[flang-commits] [flang] a280043 - [flang] Lower TRANSPOSE without using runtime.

Slava Zakharin via flang-commits flang-commits at lists.llvm.org
Tue Jul 12 08:43:52 PDT 2022


Author: Slava Zakharin
Date: 2022-07-12T08:33:39-07:00
New Revision: a280043b523182ab6bb3ce5caf75e931a26eaf3f

URL: https://github.com/llvm/llvm-project/commit/a280043b523182ab6bb3ce5caf75e931a26eaf3f
DIFF: https://github.com/llvm/llvm-project/commit/a280043b523182ab6bb3ce5caf75e931a26eaf3f.diff

LOG: [flang] Lower TRANSPOSE without using runtime.

Calling runtime TRANSPOSE requires a temporary array for the result,
and, sometimes, a temporary array for the argument. Lowering it inline
should provide faster code.

I added -opt-transpose control just for debugging purposes temporary.
I am going to make driver changes that will disable inline lowering
for -O0. For the time being I would like to enable it by default
to expose the code to more tests.

Differential Revision: https://reviews.llvm.org/D129497

Added: 
    flang/test/Lower/Intrinsics/transpose_opt.f90

Modified: 
    flang/lib/Lower/ConvertExpr.cpp
    flang/test/Lower/Intrinsics/transpose.f90

Removed: 
    


################################################################################
diff  --git a/flang/lib/Lower/ConvertExpr.cpp b/flang/lib/Lower/ConvertExpr.cpp
index 5fe5314b6ab89..144a3ceb27509 100644
--- a/flang/lib/Lower/ConvertExpr.cpp
+++ b/flang/lib/Lower/ConvertExpr.cpp
@@ -81,6 +81,20 @@ static llvm::cl::opt<unsigned> clInitialBufferSize(
         "set the incremental array construction buffer size (default=32)"),
     llvm::cl::init(32u));
 
+// Lower TRANSPOSE as an "elemental" function that swaps the array
+// expression's iteration space, so that no runtime call is needed.
+// This lowering may help get rid of unnecessary creation of temporary
+// arrays. Note that the runtime TRANSPOSE implementation may be 
diff erent
+// from the "inline" FIR, e.g. it may diagnose out-of-memory conditions
+// during the temporary allocation whereas the inline implementation
+// relies on AllocMemOp that will silently return null in case
+// there is not enough memory. So it may be a good idea to set
+// this option to false for -O0.
+static llvm::cl::opt<bool> optimizeTranspose(
+    "opt-transpose",
+    llvm::cl::desc("lower transpose without using a runtime call"),
+    llvm::cl::init(true));
+
 /// The various semantics of a program constituent (or a part thereof) as it may
 /// appear in an expression.
 ///
@@ -581,6 +595,38 @@ isIntrinsicModuleProcRef(const Fortran::evaluate::ProcedureRef &procRef) {
          module->name().ToString().find("omp_lib") == std::string::npos;
 }
 
+// A set of visitors to detect if the given expression
+// is a TRANSPOSE call that should be lowered without using
+// runtime TRANSPOSE implementation.
+template <typename T>
+static bool isOptimizableTranspose(const T &) {
+  return false;
+}
+
+static bool
+isOptimizableTranspose(const Fortran::evaluate::ProcedureRef &procRef) {
+  const Fortran::evaluate::SpecificIntrinsic *intrin =
+      procRef.proc().GetSpecificIntrinsic();
+  return optimizeTranspose && intrin && intrin->name == "transpose";
+}
+
+template <typename T>
+static bool
+isOptimizableTranspose(const Fortran::evaluate::FunctionRef<T> &funcRef) {
+  return isOptimizableTranspose(
+      static_cast<const Fortran::evaluate::ProcedureRef &>(funcRef));
+}
+
+template <typename T>
+static bool isOptimizableTranspose(Fortran::evaluate::Expr<T> expr) {
+  // If optimizeTranspose is not enabled, return false right away.
+  if (!optimizeTranspose)
+    return false;
+
+  return std::visit([&](const auto &e) { return isOptimizableTranspose(e); },
+                    expr.u);
+}
+
 namespace {
 
 /// Lowering of Fortran::evaluate::Expr<T> expressions
@@ -3243,7 +3289,7 @@ class ScalarExprLowering {
     // is used to not create a new temporary storage.
     if (isScalar(x) ||
         Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) ||
-        isTransformationalRef(x))
+        (isTransformationalRef(x) && !isOptimizableTranspose(x)))
       return std::visit([&](const auto &e) { return genref(e); }, x.u);
     if (useBoxArg)
       return asArrayArg(x);
@@ -5047,11 +5093,55 @@ class ArrayExprLowering {
         };
   }
 
