[libc-commits] [libc] 87bf0b0 - [libc] Add a class called NormalFloat which represents normalized floats.

Siva Chandra Reddy via libc-commits libc-commits at lists.llvm.org
Thu Aug 20 09:00:47 PDT 2020


Author: Siva Chandra Reddy
Date: 2020-08-20T09:00:35-07:00
New Revision: 87bf0b0ee986078a2c9e9bca02cf7a4c42012925

URL: https://github.com/llvm/llvm-project/commit/87bf0b0ee986078a2c9e9bca02cf7a4c42012925
DIFF: https://github.com/llvm/llvm-project/commit/87bf0b0ee986078a2c9e9bca02cf7a4c42012925.diff

LOG: [libc] Add a class called NormalFloat which represents normalized floats.

This class helps in dealing with normal and subnormal numbers uniformly.
Moreover, since this class has been designed to handle all floating
formats across platforms, it helps implement floating point functions in
a uniform manner.

The implementations of frexp and logb have been switched to use this new
class as it allows us to use just one implementation across all
different floating point formats.

Reviewed By: lntue

Differential Revision: https://reviews.llvm.org/D86241

Added: 
    libc/utils/FPUtil/NormalFloat.h

Modified: 
    libc/utils/FPUtil/CMakeLists.txt
    libc/utils/FPUtil/ManipulationFunctions.h

Removed: 
    


################################################################################
diff  --git a/libc/utils/FPUtil/CMakeLists.txt b/libc/utils/FPUtil/CMakeLists.txt
index ea9112005751..745ede30fedd 100644
--- a/libc/utils/FPUtil/CMakeLists.txt
+++ b/libc/utils/FPUtil/CMakeLists.txt
@@ -17,6 +17,7 @@ add_header_library(
     BasicOperations.h
     ManipulationFunctions.h
     NearestIntegerOperations.h
+    NormalFloat.h
   DEPENDS
     libc.utils.CPP.standalone_cpp
 )

diff  --git a/libc/utils/FPUtil/ManipulationFunctions.h b/libc/utils/FPUtil/ManipulationFunctions.h
index ce5400f5335f..f233fcdb5244 100644
--- a/libc/utils/FPUtil/ManipulationFunctions.h
+++ b/libc/utils/FPUtil/ManipulationFunctions.h
@@ -6,37 +6,20 @@
 //
 //===----------------------------------------------------------------------===//
 
+#ifndef LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
+#define LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
+
 #include "FPBits.h"
 #include "NearestIntegerOperations.h"
+#include "NormalFloat.h"
 
 #include "utils/CPP/TypeTraits.h"
 
-#ifndef LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
-#define LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
-
 namespace __llvm_libc {
 namespace fputil {
 
-#if defined(__x86_64__) || defined(__i386__)
-template <typename T> struct Standard754Type {
-  static constexpr bool Value =
-      cpp::IsSame<float, cpp::RemoveCVType<T>>::Value ||
-      cpp::IsSame<double, cpp::RemoveCVType<T>>::Value;
-};
-#else
-template <typename T> struct Standard754Type {
-  static constexpr bool Value = cpp::IsFloatingPointType<T>::Value;
-};
-#endif
-
-template <typename T> static inline T frexp_impl(FPBits<T> &bits, int &exp) {
-  exp = bits.getExponent() + 1;
-  static constexpr uint16_t resultExponent = FPBits<T>::exponentBias - 1;
-  bits.exponent = resultExponent;
-  return bits;
-}
-
-template <typename T, cpp::EnableIfType<Standard754Type<T>::Value, int> = 0>
+template <typename T,
+          cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
 static inline T frexp(T x, int &exp) {
   FPBits<T> bits(x);
   if (bits.isInfOrNaN())
@@ -46,42 +29,12 @@ static inline T frexp(T x, int &exp) {
     return x;
   }
 
-  return frexp_impl(bits, exp);
+  NormalFloat<T> normal(bits);
+  exp = normal.exponent + 1;
+  normal.exponent = -1;
+  return normal;
 }
 
