
Performance Exploration Through Optimistic
Static Program Annotations

Johannes Doerfert[0000−0001−7870−8963], Brian Homerding[0000−0002−5455−6181], and
Hal Finkel[0000−0002−7551−7122]

Argonne National Laboratory, Lemont, IL, USA
{jdoerfert,bhomerding,hfinkel}@anl.gov

Abstract. Compilers are limited by the static information directly or
indirectly encoded in the program. Low-level languages, such as C/C++, are
considered problematic as their weak type system and relaxed memory
semantic allows for various, sometimes non-obvious, behaviors. Since
compilers have to preserve the program semantics for all program executions,
the existence of exceptional behavior can prevent optimizations that the
developer would consider valid and might expect. Analyses to guarantee
the absence of disruptive and unlikely situations are consequently an
indispensable part of an optimizing compiler. However, such analyses have to
be approximative and limited in scope as global and exact solutions are
infeasible for any non-trivial program.
In this paper, we present an automated tool to measure the effect missing
static information has on the optimizations applied to a given program. The
approach generates an optimistically optimized program version which,
compared to the original, defines a performance gap that can be closed by
better compiler analyses and selective static program annotations.
Our evaluation on six already tuned proxy applications for high-performance
codes shows speedups of up to 20.6%. This clearly indicates that static
uncertainty limits performance. At the same time, we observed that
compilers are often unable to utilize additional static information. Thus,
manual annotation of all correct static information is therefore not only error
prone but also mostly redundant.

Keywords: Compiler Guided Auto Tuning · Performance Gap · LLVM

1 Introduction
Programs in the high-performance computing domain are often subject to
fine-grained tuning and therefore developed in low-level programming languages such
as Fortran or C/C++. However, this tuning potential can cut both ways. Without
proper annotations, low-level languages allow various behaviors that are uncommon
to occur during a normal program execution. These “corner case behaviors” include,
for example, potentially aliasing pointers and possibly overflowing integer operations.
While performance can increase if such corner case behaviors are exploited properly,
performance can also be limited if beneficial compiler transformations are prevented
by their presence.

Figure 1 illustrates how corner case behaviors can prevent desired optimizations.
The call to the external function might cause arbitrary side effects and changes to the
values passed as arguments. After the call, sum might not be zero and locP is not guar-
anteed to be {5, 11}. Additionally, the address of sum or locP could escape, creating
aliasing issues if one is stored in globalPtr. As a result, compilers cannot assume

2 Johannes Doerfert, Brian Homerding, and Hal Finkel

int *globalPtr;
void external(int*, std::pair<int>&);

int foo(uint8_t LB, uint8_t UB) {
int sum = 0;
std::pair<int> locP = {5, 11};
external(&sum, locP);
for (uint8_t u = LB; u != UB; u++)
sum += *globalPtr + locP.first;

return sum;
}
Fig. 1: Low-level code that allows for various
unexpected behaviors which prevent performance

critical transformations.

the access to globalPtr is invariant
in the loop. Finally, the loop iteration
counter u may overflow. Thus, the loop
can iterate either UB - LB iterations,
if LB <= UB, or alternatively 256 - UB
+ LB iterations, if LB > UB. Due to
this uncertainty, most compilers will
struggle to optimize the loop, e.g., to
replace it by a closed form expression.
As discussed in Section 2, all these
optimizations would be possible if
better static information on the effects
of the external function and the values
of LB and UB were available.

In this work we identify and optimistically eliminate situations in which static
information is missing, e.g., due to the low-level nature of the program. In particular,
we determined 20 opportunities for which skilled, performance-minded developers, or
improved compiler analyses, could enhance conservatively sound compiler assumptions.
For these, our tool automatically explore the performance impact if perfect
information would have been provided by optimistically providing it, followed by an
application specific verification step. In other words, we automatically accumulate
optimistic static program annotations under which the program remains valid on user
specified inputs. After this tuning process, the last successfully verified version
defines a performance gap which can be minimized through manual annotations.

It is important to note that optimistic optimization is not meant to be used in
production because it gives up on total correctness, the foundation of the compilation
process. Instead, it should be seen as a compiler guided development tool. It directs
performance minded programmers towards static information both required and
usable by the compiler, consequently minimizing manual effort while effectively
increasing performance.

The paper is organized as follows: Section 2 explains how static annotations
restrict the set of defined program behaviors, potentially enabling program
optimizations. In Section 3, we detail the exploited opportunities for additional static
information. We explain the corner case behaviors which annotation can exclude, the
transformations that could be enabled, and how static information can be provided in
the source. Before we present an elaborate evaluation of our approach on six
high-performance proxy applications in Section 5, we list implementation choices in
Section 4. After related work is discussed in Section 6, we conclude in Section 7.

2 Static Program Annotation
Programming languages, including the intermediate representations used inside a
compiler, allow to encode additional information directly in the program code. Such
information can improve later analyses and enable optimizations, regardless of how
the information came to be. This is especially important for performance aware
developers that use program annotations to encode their domain knowledge, e.g., the
shapes of possible inputs or the contexts in which code will be used. Encoded
information lifts a burden from the compiler as it limits the set of defined program
behaviors. The only (purely static) alternative is running complex analyses at compile

Performance Exploration Through Optimistic Static Program Annotations 3

int *globalPtr;
void external(int*, std::pair<int>&)

__attribute__((pure));
int foo(uint8_t LB, uint8_t UB) {
int sum = 0;
std::pair<int> locP = {5, 11};
external(&sum, locP);
__builtin_assume(LB <= UB);
for (uint8_t u = LB; u != UB; u++)
sum += *globalPtr + locP.first;

return sum;
}

int *globalPtr;
void external(int*,std::pair<int>&);

int foo(uint8_t LB, uint8_t UB) {
int sum = 0;
std::pair<int> locP = {5, 11};
external(&sum, locP);

int gPVal = *globalPtr;
return (UB - LB) * (gPVal+5);

}

Fig. 2: Left: The code shown in Figure 1 statically annotated with optimistic information.
Right: The same code after annotation enabled compiler optimizations eliminated the loop.

time. Given that some program properties, e.g., pointer aliasing, are in their general
form undecidable [20], programmer annotated knowledge is often irreplaceable.

Section 1 lists problems and missed transformations for the code in Figure 1. To
overcome these problems, and thereby enable optimizations that lead to the version
shown in Figure 2 (right), the problematic corner case behaviors need to be
eliminated through program annotations. The first was the potential for the
external function call to manipulate the arguments as well as globalPtr. While our
implementation in the LLVM [16] compiler can encode this in different ways,
programming languages like C/C++ generally offer less possibilities. In this situation
it is sufficient to annotate the external function as pure, as shown in the left part
of Figure 2. Pure functions may not alter outside state, preventing the escape of the
argument pointers and thereby also potentially aliasing accesses. Consequently, the
compiler can hoist the load of globalPtr out of the loop. Also the access to
locP.first can be hoisted which leaves a loop that accumulates an unknown but
fixed value. If we additionally ensure the compiler that the loop iteration variable
u is not going to wrap around, e.g., through the __builtin_assume(LB <= UB)
annotation, the loop is replaced by a closed form expression that directly computes
the result. Note that the absence of memory writes in the external function, the
consequent absence of aliasing pointers, and the lifetime of sum allow to simplify the
closed form expression even further.

