Project Compile Issues
John Thompson
18 Nov 2010
This is a summary of the issues I encountered while using Clang to compile much of the source code for a project, originally compiled with a special version of gcc and other compilers. Many of these issues at some point have been posted as bugs, or asked about in the list, or are under development, but not all, especially if the work-around was easy. I make an attempt to summarize them here in case it’s of interest to anyone, or in case the gcc-isms might spark further compatibility work. I’ve arranged them in the following categories:

· Outstanding Issues – These are issues I think still need to be fixed.

· GCC-isms/Project Issues – These are issues which are things that gcc accepted, but conflict with the standards, and thus were flagged by Clang.
· Fixed Issues – These are issue that were encountered but were fixed, either by others or myself.

These are derived from notes recorded in the process. The numbers refer to ordering in the original notes only. Note that these only reflect front-end issues. I’m mainly just trying to get the project to compile without errors or warnings at this point.
Outstanding Issues

11. [Not done] Clang doesn't recognize

__attribute__((vecreturn))

Action: I added some parsing support, but am waiting for review/suggestions regarding a patch submitted to the list for checking for a non-vtable class. Still needs major codegen implementation.

17. [Not done - need evaluation] Clang is a bit more picky than gcc about implicit casts in constructors. The following produces an error in clang:

class test

{

public:

 test(float x);

 test(__attribute__((vector_size(16))) float v);

};

int vi = 0;

void func()

{

 test object = test(vi);

}

C:\Clang\exp>clang -cc1 scalar.cpp

scalar.cpp:13:16: error: functional-style cast from 'int' to 'test' is not allowed

 test object = test(vi);

 ^~~~

Action: After some correspondence on cfe-dev, I filed bug 7070. Also, it demonstrates another problem, that casts of scalars to vectors are allowed, but shouldn't be. I provided three test cases in the bug report.

GCC-isms/Project Issues

6: [Done] I had a problem with (project) declaring some stdio functions outside of the standard namespace, which caused some using declarations in the special SDK stdio.h to conflict. For example, this file had declarations like the following, outside of any namespace:
extern "C" {
 int C_DECL strcmp(const char *, const char *);
}
Action: To work around it, I changed it to:

namespace std {
 extern "C" {
 int C_DECL strcmp(const char *, const char *);
 }
}

7. [Done] Precedence problem in (project).

c:\clang\project\logs\preprocess_in.cpp:10805:20: warning: & has lower precedence than !=; != will be evaluated first

if(_eaJobList & 15 != 0){

^~~~~~~~~

This seems to be a problem in the project code. Good catch, Clang!

Action: I added parens in the project code.

19. [Not done - need evaluation] Error on array in class with no size.

Action: I filed bug 7032:

class __attribute__ ((aligned(16))) test {

int m;
__attribute__ ((aligned(16))) unsigned int mDummy[];
};

C:\clang\exp>clang -cc1 AttributeAligned.cpp
AttributeAligned.cpp:3:44: error: field has incomplete type 'unsigned int []'
__attribute__ ((aligned(16))) unsigned int mDummy[];
 ^
1 error generated.

I suppose this is not necessarily a bug, but it compiles in gcc. The user is using the field to align the class size, which is why I left in the alignment attributes.

[Douglass M. said: "This is the C99 "flexible array member" feature (C99 6.7.2.1p16), which GCC supports as an extension in C++. Clang supports this feature for structs but not classes. I'm willing to support this extension for C++ classes if it shows up in the wild (with an Extension diagnostic of course), although it might take some work (of unknown scope) to ensure that such classes actually behave well in C++.']

21. [Done] Default arguments in template member function definitions.

template <typename T> class test

{

void func(int a);

};

template <typename T> inline void test<T>::func(int a = 1) {}

clang -cc1 hashset.cpp

hashset.cpp:5:53: error: default arguments cannot be added to an out-of-line definition of a member of a class template

template <typename T> inline void test<T>::func(int a = 1) {}

^ ~

This compiles without error in gcc.

Action: Filed the above as bug 7034.

[Bug was marked invalid, with a reference to the standard.]