-#if defined(__x86_64__) || defined(__i386__)
-static inline long double frexp(long double x, int &exp) {
-  FPBits<long double> bits(x);
-  if (bits.isInfOrNaN())
-    return x;
-  if (bits.isZero()) {
-    exp = 0;
-    return x;
-  }
-
-  if (bits.exponent != 0 || bits.implicitBit == 1)
-    return frexp_impl(bits, exp);
-
-  exp = bits.getExponent();
-  int shiftCount = 0;
-  uint64_t fullMantissa = *reinterpret_cast<uint64_t *>(&bits);
-  static constexpr uint64_t msBitMask = uint64_t(1) << 63;
-  for (; (fullMantissa & msBitMask) == uint64_t(0);
-       fullMantissa <<= 1, ++shiftCount) {
-    // This for loop will terminate as fullMantissa is != 0. If it were 0,
-    // then x will be NaN and handled before control reaches here.
-    // When the loop terminates, fullMantissa will represent the full mantissa
-    // of a normal long double value. That is, the implicit bit has the value
-    // of 1.
-  }
-
-  exp = exp - shiftCount + 1;
-  *reinterpret_cast<uint64_t *>(&bits) = fullMantissa;
-  bits.exponent = FPBits<long double>::exponentBias - 1;
-  return bits;
-}
-#endif
-
 template <typename T,
           cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
 static inline T modf(T x, T &iptr) {
@@ -112,11 +65,8 @@ static inline T copysign(T x, T y) {
   return xbits;
 }
 
-template <typename T> static inline T logb_impl(const FPBits<T> &bits) {
-  return bits.getExponent();
-}
-
-template <typename T, cpp::EnableIfType<Standard754Type<T>::Value, int> = 0>
+template <typename T,
+          cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
 static inline T logb(T x) {
   FPBits<T> bits(x);
   if (bits.isZero()) {
@@ -130,42 +80,9 @@ static inline T logb(T x) {
     return FPBits<T>::inf();
   }
 
-  return logb_impl(bits);
-}
-
-#if defined(__x86_64__) || defined(__i386__)
-static inline long double logb(long double x) {
-  FPBits<long double> bits(x);
-  if (bits.isZero()) {
-    // TODO(Floating point exception): Raise div-by-zero exception.
-    // TODO(errno): POSIX requires setting errno to ERANGE.
-    return FPBits<long double>::negInf();
-  } else if (bits.isNaN()) {
-    return x;
-  } else if (bits.isInf()) {
-    // Return positive infinity.
-    return FPBits<long double>::inf();
-  }
-
-  if (bits.exponent != 0 || bits.implicitBit == 1)
-    return logb_impl(bits);
-
-  int exp = bits.getExponent();
-  int shiftCount = 0;
-  uint64_t fullMantissa = *reinterpret_cast<uint64_t *>(&bits);
-  static constexpr uint64_t msBitMask = uint64_t(1) << 63;
-  for (; (fullMantissa & msBitMask) == uint64_t(0);
-       fullMantissa <<= 1, ++shiftCount) {
-    // This for loop will terminate as fullMantissa is != 0. If it were 0,
-    // then x will be NaN and handled before control reaches here.
-    // When the loop terminates, fullMantissa will represent the full mantissa
-    // of a normal long double value. That is, the implicit bit has the value
-    // of 1.
-  }
-
-  return exp - shiftCount;
+  NormalFloat<T> normal(bits);
+  return normal.exponent;
 }
-#endif
 
