<div dir="ltr">Hello George,<br><br>This commit added warning to some builders:<br><br>llvm.src\tools\clang\lib\Sema\SemaDeclAttr.cpp(259): warning C4018: '>': signed/unsigned mismatch<br><br><a href="http://lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast/builds/2892">http://lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast/builds/2892</a><br><br>Please have a look at this?<br><br>Thanks<br><br>Galina<br></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Dec 19, 2016 at 5:05 PM, George Burgess IV via cfe-commits <span dir="ltr"><<a href="mailto:cfe-commits@lists.llvm.org" target="_blank">cfe-commits@lists.llvm.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Author: gbiv<br>
Date: Mon Dec 19 19:05:42 2016<br>
New Revision: 290149<br>
<br>
URL: <a href="http://llvm.org/viewvc/llvm-project?rev=290149&view=rev" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project?rev=290149&view=rev</a><br>
Log:<br>
Add the alloc_size attribute to clang.<br>
<br>
This patch does three things:<br>
<br>
- Gives us the alloc_size attribute in clang, which lets us infer the<br>
number of bytes handed back to us by malloc/realloc/calloc/any user<br>
functions that act in a similar manner.<br>
- Teaches our constexpr evaluator that evaluating some `const` variables<br>
is OK sometimes. This is why we have a change in<br>
test/SemaCXX/constant-<wbr>expression-cxx11.cpp and other seemingly<br>
unrelated tests. Richard Smith okay'ed this idea some time ago in<br>
person.<br>
- Uniques some Blocks in CodeGen, which was reviewed separately at<br>
D26410. Lack of uniquing only really shows up as a problem when<br>
combined with our new eagerness in the face of const.<br>
<br>
Differential Revision: <a href="https://reviews.llvm.org/D14274" rel="noreferrer" target="_blank">https://reviews.llvm.org/<wbr>D14274</a><br>
<br>
Added:<br>
cfe/trunk/test/CodeGen/alloc-<wbr>size.c<br>
cfe/trunk/test/CodeGenCXX/<wbr>alloc-size.cpp<br>
cfe/trunk/test/Sema/alloc-<wbr>size.c<br>
Modified:<br>
cfe/trunk/include/clang/Basic/<wbr>Attr.td<br>
cfe/trunk/include/clang/Basic/<wbr>AttrDocs.td<br>
cfe/trunk/include/clang/Basic/<wbr>DiagnosticSemaKinds.td<br>
cfe/trunk/lib/AST/<wbr>ExprConstant.cpp<br>
cfe/trunk/lib/CodeGen/<wbr>CGBlocks.cpp<br>
cfe/trunk/lib/CodeGen/CGCall.<wbr>cpp<br>
cfe/trunk/lib/CodeGen/<wbr>CodeGenFunction.h<br>
cfe/trunk/lib/CodeGen/<wbr>CodeGenModule.h<br>
cfe/trunk/lib/Sema/<wbr>SemaDeclAttr.cpp<br>
cfe/trunk/test/CodeGenCXX/<wbr>block-in-ctor-dtor.cpp<br>
cfe/trunk/test/CodeGenCXX/<wbr>global-init.cpp<br>
cfe/trunk/test/CodeGenOpenCL/<a href="http://cl20-device-side-enqueue.cl" rel="noreferrer" target="_blank">c<wbr>l20-device-side-enqueue.cl</a><br>
cfe/trunk/test/SemaCXX/<wbr>constant-expression-cxx11.cpp<br>
<br>
Modified: cfe/trunk/include/clang/Basic/<wbr>Attr.td<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Basic/Attr.td?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/include/<wbr>clang/Basic/Attr.td?rev=<wbr>290149&r1=290148&r2=290149&<wbr>view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/include/clang/Basic/<wbr>Attr.td (original)<br>
+++ cfe/trunk/include/clang/Basic/<wbr>Attr.td Mon Dec 19 19:05:42 2016<br>
@@ -780,6 +780,15 @@ def EmptyBases : InheritableAttr, Target<br>
let Documentation = [EmptyBasesDocs];<br>
}<br>
<br>
+def AllocSize : InheritableAttr {<br>
+ let Spellings = [GCC<"alloc_size">];<br>
+ let Subjects = SubjectList<[HasFunctionProto]<wbr>, WarnDiag,<br>
+ "<wbr>ExpectedFunctionWithProtoType"<wbr>>;<br>
+ let Args = [IntArgument<"ElemSizeParam">, IntArgument<"NumElemsParam", 1>];<br>
+ let TemplateDependent = 1;<br>
+ let Documentation = [AllocSizeDocs];<br>
+}<br>
+<br>
def EnableIf : InheritableAttr {<br>
let Spellings = [GNU<"enable_if">];<br>
let Subjects = SubjectList<[Function]>;<br>
<br>
Modified: cfe/trunk/include/clang/Basic/<wbr>AttrDocs.td<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Basic/AttrDocs.td?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/include/<wbr>clang/Basic/AttrDocs.td?rev=<wbr>290149&r1=290148&r2=290149&<wbr>view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/include/clang/Basic/<wbr>AttrDocs.td (original)<br>
+++ cfe/trunk/include/clang/Basic/<wbr>AttrDocs.td Mon Dec 19 19:05:42 2016<br>
@@ -206,6 +206,44 @@ to enforce the provided alignment assump<br>
}];<br>
}<br>
<br>
+def AllocSizeDocs : Documentation {<br>
+ let Category = DocCatFunction;<br>
+ let Content = [{<br>
+The ``alloc_size`` attribute can be placed on functions that return pointers in<br>
+order to hint to the compiler how many bytes of memory will be available at the<br>
+returned poiner. ``alloc_size`` takes one or two arguments.<br>
+<br>
+- ``alloc_size(N)`` implies that argument number N equals the number of<br>
+ available bytes at the returned pointer.<br>
+- ``alloc_size(N, M)`` implies that the product of argument number N and<br>
+ argument number M equals the number of available bytes at the returned<br>
+ pointer.<br>
+<br>
+Argument numbers are 1-based.<br>
+<br>
+An example of how to use ``alloc_size``<br>
+<br>
+.. code-block:: c<br>
+<br>
+ void *my_malloc(int a) __attribute__((alloc_size(1)))<wbr>;<br>
+ void *my_calloc(int a, int b) __attribute__((alloc_size(1, 2)));<br>
+<br>
+ int main() {<br>
+ void *const p = my_malloc(100);<br>
+ assert(__builtin_object_size(<wbr>p, 0) == 100);<br>
+ void *const a = my_calloc(20, 5);<br>
+ assert(__builtin_object_size(<wbr>a, 0) == 100);<br>
+ }<br>
+<br>
+.. Note:: This attribute works differently in clang than it does in GCC.<br>
+ Specifically, clang will only trace ``const`` pointers (as above); we give up<br>
+ on pointers that are not marked as ``const``. In the vast majority of cases,<br>
+ this is unimportant, because LLVM has support for the ``alloc_size``<br>
+ attribute. However, this may cause mildly unintuitive behavior when used with<br>
+ other attributes, such as ``enable_if``.<br>
+ }];<br>
+}<br>
+<br>
def EnableIfDocs : Documentation {<br>
let Category = DocCatFunction;<br>
let Content = [{<br>
<br>
Modified: cfe/trunk/include/clang/Basic/<wbr>DiagnosticSemaKinds.td<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Basic/DiagnosticSemaKinds.td?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/include/<wbr>clang/Basic/<wbr>DiagnosticSemaKinds.td?rev=<wbr>290149&r1=290148&r2=290149&<wbr>view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/include/clang/Basic/<wbr>DiagnosticSemaKinds.td (original)<br>
+++ cfe/trunk/include/clang/Basic/<wbr>DiagnosticSemaKinds.td Mon Dec 19 19:05:42 2016<br>
@@ -2297,6 +2297,9 @@ def warn_attribute_pointers_only : Warni<br>
"%0 attribute only applies to%select{| constant}1 pointer arguments">,<br>
InGroup<IgnoredAttributes>;<br>
def err_attribute_pointers_only : Error<warn_attribute_pointers_<wbr>only.Text>;<br>
+def err_attribute_integers_only : Error<<br>
+ "%0 attribute argument may only refer to a function parameter of integer "<br>
+ "type">;<br>
def warn_attribute_return_<wbr>pointers_only : Warning<<br>
"%0 attribute only applies to return values that are pointers">,<br>
InGroup<IgnoredAttributes>;<br>
<br>
Modified: cfe/trunk/lib/AST/<wbr>ExprConstant.cpp<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/AST/ExprConstant.cpp?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/lib/AST/<wbr>ExprConstant.cpp?rev=290149&<wbr>r1=290148&r2=290149&view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/lib/AST/<wbr>ExprConstant.cpp (original)<br>
+++ cfe/trunk/lib/AST/<wbr>ExprConstant.cpp Mon Dec 19 19:05:42 2016<br>
@@ -109,19 +109,57 @@ namespace {<br>
return getAsBaseOrMember(E).getInt();<br>
}<br>
<br>
+ /// Given a CallExpr, try to get the alloc_size attribute. May return null.<br>
+ static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {<br>
+ const FunctionDecl *Callee = CE->getDirectCallee();<br>
+ return Callee ? Callee->getAttr<AllocSizeAttr><wbr>() : nullptr;<br>
+ }<br>
+<br>
+ /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.<br>
+ /// This will look through a single cast.<br>
+ ///<br>
+ /// Returns null if we couldn't unwrap a function with alloc_size.<br>
+ static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {<br>
+ if (!E->getType()->isPointerType(<wbr>))<br>
+ return nullptr;<br>
+<br>
+ E = E->IgnoreParens();<br>
+ // If we're doing a variable assignment from e.g. malloc(N), there will<br>
+ // probably be a cast of some kind. Ignore it.<br>
+ if (const auto *Cast = dyn_cast<CastExpr>(E))<br>
+ E = Cast->getSubExpr()-><wbr>IgnoreParens();<br>
+<br>
+ if (const auto *CE = dyn_cast<CallExpr>(E))<br>
+ return getAllocSizeAttr(CE) ? CE : nullptr;<br>
+ return nullptr;<br>
+ }<br>
+<br>
+ /// Determines whether or not the given Base contains a call to a function<br>
+ /// with the alloc_size attribute.<br>
+ static bool isBaseAnAllocSizeCall(APValue:<wbr>:LValueBase Base) {<br>
+ const auto *E = Base.dyn_cast<const Expr *>();<br>
+ return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);<br>
+ }<br>
+<br>
+ /// Determines if an LValue with the given LValueBase will have an unsized<br>
+ /// array in its designator.<br>
/// Find the path length and type of the most-derived subobject in the given<br>
/// path, and find the size of the containing array, if any.<br>
- static<br>
- unsigned findMostDerivedSubobject(<wbr>ASTContext &Ctx, QualType Base,<br>
- ArrayRef<APValue::<wbr>LValuePathEntry> Path,<br>
- uint64_t &ArraySize, QualType &Type,<br>
- bool &IsArray) {<br>
+ static unsigned<br>
+ findMostDerivedSubobject(<wbr>ASTContext &Ctx, APValue::LValueBase Base,<br>
+ ArrayRef<APValue::<wbr>LValuePathEntry> Path,<br>
+ uint64_t &ArraySize, QualType &Type, bool &IsArray) {<br>
+ // This only accepts LValueBases from APValues, and APValues don't support<br>
+ // arrays that lack size info.<br>
+ assert(!isBaseAnAllocSizeCall(<wbr>Base) &&<br>
+ "Unsized arrays shouldn't appear here");<br>
unsigned MostDerivedLength = 0;<br>
- Type = Base;<br>
+ Type = getType(Base);<br>
+<br>
for (unsigned I = 0, N = Path.size(); I != N; ++I) {<br>
if (Type->isArrayType()) {<br>
const ConstantArrayType *CAT =<br>
- cast<ConstantArrayType>(Ctx.<wbr>getAsArrayType(Type));<br>
+ cast<ConstantArrayType>(Ctx.<wbr>getAsArrayType(Type));<br>
Type = CAT->getElementType();<br>
ArraySize = CAT->getSize().getZExtValue();<br>
MostDerivedLength = I + 1;<br>
@@ -162,17 +200,23 @@ namespace {<br>
/// Is this a pointer one past the end of an object?<br>
unsigned IsOnePastTheEnd : 1;<br>
<br>