22. [Not done - need evaluation] Qualifiers in extern?

Action: I filed bug 7035, though perhaps it's just gcc being permissive:

namespace A {

void f();

}

extern void A::f();

clang -cc1 extqual.cpp

extqual.cpp:4:16: error: out-of-line declaration of a member must be a definition

extern void A::f();

            ~~~^

This compiles in gcc. It appears gcc allows a lot of things I wouldn't expect. 



23. [Done] Implicit cast of string literals to char * deprecated. 

*.cpp:367:99: warning: conversion from string literal to 'char *' is deprecated

Action: Put in (char*) cast. 



24. [Done] Variable length arrays. 

In file included from Munch\MunchFoo.cpp:3:

*.cpp:582:17: error: variable length arrays are not permitted in C++

                                                        char data[ad->size];

                                                                 ^

Action: Converted to alloca. 



26. [Done] Forward declaration of enum: 

foo.h:27:6: error: ISO C++ forbids forward references to 'enum' types

enum SomeType;

     ^

Action: Commented it out. Apparently it wasn't needed, at least in the current file.   But gcc allowed it.


27. [Done] Weird header ordering problem. vec_uint4 was being used in foo.inl before it was defined. 

Action: I couldn't figure it out. Perhaps inlines are processed earlier than in gcc? My hack fix was to include their stdlib.h wrapper in this file. 



29. [Done] I finally was able to reduce a case of the offsetof warning from item 16: 

struct test

{

public:

    test();

    int member;

};

 

struct testStruct

{

 test t;

};

 

int i = __builtin_offsetof (testStruct, t);

 

C:\clang\exp>clang -cc1 offsetof1.cpp

offsetof1.cpp:13:9: warning: offset of on non-POD type 'testStruct'

int i = __builtin_offsetof (testStruct, t);

        ^                               ~

1 warning generated.

It's probably the case that “test” is not considered a POD class, hence the warning is legitimate, but since it's in the project, I note it. 

Action: I filed bug 7109 to find out what they say. 

[Asked list to comment on it. They said it's a legitimate error, as offsetof only applies to POD classes. - JAT] 



32. [Done] Digraphs warning in a string: 

foo.cpp:653:29: warning: trigraph ignored

                gAssertT(false, "You again??! Fix it!");

                                          ^

Action: Removed it. 



35. [Done] (project) had a case where a derived class was referencing a member of a struct inside a union in the base class in a private section. I.e.: 

class base {

private:

    union {

        struct {

            int member;

        };

    };

};

 

class derived : public base {

    derived() { member = 0; }

};

Action: Changed code private to protected. 



37. [Done] Similar to 35, some code outside the class is referencing a private member, apparently without error except in Clang. i.e.: 

base *ptr;  // From base class in 35.
ptr->member = 0;
Action: Change code to put union in public section.



39. [Done - not a valid issue] Function attribute order. 

file.cpp:70474:13: warning: attribute declaration must precede definition

extern bool func(const void *pPtr) __attribute__((__const__));

            ^

gcc seems to allow attributes at the end of the function declaration: 

http://gcc.gnu.org/onlinedocs/gcc-4.5.0/gcc/Function-Attributes.html#Function-Attributes 

Action: Filed Bugzilla 7339. 

Update: Someone commented on the bug about there being two declarations seen. I looked into it further, adding the attribute to the second definition, but ran into a different error. I added to the Bugzilla: 

I see. Yes, there is an inline that is seen later. 

However, if I add the same attribute to the inline, then I get a different error: 

C:\clang\exp>clang -cc1 attrpos.cpp

attrpos.cpp:1:74: error: invalid token after top level declarator

inline void isUncachedMemory(const void *pPtr) __attribute__((__const__)) {}

                                                                         ^

                                                                         ;

1 error generated.

The code: 

inline void isUncachedMemory(const void *pPtr) __attribute__((__const__)) {}

[JAT - This test case is bogus. gcc doesn't like it either. the real case is: 

inline void isUncachedMemory() {}

extern void isUncachedMemory() __attribute__((__const__)) ;

It makes sense that you can't see an attribute in a declaration after seeing the definition. However, I'm surprised you can't put the attribute in an inline definition. But gcc doesn't allow that either. The work-around is to rearrange the code.] 