As manual exploration of such annotations is tedious, and most are superfluous,
we provide an automated way. It allows developers to periodically determine the
impact of some, or all, static uncertainty sources in application hotspots and,
depending on the results, manually verify and manifest the most important
annotations in the code.

3 Optimistic Optimization Opportunities
Optimistic optimization opportunities arise whenever the semantic of the
program allows different behaviors to manifest at runtime. While this is the
essence of any input-dependent, non-trivial program, there are various situations
for which the runtime behavior for all inputs, or at least the ones the user is
interested in, is actually the same. While the purpose of compiler analyses is to
identify which behaviors cannot occur at runtime, optimistic optimization
opportunities allow to explore the space of the ones we need to allow. Thus,
program analyses find a potentially conservative, but sound approximation

4 Johannes Doerfert, Brian Homerding, and Hal Finkel

of the actual runtime behaviors while optimistic optimization opportunities
enable us to explore less conservative, potentially unsound approximations.

Description Section

pot. overflowing computations 3.1
pot. parallel loops 3.2
unknown control flow choices 3.3
pot undefined behavior in functions 3.4.1
unknown function side-effects 3.4.2
pot runtime exceptions in functions 3.4.3
unknown function return values 3.4.4
externally visible functions 3.4.5
pot. aliasing pointers 3.5.1
pot. escaping pointers 3.5.2
unknown pointer usage 3.5.3
unknown pointer alignment 3.5.4
pot. non-dereferenceable pointers 3.5.5
pot. invariant memory locations 3.5.6

Fig. 3: Identified and exploited opportunities.

Figure 3 lists the optimistic opti-
mization opportunity kinds our
approach can identify and exploit.
Whenever one of these situations
is encountered in the program, our
compiler extension generates an
optimistic choice, which, if taken,
results in a program annotation
that limits the behaviors the rest of
the compiler will assume to be legal.

In the remainder of this section,
identified and exploited opportunity
kinds and their source annotations
are detailed together with a discus-
sion how subsequent transformations
may be enabled by seized optimistic
opportunities.

3.1 Potentially Overflowing Computations

Binary computations in low-level languages, such as C/C++ and LLVM intermediate
representation (LLVM-IR), have multiple evaluation semantics that differ for
overflowing operations. In C/C++, the signedness of the operands determines if
operations are computed with wrapping or undefined semantics. For the former, the
result of the operation is computed modulo the largest value representable in the
target type bit-width. For the latter, the value is undefined if the mathematically
exact result would require more bits than provided by the target type. In LLVM-IR,
values do not have an associated signedness but operations carry annotations to
determine the semantics. If none are present, wrapping semantic is used. While it
is an implementation of undefinied semantic, it is more restrictive when it
comes to the possibility of integer overflows. Only if operations are tagged with
no-(un)signed-wrap (nsw/nuw), LLVM is allowed to assume the more lenient
undefinied semantic. Thus, the result, if interpreted as signed or unsigned value
respectively, will either be mathematically exact or undefined. Similarly, C/C++
compilers allow to enforce wrapping or undefined semantic for potentially overflowing
computations regardless of the operands signedness through the command line
options -fwrapv and -fno-strict-overflow.

Potentially overflowing arithmetic operations, including address computations,
offer an opportunity for optimistic annotation. If the program semantic did not imply
nsw/nuw for a computation, or if transformations applied by the compiler could not
prove these properties for newly introduced or modified code, a potential overflow is
well-defined and has to be taken into consideration. As integer overflows rarely
happen (on purpose) in practice, especially in loop heavy computation hot-spots [1,9],
the missing nsw/nuw flags provide a perfect opportunity for optimistic optimization.

Our optimistic code annotator can add missing annotations, e.g., nsw and nuw, to
potentially overflowing operations. We distinguish thereby between annotations for
signed, unsigned, and address computations which can be enabled separately.

Performance Exploration Through Optimistic Static Program Annotations 5

3.2 Potentially Parallel Loops
Detecting parallelism in sequential programs has been a major challenge for decades.
Especially for low-level languages there are various caveats including, but not limited
to: potentially overflowing computations (ref. Section 3.1), potentially aliasing
pointers (ref. Section 3.5.1), and unknown side-effects of function calls (ref.
Section 3.4.2). Even if all of these issues are tamed, powerful dependence analyses are
needed to identify parallelism in non-trivial loops [11,19,5].

In the context of LLVM, parallelism is usually exploited by the loop vectorizer
and the polyhedral loop optimizer Polly [13]. While both employ runtime checks to
deal with some of the aforementioned low-level issues [3,9], these come with their
own set of limitations. As our approach shifts the soundness liability to the expert
developer, we can optimistically annotate loops as parallel.

LLVM currently encodes parallelism as metadata annotations on non-pure
instructions inside of loops. The annotations are only exploited in two ways, both
related to the loop vectorizer: First, the dependency legality check for vectorization is
skipped, and, second, in case if-conversion [2] is necessary, it is assumed to be legal.

3.3 Control Flow Speculation
Programs, especially in high-performance computing, often interleave various
operating modes that result in variations in the executed program path. In the
benchmarks we evaluated, input flags determined for example which energy transfer
function and output method is used. In case we are only interested in a subset of
these modes, we can specialize the program based on the content of variables which
determine the executed path. Thus, if a variable is used as a control condition, we
can optimistically assume that only one control flow target is always executed next.
To embed this information in the program, we place an assumptions intrinsics call
(llvm.assume) which is LLVM’s counterpart of Clang’s __builtin_assume. Other
C/C++ compilers have similar functionality.

Similar to general value specialization, which could also be done through this
scheme, unguided control flow speculation is unlikely to succeed. We therefore restrict
ourselves to the control flow conditions that depend on global variables, parameters,
and function return values. Additionally, we do not speculate for loop exit or latch
branches, and we require a non-relational control flow condition with one constant
operand. While this already reduces the possibilities significantly, we additionally try
to use a single optimistic optimization choice variable to represent all opportunities
induced by the same a global variable, function return value, or function parameter.
This will synchronize all speculative choices as described in Section 4.1.

3.4 Function Behavior
A compiler has to treat calls to unknown functions as optimization barriers because
the callee can not only cause arbitrary side-effects, but it could also never return
control to the caller. Even if the called function is known, its definition might not
necessarily be available in the current translation unit. If a definition is available but
the language semantic allows a different one to be chosen at link time or run-time, it
is not allowed to deduce information from this potential definition. Finally, if the
definition is available and known to be executed, the compiler has to employ
inter-procedural analyses. From an algorithmic standpoint such inter-procedural
analyses are often less precise, due to uncertainty stemming from unknown outside

6 Johannes Doerfert, Brian Homerding, and Hal Finkel

callers. From an implementation standpoint they are also less interesting than their
intra-procedural counterparts because the latter are predominantly needed after
(aggressive) inlining was performed.