+  /// Lower TRANSPOSE call without using runtime TRANSPOSE.
+  /// Return continuation for generating the TRANSPOSE result.
+  /// The continuation just swaps the iteration space before
+  /// invoking continuation for the argument.
+  CC genTransposeProcRef(const Fortran::evaluate::ProcedureRef &procRef) {
+    assert(procRef.arguments().size() == 1 &&
+           "TRANSPOSE must have one argument.");
+    const auto *argExpr = procRef.arguments()[0].value().UnwrapExpr();
+    assert(argExpr);
+
+    llvm::SmallVector<mlir::Value> savedDestShape = destShape;
+    assert((destShape.empty() || destShape.size() == 2) &&
+           "TRANSPOSE destination must have rank 2.");
+
+    if (!savedDestShape.empty())
+      std::swap(destShape[0], destShape[1]);
+
+    PushSemantics(ConstituentSemantics::RefTransparent);
+    llvm::SmallVector<CC> operands{genElementalArgument(*argExpr)};
+
+    if (!savedDestShape.empty()) {
+      // If destShape was set before transpose lowering, then
+      // restore it. Otherwise, ...
+      destShape = savedDestShape;
+    } else if (!destShape.empty()) {
+      // ... if destShape has been set from the argument lowering,
+      // then reverse it.
+      assert(destShape.size() == 2 &&
+             "TRANSPOSE destination must have rank 2.");
+      std::swap(destShape[0], destShape[1]);
+    }
+
+    return [=](IterSpace iters) {
+      assert(iters.iterVec().size() == 2 &&
+             "TRANSPOSE expects 2D iterations space.");
+      IterationSpace newIters(iters, {iters.iterValue(1), iters.iterValue(0)});
+      return operands.front()(newIters);
+    };
+  }
+
   /// Generate a procedure reference. This code is shared for both functions and
   /// subroutines, the 
diff erence being reflected by `retTy`.
   CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef,
                 llvm::Optional<mlir::Type> retTy) {
     mlir::Location loc = getLoc();
+
+    if (isOptimizableTranspose(procRef))
+      return genTransposeProcRef(procRef);
+
     if (procRef.IsElemental()) {
       if (const Fortran::evaluate::SpecificIntrinsic *intrin =
               procRef.proc().GetSpecificIntrinsic()) {

diff  --git a/flang/test/Lower/Intrinsics/transpose.f90 b/flang/test/Lower/Intrinsics/transpose.f90
index fefadd5039da5..a69613af5e567 100644
--- a/flang/test/Lower/Intrinsics/transpose.f90
+++ b/flang/test/Lower/Intrinsics/transpose.f90
@@ -1,4 +1,4 @@
-! RUN: bbc -emit-fir %s -o - | FileCheck %s
+! RUN: bbc -emit-fir %s -opt-transpose=false -o - | FileCheck %s
 
 ! CHECK-LABEL: func @_QPtranspose_test(
 ! CHECK-SAME: %[[source:.*]]: !fir.ref<!fir.array<2x3xf32>>{{.*}}) {