41. [Done] Clang found some attribute nonnull misuses, i.e. specifying non-pointer or non-existent arguments. 

Action: Disabled in code. 



42. [Done] Clang found some string literals passed in character array parameters. 

Action: Changed parameter to pointer. 



43. [Done] Clang found a case of using mutable on a reference, with is disallowed in the standard. 

Action: Removed mutable from the definition. 



44. [Done] Clang doesn't like NULL used instead of 0 in a pure virtual function declaration. The preprocessor seems to be substituting __null. 

Action: Don't use NULL in virtual decls. 



45. [Done] More weird include order business. Don't know how it ever worked. 

Action: Add an include directive where needed. 



46. [Done] typedef enum {…}; without a name. 

Action: Removed typedef keyword. 



47. [Done] init_priority attribute doesn't seem to be supported. 

Action: Disable it's use. 



48. [Done] Warning on passing non-literal to printf (wrapped by gPrint) as format string. 

Action: Recode to eliminate warning. 



49. [Done] Warning on assigning string literal to char * pointer (wrapped by pTChar). 

Action: Change variable to const char *. 



51. [Done] Use of “typename” in header. 

foo.h:141:115: warning: 'typename' refers to a non-dependent type name; accepted as a C++0x extension

                static int FUNCTION( castAabb )( const foo* tree, const bar& queryVolume, typename gak::mem& input, 

                                                                                                                                ^~~~~~~~                 ~~~~~~~~~~~~~~~

Action: I don't understand the use of typename here. I commented it out to remove the warning. 



53. [Done] Clang not seeing a function defined in a base, where templates are involved in two of the classes. 

class Base1

{


inline void BaseFunc() {}

};

 

template <typename T>

class Base2 : public Base1

{

};

 

template <typename T>

class TinyArray : public Base2<T>

{

public:


void Func()


{



BaseFunc();


}

};

Error: 

C:\clang\exp>clang -cc1 cantfind3.cpp

cantfind3.cpp:17:3: error: use of undeclared identifier 'BaseFunc'

                BaseFunc();

                ^

1 error generated.

Action: I filed bug 7456, though it's probably just a limitation of templates. gcc doesn't like it either. 

[Yep, the Clang folks said it's a template limitation, so they closed the bug. I added this-> to all the offending references. ] 



Fixed Issues

3. [Done] Problem with vector literal/casting confusion: 

vector float v = (vector float)((vector unsigned int)(0x49800000));

 

vecinit1.cpp:1:33: error: cannot initialize a vector element of type 'float' with an lvalue of type '__vector unsigned int'

vector float v = (vector float)((vector unsigned int)(0x49800000));

It appears to be treating the outer paren expression as a vector literal instead of a cast. 

Action: Filed Bugzilla 6895 on this. 

[Fixed: I committed a fix for this in r107347.] 



4. [Done] hex float constants warning. 

foo.h:541:65: warning: hexadecimal floating constants are a C99 feature that is incompatible with C++0x

 

asm("fsel %0, %1, %2, %3" : "=f"(temp0) : "f"(inNumber), "f"(-0x1.0p+52), "f"(0x1.0p+52) ); // temp0 = inNumber >= 0 ? -0x1.0p+62 : 0x1.0p+52

Action: Commented these statements out. (This should be a Bugzilla – Alex) 

[No warning in the current version, so it appears to have been fixed.] 



5. [Done] I was having a couple of assertion failures in Sema::ActOnNumericConstant and APInt::trunc. 

Turns out it was a targets problem. I changed some size definitions in Targets.cpp for the special target, and the problems went away.


10. [Done] Missing AltiVec stuff.

I added some of the vector typing stuff, and Anton Yartsev added everything else, including the altivec.h header, the builtins, the codegen, and some related fixes.


12. [Done] Added support for some missing inline assembly machine-specific constraints for Win32.


18. [Done.] Accessing private members through typedefs. 

template <class T> class A {

 int foo;

 int getFoo(A<int> &a) {

   return a.foo;

 

 }

};

Action: Filed bug 7024. 