In LLVM, intra-procedural analyses are dominating in numbers and potential.
The existing inter-procedural analyses mostly try to limit the possible effects of
function calls and simplify the caller-callee interface through propagation of constants.
However, all of the above mentioned issues will limit the information that can be
deduced from, and the transformations than can be applied to, functions.

Since function call can generally cause various possible behaviors at runtime,
especially if the called function is unknown or not inlined, they provide different
optimistic optimization opportunities discussed in the following.
3.4.1 Undefined Behavior Functions might not only cause side-effects and
raise exceptions, they can also cause undefined behavior, e.g., a division by zero.
While compilers generally take advantage of undefined behavior, they shall never
introduce it on a path on which it would not manifest anyway. Consequently,
unconditionally hoisting of calls out of a loop is unsound, even if the call is to a
constant function (ref. Section 3.4.2) not raising exceptions (ref. Section 3.4.3). Doing
so is only valid if the callee does either not cause undefined behavior, or it would
have been executed anyway.

To enable control dependence changes for calls, we provide an optimistic
optimization opportunity for the speculatable LLVM-IR function attribute. Since
speculatable does imply the absence of undefined behavior and also other side-effects,
we combined this opportunity with the side-effect encoding described in Section 3.4.2.
3.4.2 Side-Effects 1. speculatable (and readnone1, ref. Section 3.4.1)

2. readnone
3. readonly and inaccessiblememonly
4. readonly and argmemonly
5. readonly and inaccessiblemem_or_argmemonly
6. readonly
7. writeonly and inaccessiblememonly
8. writeonly and argmemonly
9. writeonly and inaccessiblemem_or_argmemonly
10. writeonly
11. writeonly and inaccessiblememonly
12. writeonly and argmemonly
13. writeonly and inaccessiblemem_or_argmemonly

Fig. 4: Optimistic function side-effect choices.

Conservatively, a function
might read or write any acces-
sible memory location. Thus,
everything transitively reach-
able through global vari-
ables or pointer arguments
is potentially accessed. Since
this generally includes loca-
tions to which pointers might
have escaped earlier (ref. Sec-
tion 3.5.2), the set of known
invariant locations is often
quite limited. Consequently,
transformations involving
memory are severely restricted as they could potentially interact with the
called function. To restrict the possibly accessed locations, low-level languages
provide function and parameter annotations. The function level is discussed here
and parameters in Section 3.5. In C/C++, functions can be marked as pure
and constant via __attribute__((pure/const)). The pure annotation guarantees
that the function will at most read global variables and not access any other
location. The const annotation also disallows global reads. In LLVM-IR, similar
annotations exist. A function can be marked as readnone, to indicate that no
1The speculatable annotation is fairly new so we add the implied readnone explicitly.

Performance Exploration Through Optimistic Static Program Annotations 7

memory is accessed, as readonly if there is no memory write, or as writeonly
if there is no memory read. In addition, LLVM uses inaccessiblememonly to
indicate that all accessed locations are not directly accessible from the user code,
argmemonly to indicate that all memory accesses are based on pointer arguments,
and inaccessiblemem_or_argmemonly to combine the two2. To exploit actual, not
potential, behaviors, we generate optimistic opportunities with the optimistic choices
listed in Figure 4. During the search space exploration (ref. Section 4.2), the choices
are tried in order, thereby gradually decreasing the optimism.
3.4.3 Runtime Exceptions A function invocation can return to its respective
call site, not terminate at all, or it can return to a point higher up the call chain.
The latter, referred to as stack unwinding, is most often associated with runtime
exceptions. Thus, if the called function raises an exception which is not caught inside
that function invocation, the exception will traverse the call chain until a suitable
handler is found. Since the code succeeding the in-between invocations would then be
skipped, the compiler has to ensure the integrity of the program state prior to a
potentially unwinding call. Hence, all non-local memory effects preceding an
invocation that might transitively raise an exception have to be visible, and the
side-effects after the invocation shall not be visible. As this severely limits the code
movement and combination abilities only to preserve the semantics in case an
exception is actually raised, it offers a perfect optimistic optimization opportunity for
all programs, and program runs, that will not raise exceptions.

Compilers often allow to disable exceptions through options, e.g., -fno-exceptions.
Additionally, C++ has the keyword noexcept, and the nothrow attribute is often
supported. However, runtime exceptions are not the only cause for stack unwinding.
We therefore use the LLVM-IR nounwind function attribute to guarantee each call
site will either return control to its successor instruction, or not at all.
3.4.4 Return Values In addition to the side-effects, functions return values.
While speculation on values opens up a far too large search space, there are common
idioms that we optimize for. In particular, functions that return a value with the
same type as one or multiple of their parameters might always return one of them.

To limit the number of optimistic opportunities, we only consider functions that
return a pointer type. The number of optimistic choices is then equal to the number
of parameters with the same type. The LLVM-IR parameter attribute returned is
used to indicate that the return value is equal to the argument passed for this
parameter. During the search space exploration (ref. Section 4.2), the suitable
parameters are tried from the first one declared to the last. This is preferable because
class methods take an implicit “this” object pointer, which is often returned.
3.4.5 Visibility To write modular and maintainable programs, most programming
languages allow to choose different scopes for a symbol declaration. In particular,
functions can be, among others, declared with a global or local scope. In C/C++, the
former is the default while the latter, i.e., translation unit local, requires the function
to be declared as static. Only if that is the case, the compiler can reason about all
call sites prior to link time3. This can then justify more aggressive inlining as well as
inter-procedural information propagation from call sites to the function definition4.
2GCC’s attribute leaf is similar to inaccessiblemem_or_argmemonly in LLVM-IR.
3Link time optimizations [15,12] are discussed in more detail in Section 5 and Section 6.
4While not in LLVM, a prototype for such a pass has been proposed already [8].

8 Johannes Doerfert, Brian Homerding, and Hal Finkel

To limit the visibility, or scope, of a function declaration optimistically, we change
the linkage type of external functions to internal. This is valid if, at link time, there
are no users outside the current translation unit. If there are, the linking process, and
thereby the verification, will automatically fail. Changing the linkage type of a
function declaration in LLVM-IR to internal has a similar effect as the static
keyword in C/C++.