diff  --git a/flang/test/Lower/Intrinsics/transpose_opt.f90 b/flang/test/Lower/Intrinsics/transpose_opt.f90
new file mode 100644
index 0000000000000..1e699e8ac0e86
--- /dev/null
+++ b/flang/test/Lower/Intrinsics/transpose_opt.f90
@@ -0,0 +1,134 @@
+! RUN: bbc -emit-fir %s -opt-transpose=true -o - | FileCheck %s
+
+! CHECK-LABEL: func.func @_QPtranspose_test(
+! CHECK-SAME:                               %[[VAL_0:.*]]: !fir.ref<!fir.array<2x3xf32>> {fir.bindc_name = "mat"}) {
+subroutine transpose_test(mat)
+   real :: mat(2,3)
+   call bar_transpose_test(transpose(mat))
+! CHECK:         %[[VAL_1:.*]] = arith.constant 2 : index
+! CHECK:         %[[VAL_2:.*]] = arith.constant 3 : index
+! CHECK:         %[[VAL_3:.*]] = arith.constant 3 : index
+! CHECK:         %[[VAL_4:.*]] = arith.constant 2 : index
+! CHECK:         %[[VAL_5:.*]] = fir.shape %[[VAL_1]], %[[VAL_2]] : (index, index) -> !fir.shape<2>
+! CHECK:         %[[VAL_6:.*]] = fir.array_load %[[VAL_0]](%[[VAL_5]]) : (!fir.ref<!fir.array<2x3xf32>>, !fir.shape<2>) -> !fir.array<2x3xf32>
+! CHECK:         %[[VAL_7:.*]] = fir.allocmem !fir.array<3x2xf32>
+! CHECK:         %[[VAL_8:.*]] = fir.shape %[[VAL_3]], %[[VAL_4]] : (index, index) -> !fir.shape<2>
+! CHECK:         %[[VAL_9:.*]] = fir.array_load %[[VAL_7]](%[[VAL_8]]) : (!fir.heap<!fir.array<3x2xf32>>, !fir.shape<2>) -> !fir.array<3x2xf32>
+! CHECK:         %[[VAL_10:.*]] = arith.constant 1 : index
+! CHECK:         %[[VAL_11:.*]] = arith.constant 0 : index
+! CHECK:         %[[VAL_12:.*]] = arith.subi %[[VAL_3]], %[[VAL_10]] : index
+! CHECK:         %[[VAL_13:.*]] = arith.subi %[[VAL_4]], %[[VAL_10]] : index
+! CHECK:         %[[VAL_14:.*]] = fir.do_loop %[[VAL_15:.*]] = %[[VAL_11]] to %[[VAL_13]] step %[[VAL_10]] unordered iter_args(%[[VAL_16:.*]] = %[[VAL_9]]) -> (!fir.array<3x2xf32>) {
+! CHECK:           %[[VAL_17:.*]] = fir.do_loop %[[VAL_18:.*]] = %[[VAL_11]] to %[[VAL_12]] step %[[VAL_10]] unordered iter_args(%[[VAL_19:.*]] = %[[VAL_16]]) -> (!fir.array<3x2xf32>) {
+! CHECK:             %[[VAL_20:.*]] = fir.array_fetch %[[VAL_6]], %[[VAL_15]], %[[VAL_18]] : (!fir.array<2x3xf32>, index, index) -> f32
+! CHECK:             %[[VAL_21:.*]] = fir.array_update %[[VAL_19]], %[[VAL_20]], %[[VAL_18]], %[[VAL_15]] : (!fir.array<3x2xf32>, f32, index, index) -> !fir.array<3x2xf32>
+! CHECK:             fir.result %[[VAL_21]] : !fir.array<3x2xf32>
+! CHECK:           }
+! CHECK:           fir.result %[[VAL_22:.*]] : !fir.array<3x2xf32>
+! CHECK:         }
+! CHECK:         fir.array_merge_store %[[VAL_9]], %[[VAL_23:.*]] to %[[VAL_7]] : !fir.array<3x2xf32>, !fir.array<3x2xf32>, !fir.heap<!fir.array<3x2xf32>>
+! CHECK:         %[[VAL_24:.*]] = fir.convert %[[VAL_7]] : (!fir.heap<!fir.array<3x2xf32>>) -> !fir.ref<!fir.array<3x2xf32>>
+! CHECK:         fir.call @_QPbar_transpose_test(%[[VAL_24]]) : (!fir.ref<!fir.array<3x2xf32>>) -> ()
+! CHECK:         fir.freemem %[[VAL_7]] : !fir.heap<!fir.array<3x2xf32>>
+! CHECK:         return
+! CHECK:       }
+end subroutine
+
