<div dir="ltr"><div class="gmail_quote"><div dir="ltr">On Tue, Jul 12, 2016 at 2:36 PM Gábor Horváth <<a href="mailto:xazax.hun@gmail.com">xazax.hun@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_extra"><div class="gmail_quote">On 12 July 2016 at 14:09, Manuel Klimek <span dir="ltr"><<a href="mailto:klimek@google.com" target="_blank">klimek@google.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><span><div dir="ltr">On Tue, Jul 12, 2016 at 1:59 PM Gábor Horváth <<a href="mailto:xazax.hun@gmail.com" target="_blank">xazax.hun@gmail.com</a>> wrote:<br></div></span><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div><div><div><div><div><div><div><div><div><div><div><div><div><div>Hi!<br><br></div><div><div class="m_-7763054856127041375h5">(As a ping), I would like to summarize the measurements I done since the original e-mail:<br><br></div></div></div><div><div class="m_-7763054856127041375h5">The approach is to first serialize all the translation units to the storage, create an index of the functions, and then load them lazily on demand to achieve cross translation unit support. This does not modify the inter-procedural analysis of the Static Analyzer and could be used for Clang Tidy as well. Once a new inter-procedural analysis is introduced for the Static Analyzer, the cross tu support would profit from it immediately.<br><br></div></div></div><div><div class="m_-7763054856127041375h5">Benchmarks:<br><div>rAthena, a 150k LOC C project:<br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><div><div class="m_-7763054856127041375h5"><div dir="ltr"><div><div><div><div><div><div><div><div><div><div><div><div><div><div>The size of the serialized ASTs was: 140MB<br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><div dir="ltr"><div><div><div><div><div><div><div><div><div><div><div><div><div><div>The size of the indexes: 4.4MB<br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><div dir="ltr"><div><div><div><div><div><div><div><div><div><div><div><div><div><div>The time of the analysis was bellow 4X<br></div>The amount of memory consumed was bellow 2X<br></div></div></div></div></div></div></div></div></div></div></div></div></div></div><div dir="ltr"><div><div><div><div><div><div><div><div><div><div><div><div><div></div>The number of reports is 3 times more<br><br></div>Xerces, 150k LOC C++ project:<br>The size of the serialized ASTs was: 800MB<br>The size of the indexes: 90MB<br></div>The analysis time using CTU was the half of the one without CTU<br><br></div>LLVM + Clang + Clang tools extra:<br>The size of the serialized ASTs was: 45.4 GB<br>The size of the indexes: 1,6GB<br><br>Some optimization effort to reduce te size of the CFG:<br>TU ASTs after omitting function bodies from headers: 42.7 GB<br>TU ASTs after omitting STL: 34.0 GB<br>TU ASTs after skipping implicit instantiations: 21.5 GB<br>TU ASTs after omitting STL and implicit instantiations: 16.0 GB<br><br></div>Considering that the build directory of a debug build is also about 40 GB on my platform, I do not consider the size of the serialized ASTs a blocking issue. However, in case it is a concern, according to the attached statistics about the serialized AST dumps, there are some optimization possibilities in the binary format. <br><br></div>This solution also works in a multi process build/analysis environment. Some of the necessary framework, for example ASTImporter code is being accepted into mainline clang right now.<br><br></div>All in all, this approach:<br></div>- Can discover new bug reports as is.<br></div>- Feasible to implement, does not need sever modifications to the Static Analyzer or Clang Tidy.<br></div>- Has acceptable performance for lots of the real world projects. <br><br></div>I think, this would be a useful addition to the clang source tree. Do you agree?<br></div></div></div></div></div></blockquote><div><br></div><div>I definitely think this is interesting - I'd be curious if we could design the interfaces in a way that we can</div><div>a) fully split out indexing from analysis</div></div></div></blockquote><div><br></div></div></div></div><div dir="ltr"><div class="gmail_extra"><div class="gmail_quote"><div>In the current implementation the analysis and dumping and indexing ASTs are two separate passes, so they can be used completely independently. Which is a very good design choice in my opinion.