3.5 Pointer Attributes
Pointers and the associated memory accesses, are arguably the most complicated part
of a program. Especially in low-level languages, such as a compiler’s intermediate
representation, there are various caveats that have to be considered. Two memory
accesses can for example alias, hence they might access (partially) the same memory
locations. An access can be invalid at runtime if the accessed location is not
dereferenceable, e.g., if the access pointer is “dangling”. Similarly, the access can be
invalid if the alignment of the access pointer violates the requirements of the
assembly instruction that was chosen to implement it. As a consequence, potentially
aliasing accesses induce dependences that have to be preserve similar to the control
conditions of potentially invalid accesses.
3.5.1 Aliasing Since the use of unrestricted pointers is a major source of
uncertainty during program optimization, compilers employ various forms of context-,
flow-, type- and field-sensitive alias analyses [23,22,17,10,14,7]. Alias analyses, as
well as the dependence analyses built on top, are tasked to identify and classify the
dependence between side-effects. Only due to this information, transformations can
decide if it is sound to alter the execution order of accesses, substitute them with
already available values, or eliminate them all together. However, identifying aliasing
pointers is on its own an undecidable problem [20]. Even if it is decidable for a given
program, it is complex and consequently unrealistic to expect pointer related
uncertainties to be resolved through static analyses alone [3].

Programming languages for which pointers by default alias commonly provide
annotations to restrict the set of objects a pointer can alias with. While these
annotations, e.g., restrict/__restrict__ in C/C++, and noalias in LLVM-IR, are
coarse-grained tools, they already allow to handle a common case: Two pointers that
do not originate in the same “restrict” qualified declarations cannot alias.

We introduce the noalias annotation to function parameters and return values
with pointer type. As the support for otherwise scoped restrict qualified pointers in
LLVM is preliminary, we did not investigate this possibility for now.

3.5.2 Capturing Compilers try to determine the provenance, or the source
object, of a pointer to rule out aliasing. Aliasing is impossible if a pointer is based on
an object another pointer cannot be based on. An example are stack allocated
objects that, initially, cannot alias with any pointer loaded from memory or provided
from the outside. However, as soon as a pointer to the stack object escapes, i.e., the
address of the object is potentially duplicated and made available to the rest of the
program, this guarantee is void. A pointer conservatively escapes if it is passed to a
function or stored in memory.

We augment the results of the already performed inter-procedural capture
analyses in LLVM, which derives nocapture function parameter annotations, with
optimistic annotations if they were not derived. For C/C++, Clang allows the
programmer to achieve the same effect through __attribute__((noescape)).

Performance Exploration Through Optimistic Static Program Annotations 9

3.5.3 Usage As a fine-grained supplement to the function side-effects described in
Section 3.4.2, LLVM allows to annotate pointer parameters with access information.
The choices again include readnone, to express that the pointer is not dereferenced
during the execution of the function, readonly, to guarantee the absence of stores
through the pointer, and writeonly, which rules out read accesses to the pointer.

The optimistic opportunity generated for each pointer parameter includes all three
optimistic alternatives and is, again as the function side-effect equivalent, explored
from the most optimistic one to the least. As before, if no optimistic choice could be
successfully verified a pessimistic choice is taken, thus the pointer is not annotated.

3.5.4 Alignment There are different ways pointer alignment is exploited by a
compiler. A very important one is the ability to utilize specialized instructions on
machines that distinguish between aligned and unaligned memory accesses. Especially
for vector code (SIMD) this can cause a significant performance difference.

For C/C++, compilers offer various ways to add alignment information including
__attribute__((aligned(N))) qualifier, and the __builtin_assume_aligned(P, N)
call. In this work, we introduced three different alignment annotations into the
LLVM-IR. First, for memory accesses to describe their individual alignment, then for
pointer parameters, and finally for pointers loaded from memory. In each case we
provided two optimistic choices, cache line alignment and pointer alignment.

3.5.5 Dereferenceability Pointers might or might not point to a memory
address that can be accessed at a certain program point. If they do not when
accessed, the behavior is undefined. Consequently, compilers have to be especially
careful when they move memory accesses which can easily prevent powerful
optimizations such as loop hoisting or argument promotion.

As pointers most often point to memory that is in fact accessible, we can optimisti-
cally introduce the corresponding LLVM-IR annotation dereferenceable(N_Bytes).
It is used for function parameters and return values with pointer type, as well as to
annotate pointers loaded from memory. In all three situations we have two optimistic
choices, dereferenceability of a single element, or, alternatively, 64 consecutive
elements. To achieve a similar effect for returned pointers in C/C++, i.e., to guarantee
a certain number of accessible bytes if the returned pointer is non-null, GCC and
Clang provide the __attribute__((alloc_size(...))) function annotation.

3.5.6 Memory Invariance The const keyword in C/C++ can be circumvented
by a const_cast except for uses in certain variable declarations. Even though LLVM
does not generally retain const information, it allows to annotate accesses as
invariant which states that all executions will result in the same value.

To improve optimizations of memory loads, we use the LLVM-IR invariant.load
annotation optimistically. It can act as an alternative to fine-grained alias
annotations and as such enable load coalescing and load hoisting out of loops.

3.6 Overlapping and Inconsistent Annotations
The various annotations we introduce are not disjoint. In fact, it is possible that the
optimistically annotated program contains logical inconsistencies. As an example take
a function which we optimistically declared as constant (ref. Section 3.4.2), thus
which can be assumed to be completely free of memory side-effects. While this
annotation already provides a tight guarantee on the overall side-effects the function
shall induce, our algorithm might still not be able to annotate all pointer parameter

10 Johannes Doerfert, Brian Homerding, and Hal Finkel

of this function as “read-only” or “not-accessed” (ref. Section 3.5.3). While such
inconsistencies can potentially violate implicit preconditions of the optimization
pipeline, they might also allow to enable optimistic transformations that would
otherwise not have been possible. This is partially due to the granularity of the
annotations and partially due to the multitude of ways analysis and optimization
passes can query information.

4 Implementation Details
Our implementation5 is split into three components. The first, thought to be
provided by the application developer, is a benchmark description. It consists of
benchmark specific information, for example the compilation flags, and instructions
to verify the result, e.g., the invocation of the test suite. Additionally, the source files,
or individual functions, chosen for optimistic optimization are identified. The second
component is a transformation pass in the LLVM compiler. It is run at 14 locations
in the otherwise original -O2/-O3 pipeline. Every time it will identify optimistic
annotation opportunities and, depending on the command line flags provided, either
ignore them, act on them, or report them to the outside. The brains of our approach
is located in a dedicated and external driver script. It will interpret benchmark
description files, request optimistic opportunities from the compiler pass, and explore
the space of optimistic choices until a timeout is reached or all opportunities have
been resolved. Since early decision can impact the code and thereby change the
opportunities available at a later point in the pipeline, it is important to perform the
exploration iteratively, one annotation insertion point at a time. Not all opportunities
described in Section 3 are exploited at every location. Instead, easily droppable
annotations, e.g., for parallel loops (ref. Section 3.2), are placed only before they are
used, e.g., prior to the loop vectorizer. Invariable annotations, e.g., for functions
visibility (ref. Section 3.4.5), are introduced only once in the very beginning.