+ /// Indicator of whether the first entry is an unsized array.<br>
+ bool FirstEntryIsAnUnsizedArray : 1;<br>
+<br>
/// Indicator of whether the most-derived object is an array element.<br>
unsigned MostDerivedIsArrayElement : 1;<br>
<br>
/// The length of the path to the most-derived object of which this is a<br>
/// subobject.<br>
- unsigned MostDerivedPathLength : 29;<br>
+ unsigned MostDerivedPathLength : 28;<br>
<br>
/// The size of the array of which the most-derived object is an element.<br>
/// This will always be 0 if the most-derived object is not an array<br>
/// element. 0 is not an indicator of whether or not the most-derived object<br>
/// is an array, however, because 0-length arrays are allowed.<br>
+ ///<br>
+ /// If the current array is an unsized array, the value of this is<br>
+ /// undefined.<br>
uint64_t MostDerivedArraySize;<br>
<br>
/// The type of the most derived object referred to by this address.<br>
@@ -187,23 +231,24 @@ namespace {<br>
<br>
explicit SubobjectDesignator(QualType T)<br>
: Invalid(false), IsOnePastTheEnd(false),<br>
- MostDerivedIsArrayElement(<wbr>false), MostDerivedPathLength(0),<br>
- MostDerivedArraySize(0), MostDerivedType(T) {}<br>
+ FirstEntryIsAnUnsizedArray(<wbr>false), MostDerivedIsArrayElement(<wbr>false),<br>
+ MostDerivedPathLength(0), MostDerivedArraySize(0),<br>
+ MostDerivedType(T) {}<br>
<br>
SubobjectDesignator(ASTContext &Ctx, const APValue &V)<br>
: Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),<br>
- MostDerivedIsArrayElement(<wbr>false), MostDerivedPathLength(0),<br>
- MostDerivedArraySize(0) {<br>
+ FirstEntryIsAnUnsizedArray(<wbr>false), MostDerivedIsArrayElement(<wbr>false),<br>
+ MostDerivedPathLength(0), MostDerivedArraySize(0) {<br>
+ assert(V.isLValue() && "Non-LValue used to make an LValue designator?");<br>
if (!Invalid) {<br>
IsOnePastTheEnd = V.isLValueOnePastTheEnd();<br>
ArrayRef<PathEntry> VEntries = V.getLValuePath();<br>
Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());<br>
if (V.getLValueBase()) {<br>
bool IsArray = false;<br>
- MostDerivedPathLength =<br>
- findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),<br>
- V.getLValuePath(), MostDerivedArraySize,<br>
- MostDerivedType, IsArray);<br>
+ MostDerivedPathLength = findMostDerivedSubobject(<br>
+ Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,<br>
+ MostDerivedType, IsArray);<br>
MostDerivedIsArrayElement = IsArray;<br>
}<br>
}<br>
@@ -214,12 +259,25 @@ namespace {<br>
Entries.clear();<br>
}<br>
<br>
+ /// Determine whether the most derived subobject is an array without a<br>
+ /// known bound.<br>
+ bool isMostDerivedAnUnsizedArray() const {<br>
+ return FirstEntryIsAnUnsizedArray && Entries.size() == 1;<br>
+ }<br>
+<br>
+ /// Determine what the most derived array's size is. Results in an assertion<br>
+ /// failure if the most derived array lacks a size.<br>
+ uint64_t getMostDerivedArraySize() const {<br>
+ assert(!<wbr>isMostDerivedAnUnsizedArray() && "Unsized array has no size");<br>
+ return MostDerivedArraySize;<br>
+ }<br>
+<br>
/// Determine whether this is a one-past-the-end pointer.<br>
bool isOnePastTheEnd() const {<br>
assert(!Invalid);<br>
if (IsOnePastTheEnd)<br>
return true;<br>
- if (MostDerivedIsArrayElement &&<br>
+ if (!isMostDerivedAnUnsizedArray(<wbr>) && MostDerivedIsArrayElement &&<br>
Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)<br>
return true;<br>
return false;<br>
@@ -247,6 +305,21 @@ namespace {<br>
MostDerivedArraySize = CAT->getSize().getZExtValue();<br>
MostDerivedPathLength = Entries.size();<br>
}<br>
+ /// Update this designator to refer to the first element within the array of<br>
+ /// elements of type T. This is an array of unknown size.<br>
+ void addUnsizedArrayUnchecked(<wbr>QualType ElemTy) {<br>
+ PathEntry Entry;<br>
+ Entry.ArrayIndex = 0;<br>
+ Entries.push_back(Entry);<br>
+<br>
+ MostDerivedType = ElemTy;<br>
+ MostDerivedIsArrayElement = true;<br>
+ // The value in MostDerivedArraySize is undefined in this case. So, set it<br>
+ // to an arbitrary value that's likely to loudly break things if it's<br>
+ // used.<br>
+ MostDerivedArraySize = std::numeric_limits<uint64_t>:<wbr>:max() / 2;<br>
+ MostDerivedPathLength = Entries.size();<br>
+ }<br>
/// Update this designator to refer to the given base or member of this<br>
/// object.<br>
void addDeclUnchecked(const Decl *D, bool Virtual = false) {<br>
@@ -280,10 +353,16 @@ namespace {<br>
/// Add N to the address of this subobject.<br>
void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {<br>
if (Invalid) return;<br>
+ if (isMostDerivedAnUnsizedArray()<wbr>) {<br>
+ // Can't verify -- trust that the user is doing the right thing (or if<br>
+ // not, trust that the caller will catch the bad behavior).<br>
+ Entries.back().ArrayIndex += N;<br>
+ return;<br>
+ }<br>
if (MostDerivedPathLength == Entries.size() &&<br>
MostDerivedIsArrayElement) {<br>
Entries.back().ArrayIndex += N;<br>
- if (Entries.back().ArrayIndex > MostDerivedArraySize) {<br>
+ if (Entries.back().ArrayIndex > getMostDerivedArraySize()) {<br>
diagnosePointerArithmetic(<wbr>Info, E, Entries.back().ArrayIndex);<br>
setInvalid();<br>
}<br>
@@ -524,9 +603,15 @@ namespace {<br>
/// gets a chance to look at it.<br>
EM_<wbr>PotentialConstantExpressionUne<wbr>valuated,<br>
<br>
- /// Evaluate as a constant expression. Continue evaluating if we find a<br>
- /// MemberExpr with a base that can't be evaluated.<br>
- EM_DesignatorFold,<br>
+ /// Evaluate as a constant expression. Continue evaluating if either:<br>
+ /// - We find a MemberExpr with a base that can't be evaluated.<br>
+ /// - We find a variable initialized with a call to a function that has<br>
+ /// the alloc_size attribute on it.<br>
+ /// In either case, the LValue returned shall have an invalid base; in the<br>
+ /// former, the base will be the invalid MemberExpr, in the latter, the<br>
+ /// base will be either the alloc_size CallExpr or a CastExpr wrapping<br>
+ /// said CallExpr.<br>
+ EM_OffsetFold,<br>
} EvalMode;<br>
<br>
/// Are we checking whether the expression is a potential constant<br>
@@ -628,7 +713,7 @@ namespace {<br>
case EM_<wbr>PotentialConstantExpression:<br>
case EM_<wbr>ConstantExpressionUnevaluated:<br>
case EM_<wbr>PotentialConstantExpressionUne<wbr>valuated:<br>
- case EM_DesignatorFold:<br>
+ case EM_OffsetFold:<br>
HasActiveDiagnostic = false;<br>
return OptionalDiagnostic();<br>
}<br>
@@ -720,7 +805,7 @@ namespace {<br>
case EM_ConstantExpression:<br>
case EM_<wbr>ConstantExpressionUnevaluated:<br>
case EM_ConstantFold:<br>
- case EM_DesignatorFold:<br>
+ case EM_OffsetFold:<br>
return false;<br>
}<br>
llvm_unreachable("Missed EvalMode case");<br>
@@ -739,7 +824,7 @@ namespace {<br>
case EM_EvaluateForOverflow:<br>
case EM_IgnoreSideEffects:<br>
case EM_ConstantFold:<br>
- case EM_DesignatorFold:<br>
+ case EM_OffsetFold:<br>
return true;<br>
<br>
case EM_<wbr>PotentialConstantExpression:<br>
@@ -775,7 +860,7 @@ namespace {<br>
case EM_<wbr>ConstantExpressionUnevaluated:<br>
case EM_ConstantFold:<br>
case EM_IgnoreSideEffects:<br>
- case EM_DesignatorFold:<br>
+ case EM_OffsetFold:<br>
return false;<br>
}<br>
llvm_unreachable("Missed EvalMode case");<br>
@@ -805,7 +890,7 @@ namespace {<br>
}<br>
<br>
bool allowInvalidBaseExpr() const {<br>
- return EvalMode == EM_DesignatorFold;<br>
+ return EvalMode == EM_OffsetFold;<br>
}<br>
<br>
class ArrayInitLoopIndex {<br>
@@ -856,11 +941,10 @@ namespace {<br>
struct FoldOffsetRAII {<br>
EvalInfo &Info;<br>
EvalInfo::EvaluationMode OldMode;<br>
- explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject)<br>
+ explicit FoldOffsetRAII(EvalInfo &Info)<br>
: Info(Info), OldMode(Info.EvalMode) {<br>
if (!Info.<wbr>checkingPotentialConstantExpre<wbr>ssion())<br>
- Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold<br>
- : EvalInfo::EM_ConstantFold;<br>
+ Info.EvalMode = EvalInfo::EM_OffsetFold;<br>
}<br>
<br>
~FoldOffsetRAII() { Info.EvalMode = OldMode; }<br>
@@ -966,10 +1050,12 @@ bool SubobjectDesignator::<wbr>checkSubobject<br>
<br>
void SubobjectDesignator::<wbr>diagnosePointerArithmetic(<wbr>EvalInfo &Info,<br>
const Expr *E, uint64_t N) {<br>
+ // If we're complaining, we must be able to statically determine the size of<br>
+ // the most derived array.<br>
if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)<br>
Info.CCEDiag(E, diag::note_constexpr_array_<wbr>index)<br>
<< static_cast<int>(N) << /*array*/ 0<br>
- << static_cast<unsigned>(<wbr>MostDerivedArraySize);<br>
+ << static_cast<unsigned>(<wbr>getMostDerivedArraySize());<br>
else<br>
Info.CCEDiag(E, diag::note_constexpr_array_<wbr>index)<br>
<< static_cast<int>(N) << /*non-array*/ 1;<br>
@@ -1102,12 +1188,16 @@ namespace {<br>
if (Designator.Invalid)<br>
V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex,<br>
IsNullPtr);<br>
- else<br>
+ else {<br>
+ assert(!InvalidBase && "APValues can't handle invalid LValue bases");<br>
+ assert(!Designator.<wbr>FirstEntryIsAnUnsizedArray &&<br>
+ "Unsized array with a valid base?");<br>
V = APValue(Base, Offset, Designator.Entries,<br>
Designator.IsOnePastTheEnd, CallIndex, IsNullPtr);<br>
+ }<br>
}<br>
void setFrom(ASTContext &Ctx, const APValue &V) {<br>
- assert(V.isLValue());<br>
+ assert(V.isLValue() && "Setting LValue from a non-LValue?");<br>
Base = V.getLValueBase();<br>
Offset = V.getLValueOffset();<br>
InvalidBase = false;<br>
@@ -1118,6 +1208,15 @@ namespace {<br>
<br>
void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false,<br>
bool IsNullPtr_ = false, uint64_t Offset_ = 0) {<br>
+#ifndef NDEBUG<br>
+ // We only allow a few types of invalid bases. Enforce that here.<br>
+ if (BInvalid) {<br>
+ const auto *E = B.get<const Expr *>();<br>
+ assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&<br>
+ "Unexpected type of invalid base");<br>
+ }<br>
+#endif<br>
+<br>
Base = B;<br>
Offset = CharUnits::fromQuantity(<wbr>Offset_);<br>
InvalidBase = BInvalid;<br>
@@ -1157,6 +1256,13 @@ namespace {<br>
if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))<br>
Designator.addDeclUnchecked(D, Virtual);<br>
}<br>
+ void addUnsizedArray(EvalInfo &Info, QualType ElemTy) {<br>
+ assert(Designator.Entries.<wbr>empty() && getType(Base)->isPointerType()<wbr>);<br>
+ assert(isBaseAnAllocSizeCall(<wbr>Base) &&<br>
+ "Only alloc_size bases can have unsized arrays");<br>
+ Designator.<wbr>FirstEntryIsAnUnsizedArray = true;<br>
+ Designator.<wbr>addUnsizedArrayUnchecked(<wbr>ElemTy);<br>
+ }<br>