<br></div></div></div></div><div dir="ltr"><div class="gmail_extra"><div class="gmail_quote"><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div>b) allow storing the indexing data in a distributed storage system</div></div></div></blockquote><div><br></div></div></div></div><div dir="ltr"><div class="gmail_extra"><div class="gmail_quote"><div>I do not have much experience with distributed storage systems, but I think that should work. The only problem might be the size of the individual AST dumps. <br></div></div></div></div></blockquote><div><br></div><div>Yea, I think my main point is that I'd want the interface on the clang side to not be coupled to things being on a file system (basically have an interface for loading the indexed files).</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_extra"><div class="gmail_quote"><div></div></div></div></div><div dir="ltr"><div class="gmail_extra"><div class="gmail_quote"><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_quote"><div><div class="m_-7763054856127041375h5"><div><br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><br></div>Regards,<br></div>Gábor<br><div><div><div><div><div><div><div><div><div><div><div><div><div><div><div><div><div><div><br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><div class="gmail_extra"><br><div class="gmail_quote"></div></div><div class="gmail_extra"><div class="gmail_quote">On 4 May 2016 at 15:09, Gábor Horváth <span dir="ltr"><<a href="mailto:xazax.hun@gmail.com" target="_blank">xazax.hun@gmail.com</a>></span> wrote:<br></div></div><div class="gmail_extra"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div><div><div><div><div><div>Hi!<br><br></div>This e-mail is a proposal based on the work done by Yury Gibrov et al.: <a href="http://lists.llvm.org/pipermail/cfe-dev/2015-December/046299.html" target="_blank">http://lists.llvm.org/pipermail/cfe-dev/2015-December/046299.html</a><b><br><br></b></div>They accomplished a two pass analysis, the first pass is serializing the AST of every translation unit and creates an index of functions, the second pass does the real analysis, which can load the AST of function bodies on demand.<br><br></div>This approach can be used to achieve cross translation unit analysis for the clang Static Analyzer to some extent, but similar approach could be applicable to Clang Tidy and other clang based tools.<br><br></div>While this method is not likely to be a silver bullet for the Static Analyzer, I did some benchmarks to see how feasible this approach is. The baseline was running the Static Analyzer without the two pass analyis, the second one was running using the framework linked above.<br><br></div><div>For a 150k LOC C projects I got the following results:<br></div><div>The size of the serialized ASTs was: 140MB<br></div><div>The size of the indexes (textual representation): 4.4MB<br></div><div>The time of the analysis was bellow 4X<br></div><div>The amount of memory consumed was bellow 2X<br><br></div><div>All in all it looks like a feasible approach for some use cases.<br><br></div><div>I also tried to do a benchmark on the LLVM+Clang codebase. Unfortunately I was not able to run the analysis due to some missing features in the AST Importer. But I was able to serialize the ASTs and generate the indices:<br></div><div>The siye of the serialized ASTs: 45.4 GB<br></div><div>The siye of the function index: 1,6GB<br><br></div><div>While these numbers are less promising, I think there are some opportunities to reduce them significantly.<br><br></div><div>I propose the introduction of an analysis mode for exporting ASTs. In analysis mode the AST exporter would not emit the function body of a function for several cases:<br></div><div>- In case a function is defined in a header, do not emit the body.<br></div><div>- In case the function was defined in an implicit template specialisation, do not emit the body.<br><br></div><div>I think after similar optimizations it might be feasible to use this approach on LLVM scale projects as well, and it would be much easier to implement Clang based tools that can utilize cross translation unit capabilities.<br><br></div><div>In case the analyzer gets a new interprocedural analysis method that would increase the performance the users of this framework would profit from that approach immediately.<br><br></div><div>Does a framework like this worth mainlining and working on? What do you think?<br><br></div><div>(Note that, AST Importer related improvements are already being mainlined by Yury et al. My question is about the "analysis mode" for exporting ASTs, and a general framework to consume those exported ASTs.)<br></div><div><br></div><div>Regards,<br></div><div>Gábor<br></div><div><br></div><div><br><br></div></div></div>
</blockquote></div></div></blockquote></div></div></div></div>
</blockquote></div></div></div></blockquote></div></div>