4.1 Granularity of Optimistic Opportunities
Optimistic information can often be added in different, potentially nested,
granularities. As an example we can annotate a function declaration as a whole, all
pointer arguments individually, or, as implemented, do both. While we choose a fine
granularity for declarations, we did not yet investigate annotations on individual call
sites. Depending on the compiler, finer-grained annotations, i.e., parameter vs.
function annotation, and call site vs. declaration annotation, can improve the result.
However, they can also easily cause overlapping and inconsistent annotations (ref.
Section 3.6), increase tuning time, and lead to results that are harder to replicate
through source code annotations.

To limit tuning time we eliminated opportunities early on. This means, (1) we do
not add annotations if any of the possible optimistic choices is already present in the
code, and (2) we accumulate opportunities into a single pick based on the kind and
name of the value involved. Hence, every time an opportunity arises for a variable,
we check if we can reuse the choice made earlier for the same opportunity kind and
variable name. For example, all function parameters with the same name in a single
translation unit are annotated the same. While this is especially useful for the control
flow speculation explained in Section 3.3, it generally reduces the number of
opportunities we explore.
5Please see https://github.com/jdoerfert/PETOSPA for the code and benchmarks.

https://github.com/jdoerfert/PETOSPA

Performance Exploration Through Optimistic Static Program Annotations 11

4.2 Search Space Exploration
The space of potential choices for optimistic optimization opportunities is often too
large to be searched exhaustively. This is partially because the order in which
opportunities are resolved is important, e.g., earlier choices may interact with new
ones, and because different optimistic opportunities are non-binary choices, e.g.,
the function side-effects explained in Section 3.4.2. Consequently, a globally
optimal solution, measured for example by the number of optimistically resolved
opportunities or the final performance, is unrealistic for any real program. Instead,
we find a locally optimal solution where opportunity kinds are explored in a fixed
order. This order is empirically chosen to allow our exploration algorithm to
optimistically resolve many opportunities at once. When the verification failed, the
number of optimistically resolved opportunities is split in half. If an opportunity is
already tested in isolation, the optimism of the choice is decreased. After a less
optimistic choice was fixed, we increase the number of tested opportunities again to
potentially allow many choices at once.

5 Evaluation
We evaluated our approach on six proxy applications for high-performance codes
described in Figure 5. While these codes are simplified, they retain much of the
original complexity, making them authentic benchmarks for our approach. They
especially already contain manual annotations, though, they are, as any production
code would be, too complicated to provide all valid annotations manually. Several of
the codes have few important kernels which encompass the vast majority of the
runtime. Others have a long flat profile which is similarly common in practise. We
also have variety within our annotated sections with large and small kernels, along
with stand alone kernels and kernels with deep call paths. Beyond the code details,
the benchmarks exhibit a variety of run time profiles, providing a range from
compute to memory bound proxy applications.

The experiments were performed on an Intel(R) Xeon(R) CPU E5-2699 v3
(Haswell), running at 2.30GHz with 72 threads and 36 cores across two sockets. For
each generated executable we collected 20 timings for a medium problem definition.
The following discussion is based on the results shown in Figure 7.

5.1 RSBench (A)
RSBench simulates resonance representation cross sections lookups for nuclear reactor
core Monte Carlo particle transport. It is a compute bound alternative to the
XSBench kernel (ref. Section 5.2), the algorithm that is currently in use. RSBench
heavily relies on the standard math library. As shown in Figure 7, we compiled
RSBench 99 times during the tuning. It took 497 seconds to finish with all 240
optimistic opportunities and we achieved 20.6% speedup compared to the original.

During the tuning, we see two significant speedups, each ≈ 10% compared to the
baseline, both while working on the earliest of the 14 annotation points. The first
improvement happened after alias (Section 3.5.1), wrapping (Section 3.1), exception
(Section 3.4.3), visibility (Section 3.4.5), dereferenceability (Section 3.5.5), and
alignment (Section 3.5.4) annotations were added in a single step. The second one
while annotating function side-effects (Section 3.4.2), the last annotation kind at each
insertion point.

For this compute heavy code the first significant speedup is visible after 15
compilations (of 99) which together took 98 seconds (of 497 seconds) to explore.

12 Johannes Doerfert, Brian Homerding, and Hal Finkel

C
om

p
il
at

io
n
s

B
en

ch
m

ar
k

ID
D

es
cr

ip
ti

on
#

T
h
re

ad
s

B
as

e
T

im
e

A
ll

S
u
cc

.
N

ew
V

er
s.

R
SB

en
ch

(A
)

M
ul
ti
po

le
re
so
na

nc
e
re
pr
es
en
ta
ti
on

cr
os
s
se
ct
io
n
lo
ok

up
72

8.
56

s
99

32
9
(2
8.
1%

)
X
SB

en
ch

(B
)

M
ac
ro
sc
op

ic
cr
os
s
se
ct
io
n
lo
ok

up
s

1
75
.1
3s

96
47

5
(1
0.
6%

)
P
at
hF

in
de

r
(C

)
Se

ar
ch
es

fo
r
’s
ig
na

tu
re
s’

w
it
hi
n
gr
ap

h
1

36
3.
50

s
25
7

62
22

(3
5.
5%

)
C
oM

D
(D

)
C
la
ss
ic
al

m
ol
ec
ul
ar

dy
na

m
ic
s
al
go
ri
th
m
s

72
44
.7
0s

12
9

49
13

(2
6.
5%

)
P
en

na
nt

(E
)

U
ns
tr
uc
tu
re
d
m
es
h
w
it
h
ra
di
at
io
n-
hy

dr
o
ph

ys
ic
s

1
33
.6
6s

53
0

69
12

(1
7.
4%

)
M
in
iG

M
G

(F
)

G
eo
m
et
ri
c
m
ul
ti
gr
id

so
lv
er

1
6.
10

s
16

16
4
(2
5.
0%

)

F
ig
.5

:
B
en

ch
m
ar
k
na

m
e,

id
en
ti
fie

r,
an

d
de

sc
ri
pt
io
n
ar
e
sh
ow

n
fir
st
,f
ol
lo
w
ed

by
th
e
nu

m
be

r
of

th
re
ad

s
ex
ec
ut
in
g
th
e
op

ti
m
iz
ed

ho
ts
po

ts
an

d
th
e

ba
se
lin

e
ex
ec
ut
io
n
ti
m
e.

C
ol
um

n
si
x
de

sc
ri
be

ho
w

of
te
n
th
e
be

nc
hm

ar
k
w
as

co
m
pi
le
d
du

ri
ng

tu
ni
ng

,c
ol
um

n
se
ve
n
sh
ow

s
ho

w
of
te
n
th
e
re
su
lt

w
as

su
cc
es
sf
ul
ly

ve
ri
fie

d,
an

d
th
e
la
st

co
lu
m
n
sp
ec
ifi
es

ho
w

m
an

y
of

th
es
e
ve
ri
fie

d
ve
rs
io
ns

w
er
e
no

t
bi
t-
w
is
e
id
en
ti
ca
lt

o
th
e
la
st

on
e
cr
ea
te
d
be

fo
re
.