void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {<br>
if (checkSubobject(Info, E, CSK_ArrayToPointer))<br>
Designator.addArrayUnchecked(<wbr>CAT);<br>
@@ -2796,7 +2902,7 @@ static CompleteObject findCompleteObject<br>
// All the remaining cases only permit reading.<br>
Info.FFDiag(E, diag::note_constexpr_modify_<wbr>global);<br>
return CompleteObject();<br>
- } else if (VD->isConstexpr()) {<br>
+ } else if (VD->isConstexpr() || BaseType.isConstQualified()) {<br>
// OK, we can read this variable.<br>
} else if (BaseType-><wbr>isIntegralOrEnumerationType()) {<br>
// In OpenCL if a variable is in constant address space it is a const value.<br>
@@ -5079,6 +5185,105 @@ bool LValueExprEvaluator::<wbr>VisitBinAssign<br>
// Pointer Evaluation<br>
//===-------------------------<wbr>------------------------------<wbr>---------------===//<br>
<br>
+/// \brief Attempts to compute the number of bytes available at the pointer<br>
+/// returned by a function with the alloc_size attribute. Returns true if we<br>
+/// were successful. Places an unsigned number into `Result`.<br>
+///<br>
+/// This expects the given CallExpr to be a call to a function with an<br>
+/// alloc_size attribute.<br>
+static bool getBytesReturnedByAllocSizeCal<wbr>l(const ASTContext &Ctx,<br>
+ const CallExpr *Call,<br>
+ llvm::APInt &Result) {<br>
+ const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);<br>
+<br>
+ // alloc_size args are 1-indexed, 0 means not present.<br>
+ assert(AllocSize && AllocSize->getElemSizeParam() != 0);<br>
+ unsigned SizeArgNo = AllocSize->getElemSizeParam() - 1;<br>
+ unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.<wbr>getSizeType());<br>
+ if (Call->getNumArgs() <= SizeArgNo)<br>
+ return false;<br>
+<br>
+ auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {<br>
+ if (!E->EvaluateAsInt(Into, Ctx, Expr::SE_AllowSideEffects))<br>
+ return false;<br>
+ if (Into.isNegative() || !Into.isIntN(BitsInSizeT))<br>
+ return false;<br>
+ Into = Into.zextOrSelf(BitsInSizeT);<br>
+ return true;<br>
+ };<br>
+<br>
+ APSInt SizeOfElem;<br>
+ if (!EvaluateAsSizeT(Call-><wbr>getArg(SizeArgNo), SizeOfElem))<br>
+ return false;<br>
+<br>
+ if (!AllocSize->getNumElemsParam(<wbr>)) {<br>
+ Result = std::move(SizeOfElem);<br>
+ return true;<br>
+ }<br>
+<br>
+ APSInt NumberOfElems;<br>
+ // Argument numbers start at 1<br>
+ unsigned NumArgNo = AllocSize->getNumElemsParam() - 1;<br>
+ if (!EvaluateAsSizeT(Call-><wbr>getArg(NumArgNo), NumberOfElems))<br>
+ return false;<br>
+<br>
+ bool Overflow;<br>
+ llvm::APInt BytesAvailable = SizeOfElem.umul_ov(<wbr>NumberOfElems, Overflow);<br>
+ if (Overflow)<br>
+ return false;<br>
+<br>
+ Result = std::move(BytesAvailable);<br>
+ return true;<br>
+}<br>
+<br>
+/// \brief Convenience function. LVal's base must be a call to an alloc_size<br>
+/// function.<br>
+static bool getBytesReturnedByAllocSizeCal<wbr>l(const ASTContext &Ctx,<br>
+ const LValue &LVal,<br>
+ llvm::APInt &Result) {<br>
+ assert(isBaseAnAllocSizeCall(<wbr>LVal.getLValueBase()) &&<br>
+ "Can't get the size of a non alloc_size function");<br>
+ const auto *Base = LVal.getLValueBase().get<const Expr *>();<br>
+ const CallExpr *CE = tryUnwrapAllocSizeCall(Base);<br>
+ return getBytesReturnedByAllocSizeCal<wbr>l(Ctx, CE, Result);<br>
+}<br>
+<br>
+/// \brief Attempts to evaluate the given LValueBase as the result of a call to<br>
+/// a function with the alloc_size attribute. If it was possible to do so, this<br>
+/// function will return true, make Result's Base point to said function call,<br>
+/// and mark Result's Base as invalid.<br>
+static bool evaluateLValueAsAllocSize(<wbr>EvalInfo &Info, APValue::LValueBase Base,<br>
+ LValue &Result) {<br>
+ if (!Info.allowInvalidBaseExpr() || Base.isNull())<br>
+ return false;<br>
+<br>
+ // Because we do no form of static analysis, we only support const variables.<br>
+ //<br>
+ // Additionally, we can't support parameters, nor can we support static<br>
+ // variables (in the latter case, use-before-assign isn't UB; in the former,<br>
+ // we have no clue what they'll be assigned to).<br>
+ const auto *VD =<br>
+ dyn_cast_or_null<VarDecl>(<wbr>Base.dyn_cast<const ValueDecl *>());<br>
+ if (!VD || !VD->isLocalVarDecl() || !VD->getType().<wbr>isConstQualified())<br>
+ return false;<br>
+<br>
+ const Expr *Init = VD->getAnyInitializer();<br>
+ if (!Init)<br>
+ return false;<br>
+<br>
+ const Expr *E = Init->IgnoreParens();<br>
+ if (!tryUnwrapAllocSizeCall(E))<br>
+ return false;<br>
+<br>
+ // Store E instead of E unwrapped so that the type of the LValue's base is<br>
+ // what the user wanted.<br>
+ Result.setInvalid(E);<br>
+<br>
+ QualType Pointee = E->getType()->castAs<<wbr>PointerType>()-><wbr>getPointeeType();<br>
+ Result.addUnsizedArray(Info, Pointee);<br>
+ return true;<br>
+}<br>
+<br>
namespace {<br>
class PointerExprEvaluator<br>
: public ExprEvaluatorBase<<wbr>PointerExprEvaluator> {<br>
@@ -5088,6 +5293,8 @@ class PointerExprEvaluator<br>
Result.set(E);<br>
return true;<br>
}<br>
+<br>
+ bool visitNonBuiltinCallExpr(const CallExpr *E);<br>
public:<br>
<br>
PointerExprEvaluator(EvalInfo &info, LValue &Result)<br>
@@ -5270,6 +5477,19 @@ bool PointerExprEvaluator::<wbr>VisitCastExpr<br>
<br>
case CK_FunctionToPointerDecay:<br>
return EvaluateLValue(SubExpr, Result, Info);<br>
+<br>
+ case CK_LValueToRValue: {<br>
+ LValue LVal;<br>
+ if (!EvaluateLValue(E-><wbr>getSubExpr(), LVal, Info))<br>
+ return false;<br>
+<br>
+ APValue RVal;<br>
+ // Note, we use the subexpression's type in order to retain cv-qualifiers.<br>
+ if (!<wbr>handleLValueToRValueConversion<wbr>(Info, E, E->getSubExpr()->getType(),<br>
+ LVal, RVal))<br>
+ return evaluateLValueAsAllocSize(<wbr>Info, LVal.Base, Result);<br>
+ return Success(RVal, E);<br>
+ }<br>
}<br>
<br>
return ExprEvaluatorBaseTy::<wbr>VisitCastExpr(E);<br>
@@ -5307,6 +5527,20 @@ static CharUnits GetAlignOfExpr(EvalInfo<br>
return GetAlignOfType(Info, E->getType());<br>
}<br>
<br>
+// To be clear: this happily visits unsupported builtins. Better name welcomed.<br>
+bool PointerExprEvaluator::<wbr>visitNonBuiltinCallExpr(const CallExpr *E) {<br>
+ if (ExprEvaluatorBaseTy::<wbr>VisitCallExpr(E))<br>
+ return true;<br>
+<br>
+ if (!(Info.allowInvalidBaseExpr() && getAllocSizeAttr(E)))<br>
+ return false;<br>
+<br>
+ Result.setInvalid(E);<br>
+ QualType PointeeTy = E->getType()->castAs<<wbr>PointerType>()-><wbr>getPointeeType();<br>
+ Result.addUnsizedArray(Info, PointeeTy);<br>
+ return true;<br>
+}<br>
+<br>
bool PointerExprEvaluator::<wbr>VisitCallExpr(const CallExpr *E) {<br>
if (IsStringLiteralCall(E))<br>
return Success(E);<br>
@@ -5314,7 +5548,7 @@ bool PointerExprEvaluator::<wbr>VisitCallExpr<br>
if (unsigned BuiltinOp = E->getBuiltinCallee())<br>
return VisitBuiltinCallExpr(E, BuiltinOp);<br>
<br>
- return ExprEvaluatorBaseTy::<wbr>VisitCallExpr(E);<br>
+ return visitNonBuiltinCallExpr(E);<br>
}<br>
<br>
bool PointerExprEvaluator::<wbr>VisitBuiltinCallExpr(const CallExpr *E,<br>
@@ -5473,7 +5707,7 @@ bool PointerExprEvaluator::<wbr>VisitBuiltinC<br>
}<br>
<br>
default:<br>
- return ExprEvaluatorBaseTy::<wbr>VisitCallExpr(E);<br>
+ return visitNonBuiltinCallExpr(E);<br>
}<br>
}<br>
<br>
@@ -6512,8 +6746,6 @@ public:<br>
bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);<br>
bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);<br>
<br>
-private:<br>
- bool TryEvaluateBuiltinObjectSize(<wbr>const CallExpr *E, unsigned Type);<br>
// FIXME: Missing: array subscript of vector, member of vector<br>
};<br>
} // end anonymous namespace<br>
@@ -6785,7 +7017,7 @@ static QualType getObjectType(APValue::L<br>
}<br>
<br>
/// A more selective version of E->IgnoreParenCasts for<br>
-/// TryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only<br>
+/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only<br>
/// to change the type of E.<br>
/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`<br>
///<br>
@@ -6852,39 +7084,51 @@ static bool isDesignatorAtObjectEnd(cons<br>
}<br>
}<br>
<br>
+ unsigned I = 0;<br>
QualType BaseType = getType(Base);<br>
- for (int I = 0, E = LVal.Designator.Entries.size()<wbr>; I != E; ++I) {<br>
+ if (LVal.Designator.<wbr>FirstEntryIsAnUnsizedArray) {<br>
+ assert(isBaseAnAllocSizeCall(<wbr>Base) &&<br>
+ "Unsized array in non-alloc_size call?");<br>
+ // If this is an alloc_size base, we should ignore the initial array index<br>
+ ++I;<br>
+ BaseType = BaseType->castAs<PointerType>(<wbr>)->getPointeeType();<br>
+ }<br>
+<br>
+ for (unsigned E = LVal.Designator.Entries.size()<wbr>; I != E; ++I) {<br>
+ const auto &Entry = LVal.Designator.Entries[I];<br>
if (BaseType->isArrayType()) {<br>
// Because __builtin_object_size treats arrays as objects, we can ignore<br>
// the index iff this is the last array in the Designator.<br>
if (I + 1 == E)<br>
return true;<br>
- auto *CAT = cast<ConstantArrayType>(Ctx.<wbr>getAsArrayType(BaseType));<br>
- uint64_t Index = LVal.Designator.Entries[I].<wbr>ArrayIndex;<br>
+ const auto *CAT = cast<ConstantArrayType>(Ctx.<wbr>getAsArrayType(BaseType));<br>
+ uint64_t Index = Entry.ArrayIndex;<br>
if (Index + 1 != CAT->getSize())<br>
return false;<br>
BaseType = CAT->getElementType();<br>
} else if (BaseType->isAnyComplexType()) {<br>
- auto *CT = BaseType->castAs<ComplexType>(<wbr>);<br>
- uint64_t Index = LVal.Designator.Entries[I].<wbr>ArrayIndex;<br>
+ const auto *CT = BaseType->castAs<ComplexType>(<wbr>);<br>
+ uint64_t Index = Entry.ArrayIndex;<br>
if (Index != 1)<br>
return false;<br>
BaseType = CT->getElementType();<br>
- } else if (auto *FD = getAsField(LVal.Designator.<wbr>Entries[I])) {<br>
+ } else if (auto *FD = getAsField(Entry)) {<br>
bool Invalid;<br>
if (!IsLastOrInvalidFieldDecl(FD, Invalid))<br>
return Invalid;<br>
BaseType = FD->getType();<br>
} else {<br>
- assert(getAsBaseClass(LVal.<wbr>Designator.Entries[I]) != nullptr &&<br>
- "Expecting cast to a base class");<br>
+ assert(getAsBaseClass(Entry) && "Expecting cast to a base class");<br>
return false;<br>
}<br>
}<br>
return true;<br>
}<br>
<br>
-/// Tests to see if the LValue has a designator (that isn't necessarily valid).<br>
+/// Tests to see if the LValue has a user-specified designator (that isn't<br>
+/// necessarily valid). Note that this always returns 'true' if the LValue has<br>
+/// an unsized array as its first designator entry, because there's currently no<br>
+/// way to tell if the user typed *foo or foo[0].<br>
static bool refersToCompleteObject(const LValue &LVal) {<br>
