
Warn if virtual calls are made from
constructors or destructors

Xin Wang
25.03.2017

Abstract
In C++, virtual functions let instances of related classes have different
behavior at run time. Pure function called from constructors and destructors
will make the C++ program crash and virtual function called from constructors
and destructors may not do what you expect. This proposal is about
implementing a path-sensitive checker to find virtual calls made from
constructors and destructors.

1. Introduction
A virtual function makes its class a polymorphic base class. Derived classes
can override virtual functions. Virtual functions called through base class
pointers/references will be resolved at run-time. A pure virtual function is a
virtual function whose declaration ends in =0. A class with a pure virtual
function is "abstract" (as opposed to "concrete"), in that it's not possible to
create instances of that class. A derived class must define all inherited pure
virtual functions of its base classes to be concrete.

class A {
public:
 A(int i);
 ~A() {};
 virtual int foo() = 0;
 virtual int bar();
};
A::A(int i) {
}
int main() {
 A *a=new A(1);
}

In the code above, the function foo() and bar() are both virtual function and
foo() is also a pure virtual function. If the foo() is called during from the
constructor or destructor of class A, C++ compiler will print "Pure virtual
function called" (or words to that effect), and then crashes the program. The
function bar() can be called during the constructor or destructor, but it may not
do what you expect.

The virtual call checker is useful to check virtual function calls during
construction or destruction of C++ objects. To reduce the false positives, the
checker is better to be implemented in a path-sensitive way. The checker also
need to use the path diagnostic to highlight both the virtual call and the path
from the constructor. Finally, the checker should mark that if the virtual call is
pure, because the pure virtual functions is always an error and non-pure
virtual function is more of a code smell and may be a false positive.

2. State of the current virtual calls checker

The virtual call checker has already be implemented in the 'optin' package.
The AST-based interprocedural analysis in the checker was turned off by
default. The checker use the StmtVisitor to go through the AST by using the
DFS algorithm. The false positives could happen when a called function uses
a member variable flag to track whether initialization is complete and relies on
the flag to ensure that the virtual member function is not called during
initialization.

The current virtual call checker has the following functions:

1. It can check virtual function calls during construction or destruction of
C++ objects by default.

2. It can check all functions reachable from a constructor or destructor by
adding -analyzer-config optin.cplusplus.VirtualCall:Interprocedural=true
-DINTERPROCEDURAL=1 flag and output the call path. As this is not
in a path sensitive way, it will result in false positives.

3. By adding the -analyzer-config
optin.cplusplus.VirtualCall:PureOnly=true -DPUREONLY=1 flag, the
checker will output the calls to pure virtual functions only.

My plan is to re-implemented the checker in a path-sensitive way to reduce
the false positives. I achieve this by constructing the CFG and implementing
path sensitive code analysis by symbolic execution. This plan is discussed in
more detail in the next section.

3. Goals and Implementation Details
The goals of this project can be divided into three parts:

1. Rewrite the virtual call checker to be path sensitive.
2. Use the path sensitive diagnostic rather than diagnostic message to

highlight both the virtual call and the path from the constructor.
3. Evaluate if the warning should be issued for both calls to pure virtual

functions and non-pure virtual functions.

The deliverables of this project should be a set of patches to the virtual call
checker. I’ll primarily work on the library of clang static analyzer. Most of the
time it is going to be VirtualCallChecker.cpp,

As we can see, rewriting the virtual call checker to be path sensitive is the
most important part of the project, to achieve this, I’ll first build the CFG by
walking the AST. Then using the worklist algorithm to analyze reachability and
extend ExplodedGraph. This will need to work with the ExplodedGraph, the
SValBuilder and the ConstraintManager, etc.

4. Project Timeline

Community bonding period (May)
Read source code and documentation of the static analyzer, make more
detailed work plan and breakdown in tasks, discuss the tasks with the mentor
and community.

First month of coding (June)
Determine the high-level structure of the checker's class such as the types of
the events and the callback function and the ProgramState of the checker.

https://code.woboq.org/llvm/clang/lib/StaticAnalyzer/Core/SValBuilder.cpp.html
https://code.woboq.org/llvm/clang/lib/StaticAnalyzer/Core/ConstraintManager.cpp.html

Second month of coding (July)
Write the code of the checker, build the CFG from the constructors and
destructor, symbol execution through the CFG. Through the reachability of the
ExplodedGraph, determine the place of the virtual calls and report the bug
through the BugReporter.

Third month of coding (August)
Work on testing, bug fixing, incorporating mentor’s suggestions, possibly also
work on documentation.

After Google Summer of Code
Nevertheless, I would stay in the LLVM community, finding bugs and providing
patches occasionally. Moreover, if time permitted, let's see whether we can
work together and ship more checkers to the clang static analyzer!

About Me
Personal Profile
Full name: Xin Wang
Preferred E-mail Address: wangxinds@gmail.com
IRC usernames: wangxindsb, wangxin
Time Allocated: Minimum of 20 hours per week in June (because of some
exams and school activities) and a minimum of 40 hours per week on the
other two months.
Previous Years: I haven't participated in the Google Summer of Code before.

Biography
I am Xin Wang, a master student in the School of Chemical Engineering at
Tianjin University in China. I have always been interested in computers but
haven’t systematically studied the knowledge of the computer science.

This year, I started to learn computer programming and I became a
self-motivated individual, with ever more self-taught skills. Until now I have
learned many things about various computing related topics, such as
operating system, computer networking, compiler technique, etc. I have built a

mini-OS by consulting the source code of minix. Then I started learning the
compiler technique and built a tiny-C compiler front end. I also tried to do
some algorithm problems on leetcode in my spare time. By doing all of these, I
have also gained experience in Linux system and learn to write program with
vim. Currently I can code in a lot of languages, some of them are: Assembler,
C/C++, Java, Python. The language I use most and that I am more
experienced with is C and C++. My development tools include Vim, the GNU
compiler collection and the GNU debugger. I am also familiar with the gdb
debugger which will be useful to debug the checker.

The GSoC 2017 is the first time I participate in a computer project and I think it
will become a window to contribute to the open source community. Although
this is my first time to write code for the open source community, I’m not
unfamiliar with it. I know something about github and fork some project to
configure my router. I am skilled in using tools of open source community such
as git, svn, mailing lists and IRC. I learn quickly, I’m not afraid to read deep
code and I have the motivation to do this project. Hopefully I can fulfill all that
is required to do so.

Reference
[1] http://clang-analyzer.llvm.org/checker_dev_manual.html
[2] http://www.artima.com/cppsource/pure_virtual.html
[3] https://reviews.llvm.org/D26768
[4]
https://llvm.org/svn/llvm-project/cfe/trunk/lib/StaticAnalyzer/Checkers/VirtualCallChecker.cpp

http://clang-analyzer.llvm.org/checker_dev_manual.html
http://www.artima.com/cppsource/pure_virtual.html
https://reviews.llvm.org/D26768
https://llvm.org/svn/llvm-project/cfe/trunk/lib/StaticAnalyzer/Checkers/VirtualCallChecker.cpp