+! CHECK-LABEL: func.func @_QPtranspose_allocatable_test(
+! CHECK-SAME:                                           %[[VAL_0:.*]]: !fir.ref<!fir.box<!fir.heap<!fir.array<?x?xf32>>>> {fir.bindc_name = "mat"}) {
+subroutine transpose_allocatable_test(mat)
+  real, allocatable :: mat(:,:)
+  mat = transpose(mat)
+! CHECK:         %[[VAL_1:.*]] = fir.load %[[VAL_0]] : !fir.ref<!fir.box<!fir.heap<!fir.array<?x?xf32>>>>
+! CHECK:         %[[VAL_2:.*]] = arith.constant 0 : index
+! CHECK:         %[[VAL_3:.*]]:3 = fir.box_dims %[[VAL_1]], %[[VAL_2]] : (!fir.box<!fir.heap<!fir.array<?x?xf32>>>, index) -> (index, index, index)
+! CHECK:         %[[VAL_4:.*]] = arith.constant 1 : index
+! CHECK:         %[[VAL_5:.*]]:3 = fir.box_dims %[[VAL_1]], %[[VAL_4]] : (!fir.box<!fir.heap<!fir.array<?x?xf32>>>, index) -> (index, index, index)
+! CHECK:         %[[VAL_6:.*]] = fir.box_addr %[[VAL_1]] : (!fir.box<!fir.heap<!fir.array<?x?xf32>>>) -> !fir.heap<!fir.array<?x?xf32>>
+! CHECK:         %[[VAL_7:.*]] = fir.shape_shift %[[VAL_3]]#0, %[[VAL_3]]#1, %[[VAL_5]]#0, %[[VAL_5]]#1 : (index, index, index, index) -> !fir.shapeshift<2>
+! CHECK:         %[[VAL_8:.*]] = fir.array_load %[[VAL_6]](%[[VAL_7]]) : (!fir.heap<!fir.array<?x?xf32>>, !fir.shapeshift<2>) -> !fir.array<?x?xf32>
+! CHECK:         %[[VAL_9:.*]] = fir.load %[[VAL_0]] : !fir.ref<!fir.box<!fir.heap<!fir.array<?x?xf32>>>>
+! CHECK:         %[[VAL_10:.*]] = fir.box_addr %[[VAL_9]] : (!fir.box<!fir.heap<!fir.array<?x?xf32>>>) -> !fir.heap<!fir.array<?x?xf32>>
+! CHECK:         %[[VAL_11:.*]] = fir.convert %[[VAL_10]] : (!fir.heap<!fir.array<?x?xf32>>) -> i64
+! CHECK:         %[[VAL_12:.*]] = arith.constant 0 : i64
+! CHECK:         %[[VAL_13:.*]] = arith.cmpi ne, %[[VAL_11]], %[[VAL_12]] : i64
+! CHECK:         %[[VAL_14:.*]]:2 = fir.if %[[VAL_13]] -> (i1, !fir.heap<!fir.array<?x?xf32>>) {
+! CHECK:           %[[VAL_15:.*]] = arith.constant false
+! CHECK:           %[[VAL_16:.*]] = arith.constant 0 : index
+! CHECK:           %[[VAL_17:.*]]:3 = fir.box_dims %[[VAL_9]], %[[VAL_16]] : (!fir.box<!fir.heap<!fir.array<?x?xf32>>>, index) -> (index, index, index)
+! CHECK:           %[[VAL_18:.*]] = arith.constant 1 : index
+! CHECK:           %[[VAL_19:.*]]:3 = fir.box_dims %[[VAL_9]], %[[VAL_18]] : (!fir.box<!fir.heap<!fir.array<?x?xf32>>>, index) -> (index, index, index)
+! CHECK:           %[[VAL_20:.*]] = arith.cmpi ne, %[[VAL_17]]#1, %[[VAL_5]]#1 : index
+! CHECK:           %[[VAL_21:.*]] = arith.select %[[VAL_20]], %[[VAL_20]], %[[VAL_15]] : i1
+! CHECK:           %[[VAL_22:.*]] = arith.cmpi ne, %[[VAL_19]]#1, %[[VAL_3]]#1 : index
+! CHECK:           %[[VAL_23:.*]] = arith.select %[[VAL_22]], %[[VAL_22]], %[[VAL_21]] : i1
+! CHECK:           %[[VAL_24:.*]] = fir.if %[[VAL_23]] -> (!fir.heap<!fir.array<?x?xf32>>) {
+! CHECK:             %[[VAL_25:.*]] = fir.allocmem !fir.array<?x?xf32>, %[[VAL_5]]#1, %[[VAL_3]]#1 {uniq_name = ".auto.alloc"}
+! CHECK:             %[[VAL_26:.*]] = fir.shape %[[VAL_5]]#1, %[[VAL_3]]#1 : (index, index) -> !fir.shape<2>
