[lldb-dev] RFC: Moving debug info parsing out of process

J.R. Heisey via lldb-dev lldb-dev at lists.llvm.org
Fri Mar 1 22:43:10 PST 2019

Hi Guys,


I hope you don't mind me chiming in I've been following this thread. I 
am a little familiar with the Eclipse Target Communications Framework (TCF).

 From https://www.eclipse.org/tcf/

TCF is a vendor-neutral lightweight, extensible network protocol for 
driving embedded systems (targets).

On top of the protocol, TCF provides a complete modern debugger for 
C/C++ and Ada, as well as the "Target Explorer" for system management. 
TCF works out of the box for Intel, PPC and ARM Linux targets including 
the Raspberry Pi. It supports Proxying and Tunneling for IoT devices, 
and is particularly strong for multi-process debugging even with slow 
communication links.


Wind River was one of the original developers. The TCF specification 
defines a set of services one of which is a symbols service. The 
protocol was designed to support asynchronous communications. It has 
been around a while. Eclipse contains a Java client plug in 
implementation and there is an example 'TCF Agent' which is a server 
implementation in C. For more details you can read up here.


I notice on the LLDB project page http://lldb.llvm.org/projects.html 
item "3 Make a high speed asynchronous communication channel to replace 
the gdb-remote protocol".

The full TCF specification can also replace the MI.



On 3/1/2019 13:43, Zachary Turner via lldb-dev wrote:
> On Wed, Feb 27, 2019 at 4:35 PM Frédéric Riss <friss at apple.com 
> <mailto:friss at apple.com>> wrote:
>>     On Feb 27, 2019, at 3:14 PM, Zachary Turner <zturner at google.com
>>     <mailto:zturner at google.com>> wrote:
>>     On Wed, Feb 27, 2019 at 2:52 PM Frédéric Riss <friss at apple.com
>>     <mailto:friss at apple.com>> wrote:
>>>         On Feb 27, 2019, at 10:12 AM, Zachary Turner
>>>         <zturner at google.com <mailto:zturner at google.com>> wrote:
>>>         For what it's worth, in an earlier message I mentioned that
>>>         I would probably build the server by using mostly code from
>>>         LLVM, and making sure that it supported the union of things
>>>         currently supported by LLDB and LLVM's DWARF parsers.  Doing
>>>         that would naturally require merging the two (which has been
>>>         talked about for a long time) as a pre-requisite, and I
>>>         would expect that for testing purposes we might want
>>>         something like llvm-dwarfdump but that dumps a higher level
>>>         description of the information (if we change our DWARF
>>>         emission code in LLVM for example, to output the exact same
>>>         type in slightly different ways in the underlying DWARF, we
>>>         wouldn't want our test to break, for example).  So for
>>>         example imagine you could run something like `lldb-dwarfdump
>>>         -lookup-type=foo a.out` and it would dump some description
>>>         of the type that is resilient to insignificant changes in
>>>         the underlying DWARF.
>>         At which level do you consider the “DWARF parser” to stop and
>>         the debugger policy to start? In my view, the DWARF parser
>>         stop at the DwarfDIE boundary. Replacing it wouldn’t get us
>>         closer to a higher-level abstraction.
>>     At the level where you have an alternative representation that
>>     you no longer have to access to the debug info.  In LLDB today,
>>     this "representation" is a combination of LLDB's own internal
>>     symbol hierarchy (e.g. lldb_private::Type,
>>     lldb_private::Function, etc) and the Clang AST.  Once you have
>>     constructed those 2 things, the DWARF parser is out of the picture.
>>     A lot of the complexity in processing raw DWARF comes from
>>     handling different versions of the DWARF spec (e.g. supporting
>>     DWARF 4 & DWARF 5), collecting and interpreting the subset of
>>     attributes which happens be present, following references to
>>     other parts of the DWARF, and then at the end of all this (or
>>     perhaps during all of this), dealing with "partial information"
>>     (e.g. something that would have saved me a lot of trouble was
>>     missing, now I have to do extra work to find it).
>>     I'm treading DWARF expressions as an exception though, because it
>>     would be somewhat tedious and not provide much value to convert
>>     those into some text format and then evaluate the text
>>     representation of the expression since it's already in a format
>>     suitable for processing.  So for this case, you could just encode
>>     the byte sequence into a hex string and send that.
>>     I hinted at this already, but part of the problem (at least in my
>>     mind) is that our "DWARF parser" is intermingled with the code
>>     that *interprets the parsed DWARF*.  We parse a little bit, build
>>     something, parse a little bit more, add on to the thing we're
>>     building, etc.  This design is fragile and makes error handling
>>     difficult, so part of what I'm proposing is a separation here,
>>     where "parse as much as possible, and return an intermediate
>>     representation that is as finished as we are able to make it".
>>     This part is independent of whether DWARF parsing is out of
>>     process however.  That's still useful even if DWARF parsing is in
>>     process, and we've talked about something like that for a long
>>     time, whereby we have some kind of API that says "give me the
>>     thing, handle all errors internally, and either return me a thing
>>     which I can trust or an error".  I'm viewing "thing which I can
>>     trust" as some representation which is separate from the original
>>     DWARF, and which we could test -- for example -- by writing a
>>     tool which dumps this representation
>     Ok, here we are talking about something different (which you might
>     have been expressing since the beginning and I misinterpreted). If
>     you want to decouple dealing with DIEs from creating ASTs as a
>     preliminary, then I think this would be super valuable and it
>     addresses my concerns about duplicating the AST creation logic.
>     I’m sure Greg would have comments about the challenges of lazily
>     parsing the DWARF in such a design.
> Well, I was originally talking about both lumped into one thing.  
> Because this is a necessary precursor to having it be out of process :)
> Since we definitely agree on this portion, the question then becomes: 
> Suppose we have this firm API boundary across which we either return 
> errors or things that can be trusted.  What are the things which can 
> be trusted?  Are they DIEs?  I'm not sure they should be, because we'd 
> have to synthesize DIEs on the fly in the case where we got something 
> that was bad but we tried to "fix" it (in order to sanitize the debug 
> info into something the caller can make basic assumptions about).  And 
> additionally, it doesn't really make the client's job much easier as 
> far as parsing goes.
> So, I think it should build up a little bit higher representation of 
> the debug info, perhaps by piecing together information from multiple 
> DIEs and sources, and return that.  Definitely laziness will have to 
> be maintained, but I don't think that's inherently more difficult with 
> a design where we return something higher level than DIEs.
> Thoughts?
> _______________________________________________
> lldb-dev mailing list
> lldb-dev at lists.llvm.org
> https://lists.llvm.org/cgi-bin/mailman/listinfo/lldb-dev

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/lldb-dev/attachments/20190301/03872074/attachment-0001.html>

More information about the lldb-dev mailing list