[Someone fixed it.] 



20. [Done] Error on cast involving const and non const cast operators. 

Action: I filed bug 7033: 

class String

{

public:

    String();

    operator char *();

    operator const char *();

};

String s;

const char * p = (const char *)s;

 

C:\clang\exp>clang -cc1 pctchar.cpp

pctchar.cpp:9:18: error: cannot cast from type 'String' to pointer type 'char

const *'

const char * p = (const char *)s;

                 ^~~~~~~~~~~~~~

1 error generated.

gcc compiles the above without error. 

[Fixed] 



28. [Done] Union initialization. 

project/service.h has given me the following case: 

class Connection

{

public:

    union

    {

        struct

        {

            Connection* m_pPrev;

            Connection* m_pNext;

        } m_connections[2];


 

        struct

        {

            Connection* m_pPrev0;

            Connection* m_pNext0;

            Connection* m_pPrev1;

            Connection* m_pNext1;

        };

 

        Connection* m_pConns[4];

    };

 

    Connection() :

        m_pPrev0(NULL),

        m_pNext0(NULL),

        m_pPrev1(NULL),

        m_pNext1(NULL)

    {}

};

Clang gives the following errors: 

$ clang -analyze -c union-structs.cpp

union-structs.cpp(27) :  error: multiple initializations given for non-static member 'm_pNext0'

        m_pNext0(NULL),

        ^~~~~~~~~~~~~~

union-structs.cpp(26) :  note: previous initialization is here

        m_pPrev0(NULL),

        ^

union-structs.cpp(28) :  error: multiple initializations given for non-static member 'm_pPrev1'

        m_pPrev1(NULL),

        ^~~~~~~~~~~~~~

union-structs.cpp(26) :  note: previous initialization is here

        m_pPrev0(NULL),

        ^

union-structs.cpp(29) :  error: multiple initializations given for non-static member 'm_pNext1'

        m_pNext1(NULL)

        ^~~~~~~~~~~~~~

union-structs.cpp(26) :  note: previous initialization is here

        m_pPrev0(NULL),

        ^

6 diagnostics generated.

This compiles without error or warning in gcc. 
[FIXED (as of r103741)]


30. [Done - Can't reproduce.] Aligned new and aligned new with allocation context 

// aligned new

void*
operator new(size_t bytes, size_t alignment) throw (std::bad_alloc);

void*
operator new[](size_t bytes, size_t alignment) throw (std::bad_alloc);

void*
operator new(size_t bytes, size_t alignment, const std::nothrow_t&) throw();

void*
operator new[](size_t bytes, size_t alignment, const std::nothrow_t&) throw();

// our aligned new

void*
operator new(size_t bytes, Alignment alignment) throw (std::bad_alloc);

void*
operator new[](size_t bytes, Alignment alignment) throw (std::bad_alloc);

void*
operator new(size_t bytes, Alignment alignment, const std::nothrow_t&) throw();

void*
operator new[](size_t bytes, Alignment alignment, const std::nothrow_t&) throw();

// our aligned new with allocation context

void*
operator new(size_t bytes, AllocatorContext context, Alignment alignment) throw (std::bad_alloc);

void*
operator new[](size_t bytes, AllocatorContext context, Alignment alignment) throw (std::bad_alloc);

void*
operator new(size_t bytes, AllocatorContext context, Alignment alignment, const std::nothrow_t&) throw();

void*
operator new[](size_t bytes, AllocatorContext context, Alignment alignment, const std::nothrow_t&) throw();

Clang gives the following errors: 

./project/mmgr.h(65) :  error: 'operator new' takes type size_t ('unsigned int') as first parameter

void*   operator new(size_t bytes) throw (std::bad_alloc);

        ^

./project/mmgr.h(66) :  error: 'operator new[]' takes type size_t ('unsigned int') as first parameter

void*   operator new[](size_t bytes) throw (std::bad_alloc);

        ^

./project/mmgr.h(67) :  error: 'operator new' takes type size_t ('unsigned int') as first parameter

void*   operator new(size_t bytes, const std::nothrow_t&) throw();