if (LVal.Designator.Invalid || !LVal.Designator.Entries.<wbr>empty())<br>
return false;<br>
@@ -6892,42 +7136,142 @@ static bool refersToCompleteObject(const<br>
if (!LVal.InvalidBase)<br>
return true;<br>
<br>
- auto *E = LVal.Base.dyn_cast<const Expr *>();<br>
- (void)E;<br>
- assert(E != nullptr && isa<MemberExpr>(E));<br>
- return false;<br>
+ // If `E` is a MemberExpr, then the first part of the designator is hiding in<br>
+ // the LValueBase.<br>
+ const auto *E = LVal.Base.dyn_cast<const Expr *>();<br>
+ return !E || !isa<MemberExpr>(E);<br>
+}<br>
+<br>
+/// Attempts to detect a user writing into a piece of memory that's impossible<br>
+/// to figure out the size of by just using types.<br>
+static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {<br>
+ const SubobjectDesignator &Designator = LVal.Designator;<br>
+ // Notes:<br>
+ // - Users can only write off of the end when we have an invalid base. Invalid<br>
+ // bases imply we don't know where the memory came from.<br>
+ // - We used to be a bit more aggressive here; we'd only be conservative if<br>
+ // the array at the end was flexible, or if it had 0 or 1 elements. This<br>
+ // broke some common standard library extensions (PR30346), but was<br>
+ // otherwise seemingly fine. It may be useful to reintroduce this behavior<br>
+ // with some sort of whitelist. OTOH, it seems that GCC is always<br>
+ // conservative with the last element in structs (if it's an array), so our<br>
+ // current behavior is more compatible than a whitelisting approach would<br>
+ // be.<br>
+ return LVal.InvalidBase &&<br>
+ Designator.Entries.size() == Designator.<wbr>MostDerivedPathLength &&<br>
+ Designator.<wbr>MostDerivedIsArrayElement &&<br>
+ isDesignatorAtObjectEnd(Ctx, LVal);<br>
+}<br>
+<br>
+/// Converts the given APInt to CharUnits, assuming the APInt is unsigned.<br>
+/// Fails if the conversion would cause loss of precision.<br>
+static bool convertUnsignedAPIntToCharUnit<wbr>s(const llvm::APInt &Int,<br>
+ CharUnits &Result) {<br>
+ auto CharUnitsMax = std::numeric_limits<CharUnits:<wbr>:QuantityType>::max();<br>
+ if (Int.ugt(CharUnitsMax))<br>
+ return false;<br>
+ Result = CharUnits::fromQuantity(Int.<wbr>getZExtValue());<br>
+ return true;<br>
}<br>
<br>
-/// Tries to evaluate the __builtin_object_size for @p E. If successful, returns<br>
-/// true and stores the result in @p Size.<br>
+/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will<br>
+/// determine how many bytes exist from the beginning of the object to either<br>
+/// the end of the current subobject, or the end of the object itself, depending<br>
+/// on what the LValue looks like + the value of Type.<br>
///<br>
-/// If @p WasError is non-null, this will report whether the failure to evaluate<br>
-/// is to be treated as an Error in IntExprEvaluator.<br>
-static bool tryEvaluateBuiltinObjectSize(<wbr>const Expr *E, unsigned Type,<br>
- EvalInfo &Info, uint64_t &Size,<br>
- bool *WasError = nullptr) {<br>
- if (WasError != nullptr)<br>
- *WasError = false;<br>
-<br>
- auto Error = [&](const Expr *E) {<br>
- if (WasError != nullptr)<br>
- *WasError = true;<br>
+/// If this returns false, the value of Result is undefined.<br>
+static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,<br>
+ unsigned Type, const LValue &LVal,<br>
+ CharUnits &EndOffset) {<br>
+ // __builtin_object_size(&foo, N) == __builtin_object_size(&foo, (N & ~1U)).<br>
+ // (Where foo is an expression that has no designator). Hence, if we've no<br>
+ // designator, we can ignore the subobject bit.<br>
+ bool EvaluateAsCompleteObject =<br>
+ !(Type & 1) || LVal.Designator.<wbr>isMostDerivedAnUnsizedArray() ||<br>
+ refersToCompleteObject(LVal);<br>
+<br>
+ // We want to evaluate the size of the entire object. This is a valid fallback<br>
+ // for when Type=1 and the designator is invalid, because we're asked for an<br>
+ // upper-bound.<br>
+ if (LVal.Designator.Invalid || EvaluateAsCompleteObject) {<br>
+ // We can't give a correct lower bound for Type=3 if the designator is<br>
+ // invalid and we're meant to be evaluating it.<br>
+ if (Type == 3 && LVal.Designator.Invalid && !EvaluateAsCompleteObject)<br>
+ return false;<br>
+<br>
+ llvm::APInt APEndOffset;<br>
+ if (isBaseAnAllocSizeCall(LVal.<wbr>getLValueBase()) &&<br>
+ getBytesReturnedByAllocSizeCal<wbr>l(Info.Ctx, LVal, APEndOffset))<br>
+ return convertUnsignedAPIntToCharUnit<wbr>s(APEndOffset, EndOffset);<br>
+<br>
+ if (LVal.InvalidBase)<br>
+ return false;<br>
+<br>
+ QualType BaseTy = getObjectType(LVal.<wbr>getLValueBase());<br>
+ return !BaseTy.isNull() && HandleSizeof(Info, ExprLoc, BaseTy, EndOffset);<br>
+ }<br>
+<br>
+ // We want to evaluate the size of a subobject.<br>
+ const SubobjectDesignator &Designator = LVal.Designator;<br>
+<br>
+ // The following is a moderately common idiom in C:<br>
+ //<br>
+ // struct Foo { int a; char c[1]; };<br>
+ // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));<br>
+ // strcpy(&F->c[0], Bar);<br>
+ //<br>
+ // In order to not break too much legacy code, we need to support it.<br>
+ if (isUserWritingOffTheEnd(Info.<wbr>Ctx, LVal)) {<br>
+ // If we can resolve this to an alloc_size call, we can hand that back,<br>
+ // because we know for certain how many bytes there are to write to.<br>
+ llvm::APInt APEndOffset;<br>
+ if (isBaseAnAllocSizeCall(LVal.<wbr>getLValueBase()) &&<br>
+ getBytesReturnedByAllocSizeCal<wbr>l(Info.Ctx, LVal, APEndOffset))<br>
+ return convertUnsignedAPIntToCharUnit<wbr>s(APEndOffset, EndOffset);<br>
+<br>
+ // If we cannot determine the size of the initial allocation, then we can't<br>
+ // given an accurate upper-bound. However, we are still able to give<br>
+ // conservative lower-bounds for Type=3.<br>
+ if (Type == 1)<br>
+ return false;<br>
+ }<br>
+<br>
+ CharUnits BytesPerElem;<br>
+ if (!HandleSizeof(Info, ExprLoc, Designator.MostDerivedType, BytesPerElem))<br>
return false;<br>
- };<br>
<br>
- auto Success = [&](uint64_t S, const Expr *E) {<br>
- Size = S;<br>
- return true;<br>
- };<br>
+ // According to the GCC documentation, we want the size of the subobject<br>
+ // denoted by the pointer. But that's not quite right -- what we actually<br>
+ // want is the size of the immediately-enclosing array, if there is one.<br>
+ int64_t ElemsRemaining;<br>
+ if (Designator.<wbr>MostDerivedIsArrayElement &&<br>
+ Designator.Entries.size() == Designator.<wbr>MostDerivedPathLength) {<br>
+ uint64_t ArraySize = Designator.<wbr>getMostDerivedArraySize();<br>
+ uint64_t ArrayIndex = Designator.Entries.back().<wbr>ArrayIndex;<br>
+ ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;<br>
+ } else {<br>
+ ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;<br>
+ }<br>
+<br>
+ EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;<br>
+ return true;<br>
+}<br>
<br>
+/// \brief Tries to evaluate the __builtin_object_size for @p E. If successful,<br>
+/// returns true and stores the result in @p Size.<br>
+///<br>
+/// If @p WasError is non-null, this will report whether the failure to evaluate<br>
+/// is to be treated as an Error in IntExprEvaluator.<br>
+static bool tryEvaluateBuiltinObjectSize(<wbr>const Expr *E, unsigned Type,<br>
+ EvalInfo &Info, uint64_t &Size) {<br>
// Determine the denoted object.<br>
- LValue Base;<br>
+ LValue LVal;<br>
{<br>
// The operand of __builtin_object_size is never evaluated for side-effects.<br>
// If there are any, but we can determine the pointed-to object anyway, then<br>
// ignore the side-effects.<br>
SpeculativeEvaluationRAII SpeculativeEval(Info);<br>
- FoldOffsetRAII Fold(Info, Type & 1);<br>
+ FoldOffsetRAII Fold(Info);<br>
<br>
if (E->isGLValue()) {<br>
// It's possible for us to be given GLValues if we're called via<br>
@@ -6935,122 +7279,29 @@ static bool tryEvaluateBuiltinObjectSize<br>
APValue RVal;<br>
if (!EvaluateAsRValue(Info, E, RVal))<br>
return false;<br>
- Base.setFrom(Info.Ctx, RVal);<br>
- } else if (!EvaluatePointer(<wbr>ignorePointerCastsAndParens(E)<wbr>, Base, Info))<br>
+ LVal.setFrom(Info.Ctx, RVal);<br>
+ } else if (!EvaluatePointer(<wbr>ignorePointerCastsAndParens(E)<wbr>, LVal, Info))<br>
return false;<br>
}<br>
<br>
- CharUnits BaseOffset = Base.getLValueOffset();<br>
// If we point to before the start of the object, there are no accessible<br>
// bytes.<br>
- if (BaseOffset.isNegative())<br>
- return Success(0, E);<br>
-<br>
- // In the case where we're not dealing with a subobject, we discard the<br>
- // subobject bit.<br>
- bool SubobjectOnly = (Type & 1) != 0 && !refersToCompleteObject(Base);<br>
-<br>
- // If Type & 1 is 0, we need to be able to statically guarantee that the bytes<br>
- // exist. If we can't verify the base, then we can't do that.<br>
- //<br>
- // As a special case, we produce a valid object size for an unknown object<br>
- // with a known designator if Type & 1 is 1. For instance:<br>
- //<br>
- // extern struct X { char buff[32]; int a, b, c; } *p;<br>
- // int a = __builtin_object_size(p->buff + 4, 3); // returns 28<br>
- // int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40<br>
- //<br>
- // This matches GCC's behavior.<br>
- if (Base.InvalidBase && !SubobjectOnly)<br>
- return Error(E);<br>
-<br>
- // If we're not examining only the subobject, then we reset to a complete<br>
- // object designator<br>
- //<br>
- // If Type is 1 and we've lost track of the subobject, just find the complete<br>
- // object instead. (If Type is 3, that's not correct behavior and we should<br>
- // return 0 instead.)<br>
- LValue End = Base;<br>
- if (!SubobjectOnly || (End.Designator.Invalid && Type == 1)) {<br>
- QualType T = getObjectType(End.<wbr>getLValueBase());<br>
- if (T.isNull())<br>
- End.Designator.setInvalid();<br>
- else {<br>
- End.Designator = SubobjectDesignator(T);<br>
- End.Offset = CharUnits::Zero();<br>
- }<br>
+ if (LVal.getLValueOffset().<wbr>isNegative()) {<br>
+ Size = 0;<br>
+ return true;<br>
}<br>
<br>
- // If it is not possible to determine which objects ptr points to at compile<br>
- // time, __builtin_object_size should return (size_t) -1 for type 0 or 1<br>
- // and (size_t) 0 for type 2 or 3.<br>
- if (End.Designator.Invalid)<br>
+ CharUnits EndOffset;<br>
+ if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))<br>
return false;<br>
<br>
- // According to the GCC documentation, we want the size of the subobject<br>
- // denoted by the pointer. But that's not quite right -- what we actually<br>