S
ec

.
3.
1

3.
1
3.
1

3.
2

3.
3

3.
4.
2

3.
4.
3
3.
4.
4

3.
4.
5

3.
5.
1

3.
5.
2

3.
5.
3

3.
5.
4
3.
5.
5

3.
5.
1
3.
5.
5

3.
5.
4

3.
5.
4

3.
5.
5

3.
5.
6

T
ot
al

D
et

.
ns

w
nu

w
ge

p
fu
nc
ti
on

be
ha

vi
or

po
in
te
r
ar
gu

m
en
t

re
t.

pt
r

m
em

pt
r

m
em

lo
ad

(A
)

0
12

0
3

1
5/
7

2
0

4
19

0
11

11
19

0
0
63
/6
4
20
/2
1

21
34
/4
5

22
5/
24
0

(B
)

0
16
/2
2

0
3

1
4

0
0

1/
3

1/
2

0
1/
2

11
11

0
0
33
/3
4

9/
10

10
28

12
9/
14
1

(C
)

0
0

0
4
8/
27

15
/2
3

14
0

2
16

15
12

16
16

4
4
29
/3
0
37
/4
1

38
34
/3
7

26
4/
29
9

(D
)

2
16

0
6

0/
2

3/
4

1
0

0
2

0
2

1/
2

2
0

0
61
/7
1
25
/2
6

26
32

17
9/
19
4

(E
)

0
18
/1
9

0
0

0
18
/3
7

9/
14

8
33
/3
7
66
/7
8

71
77
/7
9
53
/8
5

46
10

2
91
/9
2

37
36
/3
7
35
/3
7

61
0/
68
9

(F
)

47
13
2

9
18

3
3

1
0

2
5

0
4

5
5

0
0

13
2

44
44

25
47
9/
47
9

F
ig
.6

:
A
nn

ot
at
io
n
op

po
rt
un

it
ie
s
id
en
ti
fie

d
an

d
su
cc
es
sf
ul
ly

ex
pl
oi
te
d
fo
r
th
e
te
st
ed

be
nc
hm

ar
ks

(r
ef
.F

ig
ur
e
5)
.T

he
nu

m
be

rs
de

no
te

ho
w

of
te
n

op
ti
m
is
ti
c
ch
oi
ce
s
w
er
e
us
ed

fo
r
op

po
rt
un

it
ie
s
in

th
e
fin

al
pr
og

ra
m

ve
rs
io
n
(fi
rs
t
va
lu
e)
,a

s
w
el
la

s
th
e
to
ta
ln

um
be

r
of

op
po

rt
un

it
ie
s
id
en
ti
fie

d
(s
ec
on

d
va
lu
e)
.A

si
ng

le
nu

m
be

r
is

sh
ow

n
if
bo

th
w
ou

ld
be

eq
ua

l.

Performance Exploration Through Optimistic Static Program Annotations 13

5.2 XSBench (B)
XSBench simulates the macroscopic cross section lookups that are the primary
performance concern for nuclear reactor core Monte Carlo particle transport
simulations. It is a memory intensive, semi random memory access code. Our
evaluation focused on a serial run of the XSBench proxy application as the code is
memory latency bound and the limitation of our memory system hides any
performance changes in parallel runs. After 96 compilations, 422 seconds, and 141
optimistically annotated opportunities, the final executable shows a 15.6% speedup
over the baseline.

The first optimistically annotated version performed even ≈ 18.13% better than
the baseline. It contained 23 optimistic choices for alias and wrapping opportunities.
The next three versions internalized functions and forfeited the speedup. It is not
until 54 annotations later that we regain most of the performance gains. These 54
choices are spread over dereferenceability, alignment, and control flow (Section 3.3)
annotations.

For this memory latency sensitive code, we find our best version in the middle of
our optimistic annotation tuning after only 28 compilation (of 96) and 88 seconds.
XSBench has many successful compilations that make no change in the resulting
binary (marked as), especially in the second half of the tuning. This is interesting
as evidence of the compilers inability to utilize the additional information.

5.3 PathFinder (C)
PathFinder is a memory latency sensitive graph traversal and search. We see a 17.3%
speedup with 299 annotations after 257 compilations taking a total of 4259 seconds.

PathFinder is the code that has the most “new” versions (shown as), i.e.,
successfully verified binaries that differ from the last. In total, 35% of all successful
builds are (new) versions. Over all versions, a relatively steady performance increase
is visible. There are two smaller drops that happen, and recover, while annotating a
single opportunity kind, first memory invariance (Section 3.5.6), and then function
side-effects. For PathFinder we make the least optimistic choices, totaling 11.7% of
all opportunities, but additional information is consistently changing the executable.

After 96 compilations, taking 1194 out of the 4259 total seconds, the maximum
speedup was almost reached. While the most significant improvement happens for an
early insertion point, gains are made throughout the entire tuning.

5.4 CoMD (D)
CoMD is a molecular dynamics code which uses the Lennard-Jones potential. It is
another compute heavy proxy application and shows a 4.6% speedup. Tuning
introduces 194 annotations in 2614 seconds and spread over 129 compilations.

While the final result is faster than the baseline, we see slowdowns for
intermediate versions. The first happens after annotating alias, wrapping, exception,
dereferenceability, and alignment opportunities. The next version, still working on
alignment, abruptly regains the loss. Later we experience a similar drop below the
base line, again after annotating alignment and wrapping information. The majority
of the optimistic opportunities are concerned with memory operations in this
compute intensive code.

The final and best version is 4.62% faster than the baseline, but a speedup of
3.92% is already achieved after 21 compilations and 404 out of 2614 seconds.

14 Johannes Doerfert, Brian Homerding, and Hal Finkel

5.5 Pennant (E)
Pennant is an unstructured mesh physics application using radiation–hydro code.
Pennant’s runtime has a long tail of small functions which limits (due to time) our
ability to annotate more of the application. Our tuning is unable to make any
performance gain despite adding 689 annotations over the course of 530 compilations.

While no speedup was achieved, we discovered an intermediate version with a
significant slowdown. This version has only five additional optimistic annotations
compared to the one before. The slowdown, as well as the subsequent recover,
happens while we annotate function memory effects, an opportunity with 13 different
optimistic choices. The five annotations which cause the slowdown, along with the
five that recover it again, are annotated through 119 compilations. Thus, our search
algorithm was forced to reduce the optimism of the individual choices until
verification succeeded.

The Pennant code is unable to capitalize on the additional information despite
610 optimistic choices made for 689 opportunities. During most of the tuning
(observe the logarithmic axis) additional annotations did not change the binary.

5.6 MiniGMG (F)
MiniGMG is a benchmark for geometric multigrid solvers. It is designed to stress
both the compute and memory subsystem of the hardware. MiniGMG has shown no
performance changes after annotating all 479 opportunities optimistically.

MiniGMG has the most regular results. Each of the four versions was followed by
three successful compilations, which did not change the binary. None of the version
showed any significant change in performance. The two opportunity kinds wrapping
and alignment account for over half of all opportunities.