        ^

./project/mmgr.h(68) :  error: 'operator new[]' takes type size_t ('unsigned int') as first parameter

void*   operator new[](size_t bytes, const std::nothrow_t&) throw();

        ^

./project/mmgr.h(70) :  error: 'operator new' takes type size_t ('unsigned int') as first parameter

void*   operator new(size_t bytes, size_t alignment) throw (std::bad_alloc);

        ^

./project/mmgr.h(71) :  error: 'operator new[]' takes type size_t ('unsigned int') as first parameter

void*   operator new[](size_t bytes, size_t alignment) throw (std::bad_alloc);

        ^

./project/mmgr.h(72) :  error: 'operator new' takes type size_t ('unsigned int') as first parameter

void*   operator new(size_t bytes, size_t alignment, const std::nothrow_t&) throw();

        ^

./project/mmgr.h(73) :  error: 'operator new[]' takes type size_t ('unsigned int') as first parameter

void*   operator new[](size_t bytes, size_t alignment, const std::nothrow_t&) throw();

        ^

./project/mmgr.h(75) :  error: 'operator new' takes type size_t ('unsigned int') as first parameter

void*   operator new(size_t bytes, Alignment alignment) throw (std::bad_alloc);

        ^

./project/mmgr.h(76) :  error: 'operator new[]' takes type size_t ('unsigned int') as first parameter

void*   operator new[](size_t bytes, Alignment alignment) throw (std::bad_alloc);

        ^

./project/mmgr.h(77) :  error: 'operator new' takes type size_t ('unsigned int') as first parameter

void*   operator new(size_t bytes, Alignment alignment, const std::nothrow_t&) throw();

        ^

./project/mmgr.h(78) :  error: 'operator new[]' takes type size_t ('unsigned int') as first parameter

void*   operator new[](size_t bytes, Alignment alignment, const std::nothrow_t&) throw();

        ^

./project/mmgr.h(80) :  error: 'operator new' takes type size_t ('unsigned int') as first parameter

void*   operator new(size_t bytes, AllocatorContext context, Alignment alignment) throw (std::bad_alloc);

        ^

I guess the corresponding delete will do the same. 

 [I can't reproduce it, so I assume it's fixed.] 



33. [Done - I considered this a problem with the project, which shouldn't assume case-insensitivity.] Case-sensitivity of include files. 

This causes duplicate definition errors because the case differed in an include directive file path. 

Action: I filed bug 7177: 

This should probably work on Windows: 

//once.cpp

#include "onlyOnce.h"

#include "OnlyOnce.h"

 

//onlyOnce.h

#pragma once

int def;

But the preprocessor creates separate entries for the include file, and thus the #pragma once doesn't prevent the double definition. 
[Fixed – The bug was marked fixed.  I haven’t confirmed it.]


34. [Done - Can't reproduce - must have been fixed.] asm parsing crashes with null pointer exception. 

The following unit test exposes the problem. 

int foo()
{
   int p1;
   __asm__ ("sc" : "=r" (p1));
   return p1;
}
I'm debugging the clang parser.
The bug # 34 “asm parsing crashes with null pointer exception” has been introduced in the revision 94925 on 1/30/2010 2:25:16 PM. File clang/lib/Parse/ParseStmt.cpp, line 1362: Names.push_back(0) adds an item which triggers a null pointer exception when gets dereferenced without validation in multiple locations. 

Bug 7302 was filed. 

[I can't reproduce this one, so I assume it's fixed.] 



38. [Done] This inline asm constraint failed: 

: [old] "=&r,&r" (old), "+m,m" (*p)

Action: I filed Bugzilla 7338. 

[Fixed – Support added for mult-alt constraints.] 



39. [Done - not a valid issue] Function attribute order. 

file.cpp:70474:13: warning: attribute declaration must precede definition

extern bool func(const void *pPtr) __attribute__((__const__));

            ^

gcc seems to allow attributes at the end of the function declaration: 

http://gcc.gnu.org/onlinedocs/gcc-4.5.0/gcc/Function-Attributes.html#Function-Attributes 

Action: Filed Bugzilla 7339. 