 } // namespace fputil
 } // namespace __llvm_libc

diff  --git a/libc/utils/FPUtil/NormalFloat.h b/libc/utils/FPUtil/NormalFloat.h
new file mode 100644
index 000000000000..e0e691125431
--- /dev/null
+++ b/libc/utils/FPUtil/NormalFloat.h
@@ -0,0 +1,228 @@
+//===-- A class to store a normalized floating point number -----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIBC_UTILS_FPUTIL_NORMAL_FLOAT_H
+#define LLVM_LIBC_UTILS_FPUTIL_NORMAL_FLOAT_H
+
+#include "FPBits.h"
+
+#include "utils/CPP/TypeTraits.h"
+
+#include <stdint.h>
+
+namespace __llvm_libc {
+namespace fputil {
+
+// A class which stores the normalized form of a floating point value.
+// The special IEEE-754 bits patterns of Zero, infinity and NaNs are
+// are not handled by this class.
+//
+// A normalized floating point number is of this form:
+//    (-1)*sign * 2^exponent * <mantissa>
+// where <mantissa> is of the form 1.<...>.
+template <typename T> struct NormalFloat {
+  static_assert(
+      cpp::IsFloatingPointType<T>::Value,
+      "NormalFloat template parameter has to be a floating point type.");
+
+  using UIntType = typename FPBits<T>::UIntType;
+  static constexpr UIntType one = (UIntType(1) << MantissaWidth<T>::value);
+
+  // Unbiased exponent value.
+  int32_t exponent;
+
+  UIntType mantissa;
+  // We want |UIntType| to have atleast one bit more than the actual mantissa
+  // bit width to accommodate the implicit 1 value.
+  static_assert(sizeof(UIntType) * 8 >= MantissaWidth<T>::value + 1,
+                "Bad type for mantissa in NormalFloat.");
+
+  bool sign;
+
+  NormalFloat(int32_t e, UIntType m, bool s)
+      : exponent(e), mantissa(m), sign(s) {
+    if (mantissa >= one)
+      return;
+
+    unsigned normalizationShift = evaluateNormalizationShift(mantissa);
+    mantissa = mantissa << normalizationShift;
+    exponent -= normalizationShift;
+  }
+
+  explicit NormalFloat(T x) { initFromBits(FPBits<T>(x)); }
+
+  explicit NormalFloat(FPBits<T> bits) { initFromBits(bits); }
+
+  // Compares this normalized number with another normalized number.
+  // Returns -1 is this number is less than |other|, 0 if this number is equal
+  // to |other|, and 1 if this number is greater than |other|.
+  int cmp(const NormalFloat<T> &other) const {
+    if (sign != other.sign)
+      return sign ? -1 : 1;
+
+    if (exponent > other.exponent) {
+      return sign ? -1 : 1;
+    } else if (exponent == other.exponent) {
+      if (mantissa > other.mantissa)
+        return sign ? -1 : 1;
+      else if (mantissa == other.mantissa)
+        return 0;
+      else
+        return sign ? 1 : -1;
+    } else {
+      return sign ? 1 : -1;
+    }
+  }
+
+  // Returns a new normalized floating point number which is equal in value
+  // to this number multiplied by 2^e. That is:
+  //     new = this *  2^e
+  NormalFloat<T> mul2(int e) const {
+    NormalFloat<T> result = *this;
+    result.exponent += e;
+    return result;
+  }
+
+  operator T() const {
+    int biasedExponent = exponent + FPBits<T>::exponentBias;
+    // Max exponent is of the form 0xFF...E. That is why -2 and not -1.
+    constexpr int maxExponentValue = (1 << ExponentWidth<T>::value) - 2;
+    if (biasedExponent > maxExponentValue) {
+      // TODO: Should infinity with the correct sign be returned?
+      return FPBits<T>::buildNaN(1);
+    }
+
+    FPBits<T> result(T(0.0));
+
+    constexpr int subnormalExponent = -FPBits<T>::exponentBias + 1;
+    if (exponent < subnormalExponent) {
+      unsigned shift = subnormalExponent - exponent;
+      if (shift <= MantissaWidth<T>::value) {
+        // Generate a subnormal number. Might lead to loss of precision.
+        result.exponent = 0;
