
Google Summer of Code 2017 Proposal

ISL Memory Management Using Clang Static Analyzer
Malhar Thakkar - Indian Institute of Technology Hyderabad, India

cs13b1031@iith.ac.in​ | ​malhar1910@gmail.com

Abstract
Maintaining consistency while manual reference counting is very difficult. Languages like Java,
C#, Go and other scripting languages employ garbage collection which automatically performs
memory management. On the other hand, there are certain libraries like ISL (Integer Set
Library) which use memory annotations in function declarations to declare what happens to an
object’s ownership, thereby specifying the responsibility of releasing it as well. However,
improper memory management in ISL leads to invocations of runtime errors. Hence, my
proposal is to employ a robust static analyzer in clang which raises warnings in case there is a
possibility of a memory leak, double free, etc.

Background

Clang Static Analyzer
Typically, static analysis does work similar to compilers in raising warnings with varieties of
code. But, static analysis takes it further and finds bugs which are traditionally found using
run-time debugging. Clang Static Analyzer [​3​] is a source code analysis tool which finds bugs in
C, C++ and Objective-C programs. Among the many analyses, Clang Static Analyzer also
includes a mechanism to check if the memory management is done correctly in an Objective-C
code.

RetainCountChecker.cpp
An implementation of memory management checker algorithm is included in the source file
clang/lib/StaticAnalyzer/Checkers/RetainCountChecker.cpp​. ​Although this
checker does a pretty good job at raising warnings for every possible memory management
problems in Objective-C, it is not generic in the sense that it was designed for only a very
specific use namely, Objective-C. In addition to Objective-C, this checker also works for C
functions. It checks for annotations in the Apple C API called CoreFoundation (CF) that requires
a reference counting discipline. ​This discipline is similar to those used in Objective-C but the
rules are a bit different. At the moment, ​this checker is not aware of the annotations used for
function parameters in ISL. Hence, these annotations need to be incorporated to check for
proper memory management in ISL.

mailto:cs15mtech01004@iith.ac.in

Google Summer of Code 2017 Proposal

ISL Annotations
The following annotations for function parameters and arguments have been mentioned in the
ISL developer manual [​4​]:

● __isl_give: ​This annotation for a function argument means that a new object should
be returned by the function. It is the user’s duty to see to it that the object returned in
such a manner is used exactly once as an ​__isl_take argument and in between it can
be used for any number of ​__isl_keep​ arguments.

● __isl_null​:​ This annotation for a function means that a ​NULL​ value is returned.
● __isl_take​: ​This annotation for a function argument means that the object the

argument points to is taken over by the function and may no longer be used by the user
as an argument to any other function. The pointer value must be one returned by a
function returning an ​__isl_give​ pointer.

● __isl_keep​: ​This annotation for a function argument means that the function will only
use the object temporarily. After the function has finished, the user can still use it as an
argument to other functions.

In addition to the aforementioned annotations, if memory is allocated for any ISL object inside a
function, then either that object should be returned from the function, or the memory allocated to
it should be freed inside the function.

From the above explanation, it is quite evident that in case of ISL, the static analyzer should
care about what comes in and what goes out of a function.

ISL and Objective-C
Similar to ISL, the Objective-C rules for reference counting are intraprocedural. The retain count
checker checks each Objective-C method at the top level to make sure this is enforced. Hence,
memory management for each function in ISL can be performed in a similar manner. However,
this will require further discussion on the cfe-dev mailing list.

Objective
Modify ​RetainCountChecker.cpp in Clang Static Analyzer to incorporate new attributes in
addition to CoreFoundation attributes to enable/improve memory management for ISL and C
codebases.

Benefits to Community
Successfully carrying out this project will benefit the open-source community in the following
ways:

● Provide a robust bug-finder/static analyzer to the community, so that everyone can verify
their C-style reference counter.

Google Summer of Code 2017 Proposal

● Fix existing bugs in ISL.
○ Creating an analyzer which checks for issues like memory leaks, double frees,

etc. will help point out bugs in the existing ISL codebase.
● Help developers to use ISL correctly.

○ Many novice ISL programmers encounter runtime errors due to improper memory
management done by them. Hence, performing static analysis on the code
before execution can help prevent such bugs for developers reducing
development time significantly.

● Benefit the wider Clang Static Analyzer community because it will add callee-side
parameter checking to RetainCountChecker. This will find a new class of bugs on
Objective-C and CoreFoundation codebases in addition to to ISL projects.

Milestones and Deliverables
I am committed to LLVM’s incremental development policy and that the criterion for completion
of coding milestones is that a patch has been reviewed and accepted by the Clang community
and committed to ​llvm.org​ trunk.​ ​Also,​ ​I am planning to achieve all the below mentioned
milestones chronologically starting from May 5th, 2017.

Time period Milestone

May 5 - May 29 Community bonding period.

May 30 - June 5 1. Evaluation of Existing Checker on
Representative Codebases: Apply
the existing analyzer to the ISL and
Polly codebase with the annotations
#define​’d to their CoreFoundation
attributes (i.e., ​cf_consumed for
__isl_take​,
cf_returns_retained for
__isl_give​). Prepare a report on
the kinds and relative frequency of
false positives and false negatives
found. This will help prioritize later
work (What heuristics will be needed?
What diagnostics will need to be
modified?) The deliverable will be an
email writeup characterizing the false
positives, false negatives, and
diagnostic quality sent to the cfe-dev
mailing lists.