- // want is the size of the immediately-enclosing array, if there is one.<br>
- int64_t AmountToAdd = 1;<br>
- if (End.Designator.<wbr>MostDerivedIsArrayElement &&<br>
- End.Designator.Entries.size() == End.Designator.<wbr>MostDerivedPathLength) {<br>
- // We got a pointer to an array. Step to its end.<br>
- AmountToAdd = End.Designator.<wbr>MostDerivedArraySize -<br>
- End.Designator.Entries.back().<wbr>ArrayIndex;<br>
- } else if (End.Designator.<wbr>isOnePastTheEnd()) {<br>
- // We're already pointing at the end of the object.<br>
- AmountToAdd = 0;<br>
- }<br>
-<br>
- QualType PointeeType = End.Designator.<wbr>MostDerivedType;<br>
- assert(!PointeeType.isNull());<br>
- if (PointeeType-><wbr>isIncompleteType() || PointeeType->isFunctionType())<br>
- return Error(E);<br>
-<br>
- if (!HandleLValueArrayAdjustment(<wbr>Info, E, End, End.Designator.<wbr>MostDerivedType,<br>
- AmountToAdd))<br>
- return false;<br>
-<br>
- auto EndOffset = End.getLValueOffset();<br>
-<br>
- // The following is a moderately common idiom in C:<br>
- //<br>
- // struct Foo { int a; char c[1]; };<br>
- // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));<br>
- // strcpy(&F->c[0], Bar);<br>
- //<br>
- // So, if we see that we're examining an array at the end of a struct with an<br>
- // unknown base, we give up instead of breaking code that behaves this way.<br>
- // Note that we only do this when Type=1, because Type=3 is a lower bound, so<br>
- // answering conservatively is fine.<br>
- //<br>
- // We used to be a bit more aggressive here; we'd only be conservative if the<br>
- // array at the end was flexible, or if it had 0 or 1 elements. This broke<br>
- // some common standard library extensions (PR30346), but was otherwise<br>
- // seemingly fine. It may be useful to reintroduce this behavior with some<br>
- // sort of whitelist. OTOH, it seems that GCC is always conservative with the<br>
- // last element in structs (if it's an array), so our current behavior is more<br>
- // compatible than a whitelisting approach would be.<br>
- if (End.InvalidBase && SubobjectOnly && Type == 1 &&<br>
- End.Designator.Entries.size() == End.Designator.<wbr>MostDerivedPathLength &&<br>
- End.Designator.<wbr>MostDerivedIsArrayElement &&<br>
- isDesignatorAtObjectEnd(Info.<wbr>Ctx, End))<br>
- return false;<br>
-<br>
- if (BaseOffset > EndOffset)<br>
- return Success(0, E);<br>
-<br>
- return Success((EndOffset - BaseOffset).getQuantity(), E);<br>
-}<br>
-<br>
-bool IntExprEvaluator::<wbr>TryEvaluateBuiltinObjectSize(<wbr>const CallExpr *E,<br>
- unsigned Type) {<br>
- uint64_t Size;<br>
- bool WasError;<br>
- if (::<wbr>tryEvaluateBuiltinObjectSize(<wbr>E->getArg(0), Type, Info, Size, &WasError))<br>
- return Success(Size, E);<br>
- if (WasError)<br>
- return Error(E);<br>
- return false;<br>
+ // If we've fallen outside of the end offset, just pretend there's nothing to<br>
+ // write to/read from.<br>
+ if (EndOffset <= LVal.getLValueOffset())<br>
+ Size = 0;<br>
+ else<br>
+ Size = (EndOffset - LVal.getLValueOffset()).<wbr>getQuantity();<br>
+ return true;<br>
}<br>
<br>
bool IntExprEvaluator::<wbr>VisitCallExpr(const CallExpr *E) {<br>
@@ -7072,8 +7323,9 @@ bool IntExprEvaluator::<wbr>VisitBuiltinCallE<br>
E->getArg(1)-><wbr>EvaluateKnownConstInt(Info.<wbr>Ctx).getZExtValue();<br>
assert(Type <= 3 && "unexpected type");<br>
<br>
- if (TryEvaluateBuiltinObjectSize(<wbr>E, Type))<br>
- return true;<br>
+ uint64_t Size;<br>
+ if (tryEvaluateBuiltinObjectSize(<wbr>E->getArg(0), Type, Info, Size))<br>
+ return Success(Size, E);<br>
<br>
if (E->getArg(0)->HasSideEffects(<wbr>Info.Ctx))<br>
return Success((Type & 2) ? 0 : -1, E);<br>
@@ -7086,7 +7338,7 @@ bool IntExprEvaluator::<wbr>VisitBuiltinCallE<br>
case EvalInfo::EM_ConstantFold:<br>
case EvalInfo::EM_<wbr>EvaluateForOverflow:<br>
case EvalInfo::EM_<wbr>IgnoreSideEffects:<br>
- case EvalInfo::EM_DesignatorFold:<br>
+ case EvalInfo::EM_OffsetFold:<br>
// Leave it to IR generation.<br>
return Error(E);<br>
case EvalInfo::EM_<wbr>ConstantExpressionUnevaluated:<br>
@@ -10189,5 +10441,5 @@ bool Expr::tryEvaluateObjectSize(<wbr>uint64_<br>
<br>
Expr::EvalStatus Status;<br>
EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);<br>
- return ::<wbr>tryEvaluateBuiltinObjectSize(<wbr>this, Type, Info, Result);<br>
+ return tryEvaluateBuiltinObjectSize(<wbr>this, Type, Info, Result);<br>
}<br>
<br>
Modified: cfe/trunk/lib/CodeGen/<wbr>CGBlocks.cpp<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CGBlocks.cpp?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/lib/CodeGen/<wbr>CGBlocks.cpp?rev=290149&r1=<wbr>290148&r2=290149&view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/lib/CodeGen/<wbr>CGBlocks.cpp (original)<br>
+++ cfe/trunk/lib/CodeGen/<wbr>CGBlocks.cpp Mon Dec 19 19:05:42 2016<br>
@@ -686,6 +686,8 @@ llvm::Value *CodeGenFunction::EmitBlockL<br>
// If the block has no captures, we won't have a pre-computed<br>
// layout for it.<br>
if (!blockExpr->getBlockDecl()-><wbr>hasCaptures()) {<br>
+ if (llvm::Constant *Block = CGM.<wbr>getAddrOfGlobalBlockIfEmitted(<wbr>blockExpr))<br>
+ return Block;<br>
CGBlockInfo blockInfo(blockExpr-><wbr>getBlockDecl(), CurFn->getName());<br>
computeBlockInfo(CGM, this, blockInfo);<br>
blockInfo.BlockExpression = blockExpr;<br>
@@ -1047,9 +1049,19 @@ Address CodeGenFunction::<wbr>GetAddrOfBlockD<br>
return addr;<br>
}<br>
<br>
+void CodeGenModule::<wbr>setAddrOfGlobalBlock(const BlockExpr *BE,<br>
+ llvm::Constant *Addr) {<br>
+ bool Ok = EmittedGlobalBlocks.insert(<wbr>std::make_pair(BE, Addr)).second;<br>
+ (void)Ok;<br>
+ assert(Ok && "Trying to replace an already-existing global block!");<br>
+}<br>
+<br>
llvm::Constant *<br>
CodeGenModule::<wbr>GetAddrOfGlobalBlock(const BlockExpr *BE,<br>
StringRef Name) {<br>
+ if (llvm::Constant *Block = getAddrOfGlobalBlockIfEmitted(<wbr>BE))<br>
+ return Block;<br>
+<br>
CGBlockInfo blockInfo(BE->getBlockDecl(), Name);<br>
blockInfo.BlockExpression = BE;<br>
<br>
@@ -1074,6 +1086,11 @@ static llvm::Constant *buildGlobalBlock(<br>
const CGBlockInfo &blockInfo,<br>
llvm::Constant *blockFn) {<br>
assert(blockInfo.CanBeGlobal);<br>
+ // Callers should detect this case on their own: calling this function<br>
+ // generally requires computing layout information, which is a waste of time<br>
+ // if we've already emitted this block.<br>
+ assert(!CGM.<wbr>getAddrOfGlobalBlockIfEmitted(<wbr>blockInfo.BlockExpression) &&<br>
+ "Refusing to re-emit a global block.");<br>
<br>
// Generate the constants for the block literal initializer.<br>
ConstantInitBuilder builder(CGM);<br>
@@ -1103,9 +1120,12 @@ static llvm::Constant *buildGlobalBlock(<br>
/*constant*/ true);<br>
<br>
// Return a constant of the appropriately-casted type.<br>
- llvm::Type *requiredType =<br>
+ llvm::Type *RequiredType =<br>
CGM.getTypes().ConvertType(<wbr>blockInfo.getBlockExpr()-><wbr>getType());<br>
- return llvm::ConstantExpr::<wbr>getBitCast(literal, requiredType);<br>
+ llvm::Constant *Result =<br>
+ llvm::ConstantExpr::<wbr>getBitCast(literal, RequiredType);<br>
+ CGM.setAddrOfGlobalBlock(<wbr>blockInfo.BlockExpression, Result);<br>
+ return Result;<br>
}<br>
<br>
void CodeGenFunction::<wbr>setBlockContextParameter(const ImplicitParamDecl *D,<br>
<br>
Modified: cfe/trunk/lib/CodeGen/CGCall.<wbr>cpp<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CGCall.cpp?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/lib/CodeGen/<wbr>CGCall.cpp?rev=290149&r1=<wbr>290148&r2=290149&view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/lib/CodeGen/CGCall.<wbr>cpp (original)<br>
+++ cfe/trunk/lib/CodeGen/CGCall.<wbr>cpp Mon Dec 19 19:05:42 2016<br>
@@ -1683,6 +1683,14 @@ void CodeGenModule::<wbr>ConstructAttributeLi<br>
<br>
HasAnyX86InterruptAttr = TargetDecl->hasAttr<<wbr>AnyX86InterruptAttr>();<br>
HasOptnone = TargetDecl->hasAttr<<wbr>OptimizeNoneAttr>();<br>
+ if (auto *AllocSize = TargetDecl->getAttr<<wbr>AllocSizeAttr>()) {<br>
+ Optional<unsigned> NumElemsParam;<br>
+ // alloc_size args are base-1, 0 means not present.<br>
+ if (unsigned N = AllocSize->getNumElemsParam())<br>
+ NumElemsParam = N - 1;<br>
+ FuncAttrs.addAllocSizeAttr(<wbr>AllocSize->getElemSizeParam() - 1,<br>
+ NumElemsParam);<br>
+ }<br>
}<br>
<br>
// OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.<br>
<br>
Modified: cfe/trunk/lib/CodeGen/<wbr>CodeGenFunction.h<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CodeGenFunction.h?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/lib/CodeGen/<wbr>CodeGenFunction.h?rev=290149&<wbr>r1=290148&r2=290149&view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/lib/CodeGen/<wbr>CodeGenFunction.h (original)<br>
+++ cfe/trunk/lib/CodeGen/<wbr>CodeGenFunction.h Mon Dec 19 19:05:42 2016<br>
@@ -1499,7 +1499,6 @@ public:<br>
//===-------------------------<wbr>------------------------------<wbr>-------------===//<br>
<br>
llvm::Value *EmitBlockLiteral(const BlockExpr *);<br>
- llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);<br>
static void destroyBlockInfos(CGBlockInfo *info);<br>
<br>
llvm::Function *GenerateBlockFunction(<wbr>GlobalDecl GD,<br>
@@ -2726,6 +2725,9 @@ public:<br>
OMPPrivateScope &LoopScope);<br>
<br>
private:<br>
+ /// Helpers for blocks<br>
+ llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);<br>
+<br>
/// Helpers for the OpenMP loop directives.<br>
void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);<br>
void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);<br>
<br>
Modified: cfe/trunk/lib/CodeGen/<wbr>CodeGenModule.h<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CodeGenModule.h?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/lib/CodeGen/<wbr>CodeGenModule.h?rev=290149&r1=<wbr>290148&r2=290149&view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/lib/CodeGen/<wbr>CodeGenModule.h (original)<br>
+++ cfe/trunk/lib/CodeGen/<wbr>CodeGenModule.h Mon Dec 19 19:05:42 2016<br>
@@ -455,6 +455,10 @@ private:<br>
bool isTriviallyRecursive(const FunctionDecl *F);<br>
bool shouldEmitFunction(GlobalDecl GD);<br>
<br>
+ /// Map of the global blocks we've emitted, so that we don't have to re-emit<br>
+ /// them if the constexpr evaluator gets aggressive.<br>
+ llvm::DenseMap<const BlockExpr *, llvm::Constant *> EmittedGlobalBlocks;<br>
+<br>
/// @name Cache for Blocks Runtime Globals<br>
/// @{<br>
<br>
@@ -776,6 +780,16 @@ public:<br>
<br>
/// Gets the address of a block which requires no captures.<br>
llvm::Constant *GetAddrOfGlobalBlock(const BlockExpr *BE, StringRef Name);<br>