5.7 Successfully Verified Annotations
The dots in Figure 7 indicate successfully verified builds that contain more
annotations but do not change the resulting binary. Depending on the benchmark,
between 10.6% and 35.5% of valid builds resulted in a new binary which we had to
verify. The other cases were versions bit-equal to the last which were not verified.
XSBench (B) only produces five different versions despite 47 successful builds with
new annotations. In contrast, PathFinder (C) creates 22 different binaries in 62
successful builds. XSBench and Pennant (E) both have substantial successful
compilations after the final version is first compiled. PathFinder is the only
benchmark that continues to make improvements late, however these are only
regaining lost performance from earlier optimistic versions.

5.8 Optimistic Choices
Over all benchmarks, a large percent (>88%) of opportunities result in optimistic
choices (see Total in Figure 6). This holds to the understanding that there is a great
deal of information that the compiler is not aware of. The hope is to help the
developer understand what information will most likely generate a positive effect on
the application. At the same time we need to remedy limitations in current compilers
to make profitable use of additional knowledge. The annotation pass run first in the
optimization pipeline discovers the majority of the optimistic opportunities (always
>70%). This is not surprising as optimistic information is often maintained
throughout the pipeline. As a consequence, we will, for example, explore function
interface specific opportunities only at the first (of the 14) insertion points.

Performance Exploration Through Optimistic Static Program Annotations 15

1

1.1

1.2

RSBench

Compilations

Sp
ee
du

p

1

1.1

1.2

XSBench

Compilations

Sp
ee
du

p

1

1.1

1.2

PathFinder

Compilations

Sp
ee
du

p

0.95

1

1.05

CoMD

Compilations

Sp
ee
du

p

0.5

1

Pennant

Compilations (log scale)

Sp
ee
du

p

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.95

1

1.05

1.1

MiniGMG

Compilations

Sp
ee
du

p

0 10 20 30 40 50 60 70 80 90
0

200

400
T
uning

T
im

e
(s)

0 10 20 30 40 50 60 70 80 90
0

200

400

T
uning

T
im

e
(s)

0 20 40 60 80 100 120 140 160 180 200 220 240
0

2,000

4,000

T
uning

T
im

e
(s)

0 20 40 60 80 100 120
0

1,000

2,000

T
uning

T
im

e
(s)

0 10 100
0

10,000

20,000

30,000

40,000

20 30 50 200 500

T
uning

T
im

e
(s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200

400

600

T
uning

T
im

e
(s)

speedup new “correct” version existing “correct” version tuning time

Fig. 7: Performance and optimization results for the six high-performance proxy
applications described in Figure 5. Each plot shows the speedup (left) relative to the
original version, and the tuning time (right), both with regards to the number of
compilations (=tries) performed. If annotations yielded a successfully verified executable we

mark it as , if it was different from the last one, or as , if it was not.

16 Johannes Doerfert, Brian Homerding, and Hal Finkel

5.9 Comparison with Link Time Optimization (LTO)
Proxy LTO thin-LTO
(A) 2.86% 5.68%
(B) 14.03% 41.23%
(C) 3.67% 4.79%
(D) 4.75% 4.48%
(E) -1.13% -1.14%
(F) 0.73% 0.79%

Fig. 8: Performance compared
to monolithic and thin-LTO.

We also collected data for both (monolithic) LTO and
thin-LTO [15]. Figure 8 show the performance gap
determined by our technique with LTO/thin-LTO
as a baseline. While the difference is smaller than
for non-LTO builds, it remains significant, i.a.,
our optimistically annotated XSBench shows a 14%
speedup compared to a full monolithic LTO build.

Compile time over the original source increased
through monolithic LTO by 5.5% to 18.5%. With
(sequential) thin-LTO the increase was between 3.6%
and 17.3% (expect for MiniGMG (F) which showed a compile decrease of 15.6%). For
the optimistically annotated benchmarks compile time decreased by 0.3% to 2.5%.

6 Related Work

While we are not aware of exiting work that makes similar use of additional
optimistic static information to identify performance gaps through the optimizations
in an exiting compiler, there are various related research fields.

Autotuning Given our moderate knowledge in the area of autotuning we restricted
ourselves to the most important files and functions in the evaluated benchmarks.
Consequently, it was sufficient to use ad-hoc search space reductions and a custom
search space exploration to determine optimistic choices. To allow the approach to
scale in the future we need to incorporate elaborate tuning mechanism as offered
through tools like OpenTuner [4] or BOAT [6]. The latter seems explicitly interesting
as we can integrate domain knowledge, e.g., we could leverage information such as
the expected benefit based on the opportunity kind.

Link Time Optimization Certain inter-procedural uncertainties are already resolvable
through link time optimization (LTO). While existing LTO implementations in
GCC [12] and LLVM [15] have shown great success, it is unrealistic to assume they
will ever reach the same level of inter-procedural information that can be provided
through optimistic annotations. There are two main reason. First, only where LTO
compilation was used, link time inter-procedural information can be collected. Thus,
system or third party library calls will often limit the analyses results as external
functions call do it in non-LTO compilation. Second, LTO enabled compilation suffers
still from input and context dependent uncertainties. Even if we assume we could
inline all function calls or derive perfect caller-callee information statically, nine of
the 20 optimistic opportunities we collected would still be needed. Finally, LTO
approaches induce a constant compile time penalty as discussed in Section 5.9.

Super Optimization Our technique shares ideas and goals with super optimization
approaches [25,21] as well as other aggressive optimization techniques [24,18]
developed outside of a classic compilation toolchain. While these techniques are often
focused on correctness first, e.g., through semantic encodings or rewrite systems, and
performance second, we relaxed the correctness criterion and put the user in charge
of verification. We also do not introduce or explore new transformations but instead
try to enable existing ones. An interesting future direction is the combination of the

Performance Exploration Through Optimistic Static Program Annotations 17

reasoning capabilities common to super optimizations with an optimistic approach to
identify the most promising opportunities. Even if complete static verification might
be out of reach, runtime check based verification has shown great success in the
LLVM loop vectorizer and polyhedral optimizer Polly [3,9].

7 Conclusion & Future Work
Our findings show that there is extensive knowledge, which may be apparent to the
developer, that the compiler is unable to discover statically. This information, once
exposed to the compiler, can significantly improve performance. However, additional
information will most often not result in better performance or even a different
executable, either because it is unusable or unneeded for optimizations, suitable
optimizations are simply missing, or later analyses would have determined it as well.

Beyond the integration of new opportunities, we plan to isolate interesting
optimistic choices automatically. Those with the most significant performance impact,
the ones without any impact at all, as well as those causing a regression, may all
provide valuable information. Optimally, we want to predict what informational will
be used, and what annotations are necessary to achieve a performance gain. In
addition, we want to hone in on annotations producing a performance loss because
these indicate compiler flaws.

8 Acknowledgments
We would like to thank the reviewers for their extensive and helpful comments.

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of two U.S. Department of Energy organizations (Office of
Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software,
applications, hardware, advanced system engineering, and early testbed platforms, in
support of the nation’s exascale computing imperative.