June 6 - June 19 2. Initial Annotation Support: ​Support
for ISL-specific annotations (with the

http://llvm.org/

Google Summer of Code 2017 Proposal

clang ‘annotate' attribute) when
creating summaries. At this point the
analysis would still be treating ISL
annotations as core foundation
annotations.

June 20 - July 3 3. Diagnostic Customization: ​Add
custom diagnostic text for
ISL-originated data types. This will
add variants of the diagnostics where
the jargon is changed from
CoreFoundation terms to ISL terms.

July 4 - July 17 4. Add Callee-Side Parameter
Checking: The RetainCountChecker
already does caller-side checking, but
it doesn’t check parameters in the
callee. (For example, it won’t warn if
you forget to free an ​__isl_take
parameter). For this milestone, add
parameter checking (Dr. Tobias’
patch) behind a flag. This will be off by
default initially (at least for the non-ISL
checker).

July 18 - July 24 5. Evaluate ISL Checker on C and C++
Codebases: ​Re-evaluate with the
new diagnostic text and parameter
checking on C and C++ code.
Produce a second report on false
positives and diagnostic issues.
Again, it will be an email writeup
characterizing the false positives,
false negatives, and diagnostic quality
sent to the cfe-dev mailing lists.

July 25 - Aug 14 6. Fix Issues from C Evaluation: Add
heuristics and improve diagnostics
from 5) for C codebases (but not
C++).

Aug 15 - Aug 28 7. Turn it on!: ​Turn the checker (and
parameter checking) on by default.

The primary challenge in this project will be adapting the existing RetainCheckCounter
heuristics to the idioms that ISL clients use due to the following reasons:

Google Summer of Code 2017 Proposal

● Need to teach the analyzer about different scenarios in which ownership of an
__isl_take​ parameter is transferred to a storage location in a data structure.

● Need to ensure that the above mentioned added functionality does not introduce new
false positives or interfere with existing heuristics. It is really important to avoid
regressions in RetainCountChecker as it is Clang Static Analyzer’s most important and
widely used checker.

Planned result artifacts (Code, Documentation, Experiments,
...)

● Patches for implementation reviewed by mentor(s) and/or the Clang community.
● Patches to fix bugs in ISL.
● Documentation
● [Optional] Tutorial
● [Optional] Bug reports to other projects like GObject.

Criteria of Success
● Patches should be committed to ​llvm.org trunk, evaluated on real ISL codebases, and

determined to be in good enough shape that the ISL checker can be enabled with a flag.

Related/Similar Work

Splint
It is a tool for statically checking ​C programs for security vulnerabilities and coding mistakes [​5​] .
Splint’s memory management algorithm detects errors like using storage that may have been
deallocated, memory leaks, returning a pointer to a stack allocated object, etc [​6​]. In addition to
static analysis of programs containing explicit memory management annotations for functions
and function parameters, Splint also performs analysis on programs containing no memory
management annotations by assuming an implicit memory management annotation for all the
declarations which do not have an explicit one. Additionally, it can also perform reference
counting by using the annotation ​refcounted to constrain the use of reference counted
storage. Only pointer to ​struct types may be declared as ​refcounted​, since reference counted
storage must have a field to count the references. As the objective of this project and Splint’s
functionalities have many things in common, Splint may provide insights on some heuristics
which need to be implemented in Clang Static Analyzer.

http://llvm.org/

Google Summer of Code 2017 Proposal

Testing Methodology
● Run the new checker on existing code bases like Polly, Pluto, ISL, GObject.
● Fix found bugs in ISL.
● Ensure that introducing new attributes and heuristics to perform memory management

doesn’t result in regressions in RetainCountChecker.
● Extend the existing Clang Static Analyzer ‘lit’ tests to cover added functionality.

Biography
I am a final year undergraduate studying Computer Science and Engineering at Indian Institute
of Technology Hyderabad, India. I am reasonably familiar with the LLVM architecture. I have
written various LLVM passes as part of my regular courses. I also took Compiler Engineering in
which I implemented an analysis pass which collects various loop properties and also a
transformation pass which performs basic loop invariant code motion. Also, as part of my
Advanced Compiler Optimization course project, I wrote a Global Code Motion pass in LLVM
which implements Cliff Click’s PLDI 1995 paper [​1​]. All of these projects can be found on my
GitHub profile [​2​].

PS: I do not have any summer commitments other than this project and if my application is
accepted, I am willing to work full time on it.

References
1. Cliff Click. 1995. ​Global code motion/global value numbering​. In ​Proceedings of

the ACM SIGPLAN 1995 conference on Programming language design and
implementation​ (PLDI '95). ACM, New York, NY, USA, 246-257.

2. Malhar Thakkar’s GitHub Profile: ​https://github.com/malhar1995
3. https://clang-analyzer.llvm.org
4. http://compsys-tools.ens-lyon.fr/iscc/isl.pdf
5. http://www.splint.org/
6. http://www.splint.org/manual/html/sec5.html

http://dl.acm.org/citation.cfm?id=207154
https://github.com/malhar1995
https://clang-analyzer.llvm.org/
http://compsys-tools.ens-lyon.fr/iscc/isl.pdf
http://www.splint.org/
http://www.splint.org/manual/html/sec5.html