+<br>
+ /// Returns the address of a block which requires no caputres, or null if<br>
+ /// we've yet to emit the block for BE.<br>
+ llvm::Constant *<wbr>getAddrOfGlobalBlockIfEmitted(<wbr>const BlockExpr *BE) {<br>
+ return EmittedGlobalBlocks.lookup(BE)<wbr>;<br>
+ }<br>
+<br>
+ /// Notes that BE's global block is available via Addr. Asserts that BE<br>
+ /// isn't already emitted.<br>
+ void setAddrOfGlobalBlock(const BlockExpr *BE, llvm::Constant *Addr);<br>
<br>
/// Return a pointer to a constant CFString object for the given string.<br>
ConstantAddress GetAddrOfConstantCFString(<wbr>const StringLiteral *Literal);<br>
<br>
Modified: cfe/trunk/lib/Sema/<wbr>SemaDeclAttr.cpp<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Sema/SemaDeclAttr.cpp?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/lib/Sema/<wbr>SemaDeclAttr.cpp?rev=290149&<wbr>r1=290148&r2=290149&view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/lib/Sema/<wbr>SemaDeclAttr.cpp (original)<br>
+++ cfe/trunk/lib/Sema/<wbr>SemaDeclAttr.cpp Mon Dec 19 19:05:42 2016<br>
@@ -246,6 +246,28 @@ static bool checkUInt32Argument(Sema &S,<br>
return true;<br>
}<br>
<br>
+/// \brief Wrapper around checkUInt32Argument, with an extra check to be sure<br>
+/// that the result will fit into a regular (signed) int. All args have the same<br>
+/// purpose as they do in checkUInt32Argument.<br>
+static bool checkPositiveIntArgument(Sema &S, const AttributeList &Attr,<br>
+ const Expr *Expr, int &Val,<br>
+ unsigned Idx = UINT_MAX) {<br>
+ uint32_t UVal;<br>
+ if (!checkUInt32Argument(S, Attr, Expr, UVal, Idx))<br>
+ return false;<br>
+<br>
+ if (UVal > std::numeric_limits<int>::max(<wbr>)) {<br>
+ llvm::APSInt I(32); // for toString<br>
+ I = UVal;<br>
+ S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)<br>
+ << I.toString(10, false) << 32 << /* Unsigned */ 0;<br>
+ return false;<br>
+ }<br>
+<br>
+ Val = UVal;<br>
+ return true;<br>
+}<br>
+<br>
/// \brief Diagnose mutually exclusive attributes when present on a given<br>
/// declaration. Returns true if diagnosed.<br>
template <typename AttrTy><br>
@@ -730,6 +752,69 @@ static void handleAssertExclusiveLockAtt<br>
Attr.<wbr>getAttributeSpellingListIndex(<wbr>)));<br>
}<br>
<br>
+/// \brief Checks to be sure that the given parameter number is inbounds, and is<br>
+/// an some integral type. Will emit appropriate diagnostics if this returns<br>
+/// false.<br>
+///<br>
+/// FuncParamNo is expected to be from the user, so is base-1. AttrArgNo is used<br>
+/// to actually retrieve the argument, so it's base-0.<br>
+static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD,<br>
+ const AttributeList &Attr,<br>
+ unsigned FuncParamNo, unsigned AttrArgNo) {<br>
+ assert(Attr.isArgExpr(<wbr>AttrArgNo) && "Expected expression argument");<br>
+ uint64_t Idx;<br>
+ if (!<wbr>checkFunctionOrMethodParameter<wbr>Index(S, FD, Attr, FuncParamNo,<br>
+ Attr.getArgAsExpr(AttrArgNo), Idx))<br>
+ return false;<br>
+<br>
+ const ParmVarDecl *Param = FD->getParamDecl(Idx);<br>
+ if (!Param->getType()-><wbr>isIntegerType() && !Param->getType()->isCharType(<wbr>)) {<br>
+ SourceLocation SrcLoc = Attr.getArgAsExpr(AttrArgNo)-><wbr>getLocStart();<br>
+ S.Diag(SrcLoc, diag::err_attribute_integers_<wbr>only)<br>
+ << Attr.getName() << Param->getSourceRange();<br>
+ return false;<br>
+ }<br>
+ return true;<br>
+}<br>
+<br>
+static void handleAllocSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {<br>
+ if (!<wbr>checkAttributeAtLeastNumArgs(<wbr>S, Attr, 1) ||<br>
+ !checkAttributeAtMostNumArgs(<wbr>S, Attr, 2))<br>
+ return;<br>
+<br>
+ const auto *FD = cast<FunctionDecl>(D);<br>
+ if (!FD->getReturnType()-><wbr>isPointerType()) {<br>
+ S.Diag(Attr.getLoc(), diag::warn_attribute_return_<wbr>pointers_only)<br>
+ << Attr.getName();<br>
+ return;<br>
+ }<br>
+<br>
+ const Expr *SizeExpr = Attr.getArgAsExpr(0);<br>
+ int SizeArgNo;<br>
+ // Paramater indices are 1-indexed, hence Index=1<br>
+ if (!checkPositiveIntArgument(S, Attr, SizeExpr, SizeArgNo, /*Index=*/1))<br>
+ return;<br>
+<br>
+ if (!checkParamIsIntegerType(S, FD, Attr, SizeArgNo, /*AttrArgNo=*/0))<br>
+ return;<br>
+<br>
+ // Args are 1-indexed, so 0 implies that the arg was not present<br>
+ int NumberArgNo = 0;<br>
+ if (Attr.getNumArgs() == 2) {<br>
+ const Expr *NumberExpr = Attr.getArgAsExpr(1);<br>
+ // Paramater indices are 1-based, hence Index=2<br>
+ if (!checkPositiveIntArgument(S, Attr, NumberExpr, NumberArgNo,<br>
+ /*Index=*/2))<br>
+ return;<br>
+<br>
+ if (!checkParamIsIntegerType(S, FD, Attr, NumberArgNo, /*AttrArgNo=*/1))<br>
+ return;<br>
+ }<br>
+<br>
+ D->addAttr(::new (S.Context) AllocSizeAttr(<br>
+ Attr.getRange(), S.Context, SizeArgNo, NumberArgNo,<br>
+ Attr.<wbr>getAttributeSpellingListIndex(<wbr>)));<br>
+}<br>
<br>
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,<br>
const AttributeList &Attr,<br>
@@ -5552,6 +5637,9 @@ static void ProcessDeclAttribute(Sema &S<br>
case AttributeList::AT_AlignValue:<br>
handleAlignValueAttr(S, D, Attr);<br>
break;<br>
+ case AttributeList::AT_AllocSize:<br>
+ handleAllocSizeAttr(S, D, Attr);<br>
+ break;<br>
case AttributeList::AT_<wbr>AlwaysInline:<br>
handleAlwaysInlineAttr(S, D, Attr);<br>
break;<br>
<br>
Added: cfe/trunk/test/CodeGen/alloc-<wbr>size.c<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/alloc-size.c?rev=290149&view=auto" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/test/<wbr>CodeGen/alloc-size.c?rev=<wbr>290149&view=auto</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/test/CodeGen/alloc-<wbr>size.c (added)<br>
+++ cfe/trunk/test/CodeGen/alloc-<wbr>size.c Mon Dec 19 19:05:42 2016<br>
@@ -0,0 +1,352 @@<br>
+// RUN: %clang_cc1 -triple x86_64-apple-darwin -emit-llvm %s -o - 2>&1 | FileCheck %s<br>
+<br>
+#define NULL ((void *)0)<br>
+<br>
+int gi;<br>
+<br>
+typedef unsigned long size_t;<br>
+<br>
+// CHECK-DAG-RE: define void @my_malloc({{.*}}) #[[MALLOC_ATTR_NUMBER:[0-9]+]]<br>
+// N.B. LLVM's allocsize arguments are base-0, whereas ours are base-1 (for<br>
+// compat with GCC)<br>
+// CHECK-DAG-RE: attributes #[[MALLOC_ATTR_NUMBER]] = {.*allocsize(0).*}<br>
+void *my_malloc(size_t) __attribute__((alloc_size(1)))<wbr>;<br>
+<br>
+// CHECK-DAG-RE: define void @my_calloc({{.*}}) #[[CALLOC_ATTR_NUMBER:[0-9]+]]<br>
+// CHECK-DAG-RE: attributes #[[CALLOC_ATTR_NUMBER]] = {.*allocsize(0, 1).*}<br>
+void *my_calloc(size_t, size_t) __attribute__((alloc_size(1, 2)));<br>
+<br>
+// CHECK-LABEL: @test1<br>
+void test1() {<br>
+ void *const vp = my_malloc(100);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(vp, 0);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(vp, 1);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(vp, 2);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(vp, 3);<br>
+<br>
+ void *const arr = my_calloc(100, 5);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(arr, 0);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(arr, 1);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(arr, 2);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(arr, 3);<br>
+<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(my_<wbr>malloc(100), 0);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(my_<wbr>malloc(100), 1);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(my_<wbr>malloc(100), 2);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(my_<wbr>malloc(100), 3);<br>
+<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(my_<wbr>calloc(100, 5), 0);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(my_<wbr>calloc(100, 5), 1);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(my_<wbr>calloc(100, 5), 2);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(my_<wbr>calloc(100, 5), 3);<br>
+<br>
+ void *const zeroPtr = my_malloc(0);<br>
+ // CHECK: store i32 0<br>
+ gi = __builtin_object_size(zeroPtr, 0);<br>
+ // CHECK: store i32 0<br>
+ gi = __builtin_object_size(my_<wbr>malloc(0), 0);<br>
+<br>
+ void *const zeroArr1 = my_calloc(0, 1);<br>
+ void *const zeroArr2 = my_calloc(1, 0);<br>
+ // CHECK: store i32 0<br>
+ gi = __builtin_object_size(<wbr>zeroArr1, 0);<br>
+ // CHECK: store i32 0<br>
+ gi = __builtin_object_size(<wbr>zeroArr2, 0);<br>
+ // CHECK: store i32 0<br>
+ gi = __builtin_object_size(my_<wbr>calloc(1, 0), 0);<br>
+ // CHECK: store i32 0<br>
+ gi = __builtin_object_size(my_<wbr>calloc(0, 1), 0);<br>
+}<br>
+<br>
+// CHECK-LABEL: @test2<br>
+void test2() {<br>
+ void *const vp = my_malloc(gi);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(vp, 0);<br>
+<br>
+ void *const arr1 = my_calloc(gi, 1);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(arr1, 0);<br>
+<br>
+ void *const arr2 = my_calloc(1, gi);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(arr2, 0);<br>
+}<br>
+<br>
+// CHECK-LABEL: @test3<br>
+void test3() {<br>
+ char *const buf = (char *)my_calloc(100, 5);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(buf, 0);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(buf, 1);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(buf, 2);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(buf, 3);<br>
+}<br>
+<br>
+struct Data {<br>
+ int a;<br>
+ int t[10];<br>
+ char pad[3];<br>
+ char end[1];<br>
+};<br>
+<br>
+// CHECK-LABEL: @test5<br>
+void test5() {<br>
+ struct Data *const data = my_malloc(sizeof(*data));<br>
+ // CHECK: store i32 48<br>
+ gi = __builtin_object_size(data, 0);<br>
+ // CHECK: store i32 48<br>
+ gi = __builtin_object_size(data, 1);<br>
+ // CHECK: store i32 48<br>
+ gi = __builtin_object_size(data, 2);<br>
+ // CHECK: store i32 48<br>
+ gi = __builtin_object_size(data, 3);<br>
+<br>
+ // CHECK: store i32 40<br>
+ gi = __builtin_object_size(&data-><wbr>t[1], 0);<br>
+ // CHECK: store i32 36<br>
+ gi = __builtin_object_size(&data-><wbr>t[1], 1);<br>
+ // CHECK: store i32 40<br>
+ gi = __builtin_object_size(&data-><wbr>t[1], 2);<br>
+ // CHECK: store i32 36<br>
+ gi = __builtin_object_size(&data-><wbr>t[1], 3);<br>
+<br>
+ struct Data *const arr = my_calloc(sizeof(*data), 2);<br>
+ // CHECK: store i32 96<br>
+ gi = __builtin_object_size(arr, 0);<br>
+ // CHECK: store i32 96<br>
+ gi = __builtin_object_size(arr, 1);<br>
+ // CHECK: store i32 96<br>
+ gi = __builtin_object_size(arr, 2);<br>
+ // CHECK: store i32 96<br>
+ gi = __builtin_object_size(arr, 3);<br>
+<br>
+ // CHECK: store i32 88<br>
+ gi = __builtin_object_size(&arr->t[<wbr>1], 0);<br>
+ // CHECK: store i32 36<br>
+ gi = __builtin_object_size(&arr->t[<wbr>1], 1);<br>
