to update (git pull) compiler-rt only.

if you have the foresight to see a project as long-living it makes sense to modularize because Git
has known scalability issues with large projects. There are several algorithms in git that are O(n),

and as the number of commits increases the performance dramatically decreases. One such
algorithm is "git blame."

It's not clear how the mono-repo direction naturally scales for the inclusion of more projects into LLVM. It does nicely solve some
revision-lock issues with LLVM and Clang, but if another sizable project like Clang came up that was not originally part of the mono-
repo it's not clear what is the path forward with integrating that project into the mono-repo. LLVM existed for a while before Clang
showed up, and it's not clear if the mono-repo is meant to include everything, especially if the "all in one" approach is not taken.

The mono-repo forces all the projects to be handled as a single block.
This introduces unnecessary dependencies which currently are not as

strictly enforced.

Quotes
Multi-repo

This proposal seems to be exactly like what we have now with git-svn (except
committing is slightly simpler, and the tooling to create useful revision numbers exist is

somewhat harder) and have been working with successfully for at least five years

I belief single [GitHub] org[, and] multi repo is the best approach for us.

Note: multiple comments not repeated here were along the same line of
“close to what we have now with git-svn”

I prefer the multi-repo proposal over the mon-repo because it scales better in several ways.

I would probably go as far as to split the multi-repo further, as some LLVM components seem useful elsewhere

Quotes
Multi-repo: Umbrella

My main concern is that Clang would now be versioned by a tuple of sub-project versions.
I guess the umbrella repo might address this, but it seems a bit convoluted.

 The umbrella repository seems something that few would bother to
use. It only helps people doing local investigation

 I consider the umbrella repository a non-solution - I highly doubt anyone
would bother to change their workflow to incorporate it.

the multi-repo seems too complex. It's better not to invent custom tooling for a
problem that isn't unique to LLVM.

Wary of the bot merging the commits into the umbrella repo. Not having guarantees on the
merge + possibility of the bot going down and making a mess when catching up.

Quotes
Multi-repo: day-to-day development

 There is no easy way to browse combined history from multiple submodules that I'm aware of.

I mainly know that I'll mess up submodule state from time to time (using it on
other projects), which is a bit of a productivity waste. If it provides enough value

for others, I'm fine, though.

I'd need the umbrella, if only to get a consistent full-project checkout.

Multiple repos add another mental dimension making it harder to set up llvm and do small contributions

I fear the difficulties in backing out committed changes that later turn out to have problems.

Multi-repo is just more moving parts. I find that I wind up forgetting that I did something in one repo,
and sometimes screw myself up for hours (the next week, generally) before I recall what I did.

Quotes
Multi-repo: submodules

Submodules are not ideal. A tool such as Google's 'repo' would be highly preferred.

I'd really rather not have to deal with git submodules during local development.

Do not fear submodules; they work. Just set up the necessary tooling to make them work smoothly.

After having tried to use it for a while on a previous project, I don't consider git
submodules to provide a usable developer workflow,

Experience with Boost is that submodules work OK (are a steepish learning curve).

Similar to what you've proposed, but instead of submodules,
I'd consider using subtrees instead (see git-subtree(1)).

Tooling support for submodules is generally poor, both in core git, and git integrations.

Quotes
Multi-repo: submodules

In my experience, multi-repo / submodules are only really
useful for disk space and bandwidth saving reasons

 Submodules make atomic commits unnecessarily failure-prone. In fact,
it is hard for me to imagine a robust workflow that permits them,

Quotes
Multi-repo: concerns

The multi-repo is closest to the current situation so very likely to have less pain in
transition for most. But I still think it's a worse position to be in.

I think this is strictly worse than the status quo and inferior to the mono-repo proposal.

I am extremely concerned about whether LLVM can be effectively developed in this
world. I mean, I'll find a way to get by, but without monotonicity, I think this will be a

source of constant and painful problems for me.

I never understood how to manage multi repo stuff in git.

We can make it work, but the multi-repo perpetuates longstanding problems for us.

would prefer a simple solution, generally.

I would hate to be in a situation where we'd have to describe a Clang
version as (LLVM hash1 + Clang hash2 + compiler-rt hash3 + ...)

Quotes
Multi-repo: regression for existing “monorepo” users

It seems like a productivity regression to me. I've already gained a significant
productivity boost by adopting the mono-repo mirror (https://github.com/llvm-
project/llvm-project) and jlebar's scripts for committing to SVN and the multi-
repo proposal seems like a step back to the individual sub-project mirrors.

In order to maintain the same level of productivity I would probably need tooling to transform the
umbrella repo into a mono-repo for local development. In the end it seems we will either be stuck

with the productivity regression or will have to maintain two sets of bespoke tooling when the
whole point of the move is to avoid having to maintain custom tools/services."

If the multirepo is adopted, I will write a script to make a non-canonical
monorepo mirror, like we have today. It will be a pain, and it's likely that

the trend of continuing to break the tree with cross-cutting changes

Quotes
Multi-repo: submodules layout (nested alternative)

I'd actually prefer proper hierarchical submodules with clang in llvm/tools, but that's
not an option here. If we need to contribute to git to improve this, we should do that.

We would be using git submodules properly if it would be up to me (not in the meta-repository way).

I'd prefer proper hierarchical submodules.