Update: Someone commented on the bug about there being two declarations seen. I looked into it further, adding the attribute to the second definition, but ran into a different error. I added to the bugzilla: 

Yes, there is an inline that is seen later. However, if I add the same attribute to the inline, then I get a different error: 

C:\clang\exp>clang -cc1 attrpos.cpp

attrpos.cpp:1:74: error: invalid token after top level declarator

inline void isUncachedMemory(const void *pPtr) __attribute__((__const__)) {}

                                                                         ^

                                                                         ;

1 error generated.

The code: 

inline void isUncachedMemory(const void *pPtr) __attribute__((__const__)) {}

[This test case is bogus. gcc doesn't like it either. the real case is: 

inline void isUncachedMemory() {}

extern void isUncachedMemory() __attribute__((__const__)) ;

It makes sense that you can't see an attribute in a declaration after seeing the definition. However, I'm surprised you can't put the attribute in an inline definition. But gcc doesn't allow that either. The work-around is to rearrange the code.] 



40. [Done.] Operator delete not seen. 

In the following, the derived class has a static void operator delete(void *pPtr) member, but it doesn't seem to be seen. The base class does not have it. Or do overloads need to match the base class? 

Code: 

class object

{

public:

 static void * operator new(unsigned int numBytes, unsigned int memPurpose,

unsigned int alignment);

 static void operator delete(void *pPtr, unsigned int memPurpose, unsigned int

alignment);

 static void * operator new[](unsigned int numBytes, unsigned int memPurpose,

unsigned int alignment);

 static void operator delete[](void *pPtr, unsigned int memPurpose, unsigned

int alignment);

 inline static void * operator new(unsigned int numBytes, void *pPlacement) {

(void)&numBytes; return pPlacement; }

 inline static void operator delete(void *pPtr, void *pPlacement) {

(void)&pPtr; (void)&pPlacement; }

public:

 object();

 ~object();

 unsigned int m_checkValue;

 unsigned int m_classID;

};

 

class media : public object

{

protected:

 media(const char *pPrimaryIdentifier);

public:

 virtual ~media();

 static void * operator new(unsigned int numBytes);

 static void operator delete(void *pPtr);

 static void * operator new[](unsigned int numBytes);

 static void operator delete[](void *pPtr);

 static void * operator new(unsigned int numBytes, unsigned int memPurpose) ;

 static void operator delete(void *pPtr, unsigned int memPurpose);

 static void * operator new[](unsigned int numBytes, unsigned int memPurpose);

 static void operator delete[](void *pPtr, unsigned int memPurpose);

 static void * operator new(unsigned int numBytes, void *pPlacement);

 static void operator delete(void *pPtr, void *pPlacement);

};

Output: 

C:\clang\exp>clang -cc1 delete1.cpp

delete1.cpp:22:10: error: no suitable member 'operator delete' in 'media'

 virtual ~media();

         ^

delete1.cpp:5:14: note: member 'operator delete' declared here

 static void operator delete(void *pPtr, unsigned int memPurpose, unsigned int

alignment);

             ^

delete1.cpp:9:21: note: member 'operator delete' declared here

 inline static void operator delete(void *pPtr, void *pPlacement) {

(void)&pPtr; (void)&pPlacement; }

                    ^

1 error generated.

[Bug 7346 was originally filed for this, and was recently fixed by a Clang developer.] 



50. [Done] Error when using _Bool as a template argument. 

Action: Filed Bugzilla 7388.

[Fixed.]



54. [Done] Problem with vectors and '=='. 

The code: 

void func()

{


static vector float v1;


static vector float v2;


if (v1 == v2)



return;

}

The error: 

clang -cc1 -triple=powerpc-apple-darwin8 -faltivec vecindex.cpp

vecindex.cpp:5:6: error: value of type 'int  __attribute__((ext_vector_type(4)))' is not contextually convertible to 'bool'

        if (v1 == v2)

            ^~~~~~~~

1 error generated.

Action: I filed bug 7553.

[Anton fixed it.]