+ // CHECK: store i32 88<br>
+ gi = __builtin_object_size(&arr->t[<wbr>1], 2);<br>
+ // CHECK: store i32 36<br>
+ gi = __builtin_object_size(&arr->t[<wbr>1], 3);<br>
+}<br>
+<br>
+// CHECK-LABEL: @test6<br>
+void test6() {<br>
+ // Things that would normally trigger conservative estimates don't need to do<br>
+ // so when we know the source of the allocation.<br>
+ struct Data *const data = my_malloc(sizeof(*data) + 10);<br>
+ // CHECK: store i32 11<br>
+ gi = __builtin_object_size(data-><wbr>end, 0);<br>
+ // CHECK: store i32 11<br>
+ gi = __builtin_object_size(data-><wbr>end, 1);<br>
+ // CHECK: store i32 11<br>
+ gi = __builtin_object_size(data-><wbr>end, 2);<br>
+ // CHECK: store i32 11<br>
+ gi = __builtin_object_size(data-><wbr>end, 3);<br>
+<br>
+ struct Data *const arr = my_calloc(sizeof(*arr) + 5, 3);<br>
+ // AFAICT, GCC treats malloc and calloc identically. So, we should do the<br>
+ // same.<br>
+ //<br>
+ // Additionally, GCC ignores the initial array index when determining whether<br>
+ // we're writing off the end of an alloc_size base. e.g.<br>
+ // arr[0].end<br>
+ // arr[1].end<br>
+ // arr[2].end<br>
+ // ...Are all considered "writing off the end", because there's no way to tell<br>
+ // with high accuracy if the user meant "allocate a single N-byte `Data`",<br>
+ // or "allocate M smaller `Data`s with extra padding".<br>
+<br>
+ // CHECK: store i32 112<br>
+ gi = __builtin_object_size(arr-><wbr>end, 0);<br>
+ // CHECK: store i32 112<br>
+ gi = __builtin_object_size(arr-><wbr>end, 1);<br>
+ // CHECK: store i32 112<br>
+ gi = __builtin_object_size(arr-><wbr>end, 2);<br>
+ // CHECK: store i32 112<br>
+ gi = __builtin_object_size(arr-><wbr>end, 3);<br>
+<br>
+ // CHECK: store i32 112<br>
+ gi = __builtin_object_size(arr[0].<wbr>end, 0);<br>
+ // CHECK: store i32 112<br>
+ gi = __builtin_object_size(arr[0].<wbr>end, 1);<br>
+ // CHECK: store i32 112<br>
+ gi = __builtin_object_size(arr[0].<wbr>end, 2);<br>
+ // CHECK: store i32 112<br>
+ gi = __builtin_object_size(arr[0].<wbr>end, 3);<br>
+<br>
+ // CHECK: store i32 64<br>
+ gi = __builtin_object_size(arr[1].<wbr>end, 0);<br>
+ // CHECK: store i32 64<br>
+ gi = __builtin_object_size(arr[1].<wbr>end, 1);<br>
+ // CHECK: store i32 64<br>
+ gi = __builtin_object_size(arr[1].<wbr>end, 2);<br>
+ // CHECK: store i32 64<br>
+ gi = __builtin_object_size(arr[1].<wbr>end, 3);<br>
+<br>
+ // CHECK: store i32 16<br>
+ gi = __builtin_object_size(arr[2].<wbr>end, 0);<br>
+ // CHECK: store i32 16<br>
+ gi = __builtin_object_size(arr[2].<wbr>end, 1);<br>
+ // CHECK: store i32 16<br>
+ gi = __builtin_object_size(arr[2].<wbr>end, 2);<br>
+ // CHECK: store i32 16<br>
+ gi = __builtin_object_size(arr[2].<wbr>end, 3);<br>
+}<br>
+<br>
+// CHECK-LABEL: @test7<br>
+void test7() {<br>
+ struct Data *const data = my_malloc(sizeof(*data) + 5);<br>
+ // CHECK: store i32 9<br>
+ gi = __builtin_object_size(data-><wbr>pad, 0);<br>
+ // CHECK: store i32 3<br>
+ gi = __builtin_object_size(data-><wbr>pad, 1);<br>
+ // CHECK: store i32 9<br>
+ gi = __builtin_object_size(data-><wbr>pad, 2);<br>
+ // CHECK: store i32 3<br>
+ gi = __builtin_object_size(data-><wbr>pad, 3);<br>
+}<br>
+<br>
+// CHECK-LABEL: @test8<br>
+void test8() {<br>
+ // Non-const pointers aren't currently supported.<br>
+ void *buf = my_calloc(100, 5);<br>
+ // CHECK: @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)<br>
+ gi = __builtin_object_size(buf, 0);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(buf, 1);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(buf, 2);<br>
+ // CHECK: store i32 0<br>
+ gi = __builtin_object_size(buf, 3);<br>
+}<br>
+<br>
+// CHECK-LABEL: @test9<br>
+void test9() {<br>
+ // Check to be sure that we unwrap things correctly.<br>
+ short *const buf0 = (my_malloc(100));<br>
+ short *const buf1 = (short*)(my_malloc(100));<br>
+ short *const buf2 = ((short*)(my_malloc(100)));<br>
+<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(buf0, 0);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(buf1, 0);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(buf2, 0);<br>
+}<br>
+<br>
+// CHECK-LABEL: @test10<br>
+void test10() {<br>
+ // Yay overflow<br>
+ short *const arr = my_calloc((size_t)-1 / 2 + 1, 2);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(arr, 0);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(arr, 1);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(arr, 2);<br>
+ // CHECK: store i32 0<br>
+ gi = __builtin_object_size(arr, 3);<br>
+<br>
+ // As an implementation detail, CharUnits can't handle numbers greater than or<br>
+ // equal to 2**63. Realistically, this shouldn't be a problem, but we should<br>
+ // be sure we don't emit crazy results for this case.<br>
+ short *const buf = my_malloc((size_t)-1);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(buf, 0);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(buf, 1);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(buf, 2);<br>
+ // CHECK: store i32 0<br>
+ gi = __builtin_object_size(buf, 3);<br>
+<br>
+ short *const arr_big = my_calloc((size_t)-1 / 2 - 1, 2);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(arr_big, 0);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(arr_big, 1);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(arr_big, 2);<br>
+ // CHECK: store i32 0<br>
+ gi = __builtin_object_size(arr_big, 3);<br>
+}<br>
+<br>
+void *my_tiny_malloc(char) __attribute__((alloc_size(1)))<wbr>;<br>
+void *my_tiny_calloc(char, char) __attribute__((alloc_size(1, 2)));<br>
+<br>
+// CHECK-LABEL: @test11<br>
+void test11() {<br>
+ void *const vp = my_tiny_malloc(100);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(vp, 0);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(vp, 1);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(vp, 2);<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(vp, 3);<br>
+<br>
+ // N.B. This causes char overflow, but not size_t overflow, so it should be<br>
+ // supported.<br>
+ void *const arr = my_tiny_calloc(100, 5);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(arr, 0);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(arr, 1);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(arr, 2);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(arr, 3);<br>
+}<br>
+<br>
+void *my_signed_malloc(long) __attribute__((alloc_size(1)))<wbr>;<br>
+void *my_signed_calloc(long, long) __attribute__((alloc_size(1, 2)));<br>
+<br>
+// CHECK-LABEL: @test12<br>
+void test12() {<br>
+ // CHECK: store i32 100<br>
+ gi = __builtin_object_size(my_<wbr>signed_malloc(100), 0);<br>
+ // CHECK: store i32 500<br>
+ gi = __builtin_object_size(my_<wbr>signed_calloc(100, 5), 0);<br>
+<br>
+ void *const vp = my_signed_malloc(-2);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(vp, 0);<br>
+ // N.B. These get lowered to -1 because the function calls may have<br>
+ // side-effects, and we can't determine the objectsize.<br>
+ // CHECK: store i32 -1<br>
+ gi = __builtin_object_size(my_<wbr>signed_malloc(-2), 0);<br>
+<br>
+ void *const arr1 = my_signed_calloc(-2, 1);<br>
+ void *const arr2 = my_signed_calloc(1, -2);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(arr1, 0);<br>
+ // CHECK: @llvm.objectsize<br>
+ gi = __builtin_object_size(arr2, 0);<br>
+ // CHECK: store i32 -1<br>
+ gi = __builtin_object_size(my_<wbr>signed_calloc(1, -2), 0);<br>
+ // CHECK: store i32 -1<br>
+ gi = __builtin_object_size(my_<wbr>signed_calloc(-2, 1), 0);<br>
+}<br>
<br>
Added: cfe/trunk/test/CodeGenCXX/<wbr>alloc-size.cpp<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGenCXX/alloc-size.cpp?rev=290149&view=auto" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/test/<wbr>CodeGenCXX/alloc-size.cpp?rev=<wbr>290149&view=auto</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/test/CodeGenCXX/<wbr>alloc-size.cpp (added)<br>
+++ cfe/trunk/test/CodeGenCXX/<wbr>alloc-size.cpp Mon Dec 19 19:05:42 2016<br>
@@ -0,0 +1,72 @@<br>
+// RUN: %clang_cc1 -triple x86_64-apple-darwin -emit-llvm -O0 %s -o - 2>&1 -std=c++11 | FileCheck %s<br>
+<br>
+namespace templates {<br>
+void *my_malloc(int N) __attribute__((alloc_size(1)))<wbr>;<br>
+void *my_calloc(int N, int M) __attribute__((alloc_size(1, 2)));<br>
+<br>
+struct MyType {<br>
+ int arr[4];<br>
+};<br>
+<br>
+template <typename T> int callMalloc();<br>
+<br>
+template <typename T, int N> int callCalloc();<br>
+<br>
+// CHECK-LABEL: define i32 @_ZN9templates6testItEv()<br>
+int testIt() {<br>
+ // CHECK: call i32 @_ZN9templates10callMallocINS_<wbr>6MyTypeEEEiv<br>
+ // CHECK: call i32 @_ZN9templates10callCallocINS_<wbr>6MyTypeELi4EEEiv<br>
+ return callMalloc<MyType>() + callCalloc<MyType, 4>();<br>
+}<br>
+<br>
+// CHECK-LABEL: define linkonce_odr i32<br>
+// @_ZN9templates10callMallocINS_<wbr>6MyTypeEEEiv<br>
+template <typename T> int callMalloc() {<br>
+ static_assert(sizeof(T) == 16, "");<br>
+ // CHECK: ret i32 16<br>
+ return __builtin_object_size(my_<wbr>malloc(sizeof(T)), 0);<br>
+}<br>
+<br>
+// CHECK-LABEL: define linkonce_odr i32<br>
+// @_ZN9templates10callCallocINS_<wbr>6MyTypeELi4EEEiv<br>
+template <typename T, int N> int callCalloc() {<br>
+ static_assert(sizeof(T) * N == 64, "");<br>
+ // CHECK: ret i32 64<br>
+ return __builtin_object_size(my_<wbr>malloc(sizeof(T) * N), 0);<br>
+}<br>
+}<br>
+<br>
+namespace templated_alloc_size {<br>
+using size_t = unsigned long;<br>
+<br>
+// We don't need bodies for any of these, because they're only used in<br>
+// __builtin_object_size, and that shouldn't need anything but a function<br>
+// decl with alloc_size on it.<br>
+template <typename T><br>
+T *my_malloc(size_t N = sizeof(T)) __attribute__((alloc_size(1)))<wbr>;<br>
+<br>
+template <typename T><br>
+T *my_calloc(size_t M, size_t N = sizeof(T)) __attribute__((alloc_size(2, 1)));<br>
+<br>
+template <size_t N><br>
+void *dependent_malloc(size_t NT = N) __attribute__((alloc_size(1)))<wbr>;<br>
+<br>
+template <size_t N, size_t M><br>
+void *dependent_calloc(size_t NT = N, size_t MT = M)<br>
+ __attribute__((alloc_size(1, 2)));<br>
+<br>
+template <typename T, size_t M><br>
+void *dependent_calloc2(size_t NT = sizeof(T), size_t MT = M)<br>
+ __attribute__((alloc_size(1, 2)));<br>
+<br>
+// CHECK-LABEL: define i32 @_ZN20templated_alloc_<wbr>size6testItEv<br>
+int testIt() {<br>
+ // 122 = 4 + 5*4 + 6 + 7*8 + 4*9<br>
+ // CHECK: ret i32 122<br>
+ return __builtin_object_size(my_<wbr>malloc<int>(), 0) +<br>
+ __builtin_object_size(my_<wbr>calloc<int>(5), 0) +<br>