+! CHECK:             %[[VAL_27:.*]] = fir.array_load %[[VAL_25]](%[[VAL_26]]) : (!fir.heap<!fir.array<?x?xf32>>, !fir.shape<2>) -> !fir.array<?x?xf32>
+! CHECK:             %[[VAL_28:.*]] = arith.constant 1 : index
+! CHECK:             %[[VAL_29:.*]] = arith.constant 0 : index
+! CHECK:             %[[VAL_30:.*]] = arith.subi %[[VAL_5]]#1, %[[VAL_28]] : index
+! CHECK:             %[[VAL_31:.*]] = arith.subi %[[VAL_3]]#1, %[[VAL_28]] : index
+! CHECK:             %[[VAL_32:.*]] = fir.do_loop %[[VAL_33:.*]] = %[[VAL_29]] to %[[VAL_31]] step %[[VAL_28]] unordered iter_args(%[[VAL_34:.*]] = %[[VAL_27]]) -> (!fir.array<?x?xf32>) {
+! CHECK:               %[[VAL_35:.*]] = fir.do_loop %[[VAL_36:.*]] = %[[VAL_29]] to %[[VAL_30]] step %[[VAL_28]] unordered iter_args(%[[VAL_37:.*]] = %[[VAL_34]]) -> (!fir.array<?x?xf32>) {
+! CHECK:                 %[[VAL_38:.*]] = fir.array_fetch %[[VAL_8]], %[[VAL_33]], %[[VAL_36]] : (!fir.array<?x?xf32>, index, index) -> f32
+! CHECK:                 %[[VAL_39:.*]] = fir.array_update %[[VAL_37]], %[[VAL_38]], %[[VAL_36]], %[[VAL_33]] : (!fir.array<?x?xf32>, f32, index, index) -> !fir.array<?x?xf32>
+! CHECK:                 fir.result %[[VAL_39]] : !fir.array<?x?xf32>
+! CHECK:               }
+! CHECK:               fir.result %[[VAL_40:.*]] : !fir.array<?x?xf32>
+! CHECK:             }
+! CHECK:             fir.array_merge_store %[[VAL_27]], %[[VAL_41:.*]] to %[[VAL_25]] : !fir.array<?x?xf32>, !fir.array<?x?xf32>, !fir.heap<!fir.array<?x?xf32>>
+! CHECK:             fir.result %[[VAL_25]] : !fir.heap<!fir.array<?x?xf32>>
+! CHECK:           } else {
+! CHECK:             %[[VAL_42:.*]] = fir.shape %[[VAL_5]]#1, %[[VAL_3]]#1 : (index, index) -> !fir.shape<2>
+! CHECK:             %[[VAL_43:.*]] = fir.array_load %[[VAL_10]](%[[VAL_42]]) : (!fir.heap<!fir.array<?x?xf32>>, !fir.shape<2>) -> !fir.array<?x?xf32>
+! CHECK:             %[[VAL_44:.*]] = arith.constant 1 : index
+! CHECK:             %[[VAL_45:.*]] = arith.constant 0 : index
+! CHECK:             %[[VAL_46:.*]] = arith.subi %[[VAL_5]]#1, %[[VAL_44]] : index
+! CHECK:             %[[VAL_47:.*]] = arith.subi %[[VAL_3]]#1, %[[VAL_44]] : index
+! CHECK:             %[[VAL_48:.*]] = fir.do_loop %[[VAL_49:.*]] = %[[VAL_45]] to %[[VAL_47]] step %[[VAL_44]] unordered iter_args(%[[VAL_50:.*]] = %[[VAL_43]]) -> (!fir.array<?x?xf32>) {
+! CHECK:               %[[VAL_51:.*]] = fir.do_loop %[[VAL_52:.*]] = %[[VAL_45]] to %[[VAL_46]] step %[[VAL_44]] unordered iter_args(%[[VAL_53:.*]] = %[[VAL_50]]) -> (!fir.array<?x?xf32>) {
+! CHECK:                 %[[VAL_54:.*]] = fir.array_fetch %[[VAL_8]], %[[VAL_49]], %[[VAL_52]] : (!fir.array<?x?xf32>, index, index) -> f32
+! CHECK:                 %[[VAL_55:.*]] = fir.array_update %[[VAL_53]], %[[VAL_54]], %[[VAL_52]], %[[VAL_49]] : (!fir.array<?x?xf32>, f32, index, index) -> !fir.array<?x?xf32>
+! CHECK:                 fir.result %[[VAL_55]] : !fir.array<?x?xf32>
+! CHECK:               }
+! CHECK:               fir.result %[[VAL_56:.*]] : !fir.array<?x?xf32>
+! CHECK:             }