+        result.mantissa = mantissa >> shift;
+        result.sign = sign;
+        return result;
+      } else {
+        // TODO: Should zero with the correct sign be returned?
+        return FPBits<T>::buildNaN(1);
+      }
+    }
+
+    result.exponent = exponent + FPBits<T>::exponentBias;
+    result.mantissa = mantissa;
+    result.sign = sign;
+    return result;
+  }
+
+private:
+  void initFromBits(FPBits<T> bits) {
+    sign = bits.sign;
+
+    if (bits.isInfOrNaN() || bits.isZero()) {
+      // Ignore special bit patterns. Implementations deal with them separately
+      // anyway so this should not be a problem.
+      exponent = 0;
+      mantissa = 0;
+      return;
+    }
+
+    // Normalize subnormal numbers.
+    if (bits.exponent == 0) {
+      unsigned shift = evaluateNormalizationShift(bits.mantissa);
+      mantissa = UIntType(bits.mantissa) << shift;
+      exponent = 1 - FPBits<T>::exponentBias - shift;
+    } else {
+      exponent = bits.exponent - FPBits<T>::exponentBias;
+      mantissa = one | bits.mantissa;
+    }
+  }
+
+  unsigned evaluateNormalizationShift(UIntType m) {
+    unsigned shift = 0;
+    for (; (one & m) == 0 && (shift < MantissaWidth<T>::value);
+         m <<= 1, ++shift)
+      ;
+    return shift;
+  }
+};
+
+#if defined(__x86_64__) || defined(__i386__)
+template <>
+inline void NormalFloat<long double>::initFromBits(FPBits<long double> bits) {
+  sign = bits.sign;
+
+  if (bits.isInfOrNaN() || bits.isZero()) {
+    // Ignore special bit patterns. Implementations deal with them separately
+    // anyway so this should not be a problem.
+    exponent = 0;
+    mantissa = 0;
+    return;
+  }
+
+  if (bits.exponent == 0) {
+    if (bits.implicitBit == 0) {
+      // Since we ignore zero value, the mantissa in this case is non-zero.
+      int normalizationShift = evaluateNormalizationShift(bits.mantissa);
+      exponent = -16382 - normalizationShift;
+      mantissa = (bits.mantissa << normalizationShift);
+    } else {
+      exponent = -16382;
+      mantissa = one | bits.mantissa;
+    }
+  } else {
+    if (bits.implicitBit == 0) {
+      // Invalid number so just store 0 similar to a NaN.
+      exponent = 0;
+      mantissa = 0;
+    } else {
+      exponent = bits.exponent - 16383;
+      mantissa = one | bits.mantissa;
+    }
+  }
+}
+
+template <> inline NormalFloat<long double>::operator long double() const {
+  int biasedExponent = exponent + FPBits<long double>::exponentBias;
+  // Max exponent is of the form 0xFF...E. That is why -2 and not -1.
+  constexpr int maxExponentValue = (1 << ExponentWidth<long double>::value) - 2;
+  if (biasedExponent > maxExponentValue) {
+    // TODO: Should infinity with the correct sign be returned?
+    return FPBits<long double>::buildNaN(1);
+  }
+
+  FPBits<long double> result(0.0l);
+
+  constexpr int subnormalExponent = -FPBits<long double>::exponentBias + 1;
+  if (exponent < subnormalExponent) {
+    unsigned shift = subnormalExponent - exponent;
+    if (shift <= MantissaWidth<long double>::value) {
+      // Generate a subnormal number. Might lead to loss of precision.
+      result.exponent = 0;
+      result.mantissa = mantissa >> shift;
+      result.implicitBit = 0;
+      result.sign = sign;
+      return result;
+    } else {
+      // TODO: Should zero with the correct sign be returned?
+      return FPBits<long double>::buildNaN(1);
+    }
+  }
+
+  result.exponent = biasedExponent;
+  result.mantissa = mantissa;
+  result.implicitBit = 1;
+  result.sign = sign;
+  return result;
+}
+#endif
+
+} // namespace fputil
+} // namespace __llvm_libc
+
+#endif // LLVM_LIBC_UTILS_FPUTIL_NORMAL_FLOAT_H


        


More information about the libc-commits mailing list