+ __builtin_object_size(<wbr>dependent_malloc<6>(), 0) +<br>
+ __builtin_object_size(<wbr>dependent_calloc<7, 8>(), 0) +<br>
+ __builtin_object_size(<wbr>dependent_calloc2<int, 9>(), 0);<br>
+}<br>
+}<br>
<br>
Modified: cfe/trunk/test/CodeGenCXX/<wbr>block-in-ctor-dtor.cpp<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGenCXX/block-in-ctor-dtor.cpp?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/test/<wbr>CodeGenCXX/block-in-ctor-dtor.<wbr>cpp?rev=290149&r1=290148&r2=<wbr>290149&view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/test/CodeGenCXX/<wbr>block-in-ctor-dtor.cpp (original)<br>
+++ cfe/trunk/test/CodeGenCXX/<wbr>block-in-ctor-dtor.cpp Mon Dec 19 19:05:42 2016<br>
@@ -42,7 +42,5 @@ X::~X() {<br>
// CHECK-LABEL: define internal void @___ZN4ZoneD2Ev_block_invoke_<br>
// CHECK-LABEL: define internal void @___ZN1XC2Ev_block_invoke<br>
// CHECK-LABEL: define internal void @___ZN1XC2Ev_block_invoke_<br>
-// CHECK-LABEL: define internal void @___ZN1XC1Ev_block_invoke<br>
-// CHECK-LABEL: define internal void @___ZN1XC1Ev_block_invoke_<br>
// CHECK-LABEL: define internal void @___ZN1XD2Ev_block_invoke<br>
// CHECK-LABEL: define internal void @___ZN1XD2Ev_block_invoke_<br>
<br>
Modified: cfe/trunk/test/CodeGenCXX/<wbr>global-init.cpp<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGenCXX/global-init.cpp?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/test/<wbr>CodeGenCXX/global-init.cpp?<wbr>rev=290149&r1=290148&r2=<wbr>290149&view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/test/CodeGenCXX/<wbr>global-init.cpp (original)<br>
+++ cfe/trunk/test/CodeGenCXX/<wbr>global-init.cpp Mon Dec 19 19:05:42 2016<br>
@@ -18,9 +18,6 @@ struct D { ~D(); };<br>
// CHECK: @__dso_handle = external global i8<br>
// CHECK: @c = global %struct.C zeroinitializer, align 8<br>
<br>
-// It's okay if we ever implement the IR-generation optimization to remove this.<br>
-// CHECK: @_ZN5test3L3varE = internal constant i8* getelementptr inbounds ([7 x i8], [7 x i8]*<br>
-<br>
// PR6205: The casts should not require global initializers<br>
// CHECK: @_ZN6PR59741cE = external global %"struct.PR5974::C"<br>
// CHECK: @_ZN6PR59741aE = global %"struct.PR5974::A"* getelementptr inbounds (%"struct.PR5974::C", %"struct.PR5974::C"* @_ZN6PR59741cE, i32 0, i32 0)<br>
<br>
Modified: cfe/trunk/test/CodeGenOpenCL/<a href="http://cl20-device-side-enqueue.cl" rel="noreferrer" target="_blank">c<wbr>l20-device-side-enqueue.cl</a><br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGenOpenCL/cl20-device-side-enqueue.cl?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/test/<wbr>CodeGenOpenCL/cl20-device-<wbr>side-enqueue.cl?rev=290149&r1=<wbr>290148&r2=290149&view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/test/CodeGenOpenCL/<a href="http://cl20-device-side-enqueue.cl" rel="noreferrer" target="_blank">c<wbr>l20-device-side-enqueue.cl</a> (original)<br>
+++ cfe/trunk/test/CodeGenOpenCL/<a href="http://cl20-device-side-enqueue.cl" rel="noreferrer" target="_blank">c<wbr>l20-device-side-enqueue.cl</a> Mon Dec 19 19:05:42 2016<br>
@@ -3,6 +3,8 @@<br>
<br>
typedef void (^bl_t)(local void *);<br>
<br>
+// N.B. The check here only exists to set BL_GLOBAL<br>
+// COMMON: @block_G = {{.*}}bitcast ([[BL_GLOBAL:[^@]+@__block_<wbr>literal_global(\.[0-9]+)?]]<br>
const bl_t block_G = (bl_t) ^ (local void *a) {};<br>
<br>
kernel void device_side_enqueue(global int *a, global int *b, int i) {<br>
@@ -122,28 +124,24 @@ kernel void device_side_enqueue(global i<br>
},<br>
4294967296L);<br>
<br>
-<br>
+ // The full type of these expressions are long (and repeated elsewhere), so we<br>
+ // capture it as part of the regex for convenience and clarity.<br>
+ // COMMON: store void ()* bitcast ([[BL_A:[^@]+@__block_literal_<wbr>global.[0-9]+]] to void ()*), void ()** %block_A<br>
void (^const block_A)(void) = ^{<br>
return;<br>
};<br>
+<br>
+ // COMMON: store void (i8 addrspace(2)*)* bitcast ([[BL_B:[^@]+@__block_literal_<wbr>global.[0-9]+]] to void (i8 addrspace(2)*)*), void (i8 addrspace(2)*)** %block_B<br>
void (^const block_B)(local void *) = ^(local void *a) {<br>
return;<br>
};<br>
<br>
- // COMMON: [[BL:%[0-9]+]] = load void ()*, void ()** %block_A<br>
- // COMMON: [[BL_I8:%[0-9]+]] = bitcast void ()* [[BL]] to i8*<br>
- // COMMON: call i32 @__get_kernel_work_group_size_<wbr>impl(i8* [[BL_I8]])<br>
+ // COMMON: call i32 @__get_kernel_work_group_size_<wbr>impl(i8* bitcast ([[BL_A]] to i8*))<br>
unsigned size = get_kernel_work_group_size(<wbr>block_A);<br>
- // COMMON: [[BL:%[0-9]+]] = load void (i8 addrspace(2)*)*, void (i8 addrspace(2)*)** %block_B<br>
- // COMMON: [[BL_I8:%[0-9]+]] = bitcast void (i8 addrspace(2)*)* [[BL]] to i8*<br>
- // COMMON: call i32 @__get_kernel_work_group_size_<wbr>impl(i8* [[BL_I8]])<br>
+ // COMMON: call i32 @__get_kernel_work_group_size_<wbr>impl(i8* bitcast ([[BL_B]] to i8*))<br>
size = get_kernel_work_group_size(<wbr>block_B);<br>
- // COMMON: [[BL:%[0-9]+]] = load void ()*, void ()** %block_A<br>
- // COMMON: [[BL_I8:%[0-9]+]] = bitcast void ()* [[BL]] to i8*<br>
- // COMMON: call i32 @__get_kernel_preferred_work_<wbr>group_multiple_impl(i8* [[BL_I8]])<br>
+ // COMMON: call i32 @__get_kernel_preferred_work_<wbr>group_multiple_impl(i8* bitcast ([[BL_A]] to i8*))<br>
size = get_kernel_preferred_work_<wbr>group_size_multiple(block_A);<br>
- // COMMON: [[BL:%[0-9]+]] = load void (i8 addrspace(2)*)*, void (i8 addrspace(2)*)* addrspace(1)* @block_G<br>
- // COMMON: [[BL_I8:%[0-9]+]] = bitcast void (i8 addrspace(2)*)* [[BL]] to i8*<br>
- // COMMON: call i32 @__get_kernel_preferred_work_<wbr>group_multiple_impl(i8* [[BL_I8]])<br>
+ // COMMON: call i32 @__get_kernel_preferred_work_<wbr>group_multiple_impl(i8* bitcast ([[BL_GLOBAL]] to i8*))<br>
size = get_kernel_preferred_work_<wbr>group_size_multiple(block_G);<br>
}<br>
<br>
Added: cfe/trunk/test/Sema/alloc-<wbr>size.c<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/test/Sema/alloc-size.c?rev=290149&view=auto" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/test/Sema/<wbr>alloc-size.c?rev=290149&view=<wbr>auto</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/test/Sema/alloc-<wbr>size.c (added)<br>
+++ cfe/trunk/test/Sema/alloc-<wbr>size.c Mon Dec 19 19:05:42 2016<br>
@@ -0,0 +1,23 @@<br>
+// RUN: %clang_cc1 %s -verify<br>
+<br>
+void *fail1(int a) __attribute__((alloc_size)); //expected-error{{'alloc_size' attribute takes at least 1 argument}}<br>
+void *fail2(int a) __attribute__((alloc_size())); //expected-error{{'alloc_size' attribute takes at least 1 argument}}<br>
+<br>
+void *fail3(int a) __attribute__((alloc_size(0)))<wbr>; //expected-error{{'alloc_size' attribute parameter 0 is out of bounds}}<br>
+void *fail4(int a) __attribute__((alloc_size(2)))<wbr>; //expected-error{{'alloc_size' attribute parameter 2 is out of bounds}}<br>
+<br>
+void *fail5(int a, int b) __attribute__((alloc_size(0, 1))); //expected-error{{'alloc_size' attribute parameter 0 is out of bounds}}<br>
+void *fail6(int a, int b) __attribute__((alloc_size(3, 1))); //expected-error{{'alloc_size' attribute parameter 3 is out of bounds}}<br>
+<br>
+void *fail7(int a, int b) __attribute__((alloc_size(1, 0))); //expected-error{{'alloc_size' attribute parameter 0 is out of bounds}}<br>
+void *fail8(int a, int b) __attribute__((alloc_size(1, 3))); //expected-error{{'alloc_size' attribute parameter 3 is out of bounds}}<br>
+<br>
+int fail9(int a) __attribute__((alloc_size(1)))<wbr>; //expected-warning{{'alloc_<wbr>size' attribute only applies to return values that are pointers}}<br>
+<br>
+int fail10 __attribute__((alloc_size(1)))<wbr>; //expected-warning{{'alloc_<wbr>size' attribute only applies to non-K&R-style functions}}<br>
+<br>
+void *fail11(void *a) __attribute__((alloc_size(1)))<wbr>; //expected-error{{'alloc_size' attribute argument may only refer to a function parameter of integer type}}<br>
+<br>
+void *fail12(int a) __attribute__((alloc_size("<wbr>abc"))); //expected-error{{'alloc_size' attribute requires parameter 1 to be an integer constant}}<br>
+void *fail12(int a) __attribute__((alloc_size(1, "abc"))); //expected-error{{'alloc_size' attribute requires parameter 2 to be an integer constant}}<br>
+void *fail13(int a) __attribute__((alloc_size(1U<<<wbr>31))); //expected-error{{integer constant expression evaluates to value 2147483648 that cannot be represented in a 32-bit signed integer type}}<br>
<br>
Modified: cfe/trunk/test/SemaCXX/<wbr>constant-expression-cxx11.cpp<br>
URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/test/SemaCXX/constant-expression-cxx11.cpp?rev=290149&r1=290148&r2=290149&view=diff" rel="noreferrer" target="_blank">http://llvm.org/viewvc/llvm-<wbr>project/cfe/trunk/test/<wbr>SemaCXX/constant-expression-<wbr>cxx11.cpp?rev=290149&r1=<wbr>290148&r2=290149&view=diff</a><br>
==============================<wbr>==============================<wbr>==================<br>
--- cfe/trunk/test/SemaCXX/<wbr>constant-expression-cxx11.cpp (original)<br>
+++ cfe/trunk/test/SemaCXX/<wbr>constant-expression-cxx11.cpp Mon Dec 19 19:05:42 2016<br>
@@ -1183,7 +1183,7 @@ constexpr int m1b = const_cast<const int<br>
constexpr int m2b = const_cast<const int&>(n2); // expected-error {{constant expression}} expected-note {{read of volatile object 'n2'}}<br>
<br>
struct T { int n; };<br>
-const T t = { 42 }; // expected-note {{declared here}}<br>
+const T t = { 42 };<br>
<br>
constexpr int f(volatile int &&r) {<br>
return r; // expected-note {{read of volatile-qualified type 'volatile int'}}<br>
@@ -1195,7 +1195,7 @@ struct S {<br>
int j : f(0); // expected-error {{constant expression}} expected-note {{in call to 'f(0)'}}<br>
int k : g(0); // expected-error {{constant expression}} expected-note {{temporary created here}} expected-note {{in call to 'g(0)'}}<br>
int l : n3; // expected-error {{constant expression}} expected-note {{read of non-const variable}}<br>
- int m : t.n; // expected-error {{constant expression}} expected-note {{read of non-constexpr variable}}<br>
+ int m : t.n; // expected-warning{{width of bit-field 'm' (42 bits)}}<br>
};<br>
<br>
}<br>
<br>
<br>
______________________________<wbr>_________________<br>
cfe-commits mailing list<br>
<a href="mailto:cfe-commits@lists.llvm.org">cfe-commits@lists.llvm.org</a><br>
<a href="http://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits" rel="noreferrer" target="_blank">http://lists.llvm.org/cgi-bin/<wbr>mailman/listinfo/cfe-commits</a><br>
</blockquote></div><br></div>