References
1. Ahmad, D.: The Rising Threat of Vulnerabilities Due to Integer Errors. IEEE Security

& Privacy 1(4) (2003), https://doi.org/10.1109/MSECP.2003.1219077
2. Allen, J., Kennedy, K., Porterfield, C., Warren, J.: Conversion of Control Dependence

to Data Dependence. In: ACM Symposium on Principles of Programming Languages,
Austin, Texas, USA (1983), https://doi.org/10.1145/567067.567085

3. Alves, P., Gruber, F., Doerfert, J., Lamprineas, A., Grosser, T., Rastello, F., Pereira,
F.M.Q.: Runtime Pointer Disambiguation. In: ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
(2015), http://doi.acm.org/10.1145/2814270.2814285

4. Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J., O’Reilly, U.,
Amarasinghe, S.P.: OpenTuner: An Extensible Framework for Program Autotuning. In:
International Conference on Parallel Architectures and Compilation, PACT. ACM
(2014), https://doi.org/10.1145/2628071.2628092

5. Collard, J., Barthou, D., Feautrier, P.: Fuzzy Array Dataflow Analysis. In: ACM
SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP)
(1995), http://doi.acm.org/10.1145/209936.209947

6. Dalibard, V., Schaarschmidt, M., Yoneki, E.: BOAT: Building Auto-Tuners with
Structured Bayesian Optimization. In: International Conference on World Wide Web,
WWW. ACM (2017), https://doi.org/10.1145/3038912.3052662

https://doi.org/10.1109/MSECP.2003.1219077
https://doi.org/10.1145/567067.567085
http://doi.acm.org/10.1145/2814270.2814285
https://doi.org/10.1145/2628071.2628092
http://doi.acm.org/10.1145/209936.209947
https://doi.org/10.1145/3038912.3052662

18 Johannes Doerfert, Brian Homerding, and Hal Finkel

7. Diwan, A., McKinley, K.S., Moss, J.E.B.: Type-Based Alias Analysis. In: Conference
on Programming Language Design and Implementation (PLDI) (1998), http:
//doi.acm.org/10.1145/277650.277670

8. Doerfert, J., Finkel, H.: Compiler Optimizations for OpenMP. In: International Workshop
on OpenMP (IWOMP) (2018), https://doi.org/10.1007/978-3-319-98521-3_8

9. Doerfert, J., Grosser, T., Hack, S.: Optimistic Loop Optimization. In: International
Symposium on Code Generation and Optimization, CGO (2017), http://dl.acm.org/
citation.cfm?id=3049864

10. Emami, M., Ghiya, R., Hendren, L.J.: Context-Sensitive Interprocedural Points-to
Analysis in the Presence of Function Pointers. In: Conference on Programming
Language Design and Implementation (PLDI) (1994), http://doi.acm.org/10.1145/
178243.178264

11. Feautrier, P.: Dataflow analysis of array and scalar references. International Journal of
Parallel Programming (1991), https://doi.org/10.1007/BF01407931

12. Glek, T., Hubicka, J.: Optimizing real world applications with GCC Link Time
Optimization. CoRR (2010), http://arxiv.org/abs/1010.2196

13. Grosser, T., Größlinger, A., Lengauer, C.: Polly - Performing Polyhedral Optimizations
on a Low-Level Intermediate Representation. Parallel Processing Letters (2012),
https://doi.org/10.1142/S0129626412500107

14. Jeong, S., Jeon, M., Cha, S.D., Oh, H.: Data-driven context-sensitivity for points-to
analysis. PACMPL (2017), http://doi.acm.org/10.1145/3133924

15. Johnson, T., Amini, M., Li, D.X.: ThinLTO: scalable and incremental LTO. In:
International Symposium on Code Generation and Optimization, CGO (2017),
http://dl.acm.org/citation.cfm?id=3049845

16. Lattner, C., Adve, V.S.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: International Symposium on Code Generation and
Optimization CGO (2004), https://doi.org/10.1109/CGO.2004.1281665

17. Lattner, C., Lenharth, A., Adve, V.S.: Making context-sensitive points-to analysis with
heap cloning practical for the real world. In: Conference on Programming Language
Design and Implementation (PLDI) (2007), http://doi.acm.org/10.1145/1250734.
1250766

18. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole
optimizations with alive. In: Conference on Programming Language Design and
Implementation (PLDI) (2015), https://doi.org/10.1145/2737924.2737965

19. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In: Conference on Supercomputing (SC) (1991), http:
//doi.acm.org/10.1145/125826.125848

20. Ramalingam, G.: The Undecidability of Aliasing. Trans. Program. Lang. Syst. (1994),
http://doi.acm.org/10.1145/186025.186041

21. Sasnauskas, R., Chen, Y., Collingbourne, P., Ketema, J., Taneja, J., Regehr, J.: Souper:
A Synthesizing Superoptimizer. CoRR (2017), http://arxiv.org/abs/1711.04422

22. Shapiro, M., Horwitz, S.: Fast and Accurate Flow-Insensitive Points-To Analysis. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL)
(1997), http://doi.acm.org/10.1145/263699.263703

23. Steensgaard, B.: Points-to Analysis in Almost Linear Time. In: ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL) (1996),
http://doi.acm.org/10.1145/237721.237727

24. Tate, R., Stepp, M., Lerner, S.: Generating compiler optimizations from proofs. In:
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010. pp. 389–402.
ACM (2010), https://doi.org/10.1145/1706299.1706345

25. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach to
optimization. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL) (2009), https://doi.org/10.1145/1480881.1480915

http://doi.acm.org/10.1145/277650.277670
http://doi.acm.org/10.1145/277650.277670
https://doi.org/10.1007/978-3-319-98521-3_8
http://dl.acm.org/citation.cfm?id=3049864
http://dl.acm.org/citation.cfm?id=3049864
http://doi.acm.org/10.1145/178243.178264
http://doi.acm.org/10.1145/178243.178264
https://doi.org/10.1007/BF01407931
http://arxiv.org/abs/1010.2196
https://doi.org/10.1142/S0129626412500107
http://doi.acm.org/10.1145/3133924
http://dl.acm.org/citation.cfm?id=3049845
https://doi.org/10.1109/CGO.2004.1281665
http://doi.acm.org/10.1145/1250734.1250766
http://doi.acm.org/10.1145/1250734.1250766
https://doi.org/10.1145/2737924.2737965
http://doi.acm.org/10.1145/125826.125848
http://doi.acm.org/10.1145/125826.125848
http://doi.acm.org/10.1145/186025.186041
http://arxiv.org/abs/1711.04422
http://doi.acm.org/10.1145/263699.263703
http://doi.acm.org/10.1145/237721.237727
https://doi.org/10.1145/1706299.1706345
https://doi.org/10.1145/1480881.1480915

	Performance Exploration Through Optimistic Static Program Annotations