+! CHECK:             fir.array_merge_store %[[VAL_43]], %[[VAL_57:.*]] to %[[VAL_10]] : !fir.array<?x?xf32>, !fir.array<?x?xf32>, !fir.heap<!fir.array<?x?xf32>>
+! CHECK:             fir.result %[[VAL_10]] : !fir.heap<!fir.array<?x?xf32>>
+! CHECK:           }
+! CHECK:           fir.result %[[VAL_23]], %[[VAL_58:.*]] : i1, !fir.heap<!fir.array<?x?xf32>>
+! CHECK:         } else {
+! CHECK:           %[[VAL_59:.*]] = arith.constant true
+! CHECK:           %[[VAL_60:.*]] = fir.allocmem !fir.array<?x?xf32>, %[[VAL_5]]#1, %[[VAL_3]]#1 {uniq_name = ".auto.alloc"}
+! CHECK:           %[[VAL_61:.*]] = fir.shape %[[VAL_5]]#1, %[[VAL_3]]#1 : (index, index) -> !fir.shape<2>
+! CHECK:           %[[VAL_62:.*]] = fir.array_load %[[VAL_60]](%[[VAL_61]]) : (!fir.heap<!fir.array<?x?xf32>>, !fir.shape<2>) -> !fir.array<?x?xf32>
+! CHECK:           %[[VAL_63:.*]] = arith.constant 1 : index
+! CHECK:           %[[VAL_64:.*]] = arith.constant 0 : index
+! CHECK:           %[[VAL_65:.*]] = arith.subi %[[VAL_5]]#1, %[[VAL_63]] : index
+! CHECK:           %[[VAL_66:.*]] = arith.subi %[[VAL_3]]#1, %[[VAL_63]] : index
+! CHECK:           %[[VAL_67:.*]] = fir.do_loop %[[VAL_68:.*]] = %[[VAL_64]] to %[[VAL_66]] step %[[VAL_63]] unordered iter_args(%[[VAL_69:.*]] = %[[VAL_62]]) -> (!fir.array<?x?xf32>) {
+! CHECK:             %[[VAL_70:.*]] = fir.do_loop %[[VAL_71:.*]] = %[[VAL_64]] to %[[VAL_65]] step %[[VAL_63]] unordered iter_args(%[[VAL_72:.*]] = %[[VAL_69]]) -> (!fir.array<?x?xf32>) {
+! CHECK:               %[[VAL_73:.*]] = fir.array_fetch %[[VAL_8]], %[[VAL_68]], %[[VAL_71]] : (!fir.array<?x?xf32>, index, index) -> f32
+! CHECK:               %[[VAL_74:.*]] = fir.array_update %[[VAL_72]], %[[VAL_73]], %[[VAL_71]], %[[VAL_68]] : (!fir.array<?x?xf32>, f32, index, index) -> !fir.array<?x?xf32>
+! CHECK:               fir.result %[[VAL_74]] : !fir.array<?x?xf32>
+! CHECK:             }
+! CHECK:             fir.result %[[VAL_75:.*]] : !fir.array<?x?xf32>
+! CHECK:           }
+! CHECK:           fir.array_merge_store %[[VAL_62]], %[[VAL_76:.*]] to %[[VAL_60]] : !fir.array<?x?xf32>, !fir.array<?x?xf32>, !fir.heap<!fir.array<?x?xf32>>
+! CHECK:           fir.result %[[VAL_59]], %[[VAL_60]] : i1, !fir.heap<!fir.array<?x?xf32>>
+! CHECK:         }
+! CHECK:         fir.if %[[VAL_77:.*]]#0 {
+! CHECK:           fir.if %[[VAL_13]] {
+! CHECK:             fir.freemem %[[VAL_10]] : !fir.heap<!fir.array<?x?xf32>>
+! CHECK:           }
+! CHECK:           %[[VAL_78:.*]] = fir.shape %[[VAL_5]]#1, %[[VAL_3]]#1 : (index, index) -> !fir.shape<2>
+! CHECK:           %[[VAL_79:.*]] = fir.embox %[[VAL_77]]#1(%[[VAL_78]]) : (!fir.heap<!fir.array<?x?xf32>>, !fir.shape<2>) -> !fir.box<!fir.heap<!fir.array<?x?xf32>>>
+! CHECK:           fir.store %[[VAL_79]] to %[[VAL_0]] : !fir.ref<!fir.box<!fir.heap<!fir.array<?x?xf32>>>>
+! CHECK:         }
+! CHECK:         return
+! CHECK:       }
+end subroutine
+
+! CHECK:       func.func private @_QPbar_transpose_test(!fir.ref<!fir.array<3x2xf32>>)


        


More information about the flang-commits mailing list