<div dir="ltr"><br><div>Thanks again! To answer your question, this code is intended for use both inside and outside of clang, as part of a long term project to deploy thread safety analysis to languages other than C++. It can be used independently of clang with appropriate include magic, and I have test frameworks that test it as such; the std::ostream stuff is a relic of that. I did not mean to submit the commented code. :-)</div><div><br></div><div> -DeLesley</div><div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Thu, Sep 11, 2014 at 1:03 PM, Justin Bogner <span dir="ltr"><<a href="mailto:mail@justinbogner.com" target="_blank">mail@justinbogner.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span class="">DeLesley Hutchins <<a href="mailto:delesley@google.com">delesley@google.com</a>> writes:<br>
> Author: delesley<br>
> Date: Wed Sep 10 17:12:52 2014<br>
> New Revision: 217556<br>
><br>
> URL: <a href="http://llvm.org/viewvc/llvm-project?rev=217556&view=rev" target="_blank">http://llvm.org/viewvc/llvm-project?rev=217556&view=rev</a><br>
> Log:<br>
> Thread Safety Analysis: major update to thread safety TIL.<br>
<br>
</span>This was causing some bots to hang due to the implementation of<br>
operator<<(std::ostream&, StringRef) deciding to self recurse. I've<br>
attempted to fix that in r217621.<br>
<br>
I also noticed that you commented out a version of this same operator<<<br>
in ThreadSafetyTraverse.h that didn't have the recursion problem. Please<br>
don't commit commented out code - just remove it.<br>
<br>
Finally, is there a good reason this is using ostream rather than llvm's<br>
raw_ostream?<br>
<div><div class="h5"><br>
> Numerous changes, including:<br>
> * Changed the way variables and instructions are handled in basic blocks to<br>
> be more efficient.<br>
> * Eliminated SExprRef.<br>
> * Simplified futures.<br>
> * Fixed documentation.<br>
> * Compute dominator and post dominator trees.<br>
><br>
> Modified:<br>
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h<br>
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h<br>
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def<br>
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h<br>
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h<br>
> cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h<br>
> cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp<br>
> cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp<br>
><br>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h<br>
> URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h?rev=217556&r1=217555&r2=217556&view=diff" target="_blank">http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h?rev=217556&r1=217555&r2=217556&view=diff</a><br>
> ==============================================================================<br>
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h (original)<br>
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyCommon.h Wed Sep 10 17:12:52 2014<br>
> @@ -477,9 +477,9 @@ private:<br>
> // Indexed by clang BlockID.<br>
><br>
> LVarDefinitionMap CurrentLVarMap;<br>
> - std::vector<til::Variable*> CurrentArguments;<br>
> - std::vector<til::Variable*> CurrentInstructions;<br>
> - std::vector<til::Variable*> IncompleteArgs;<br>
> + std::vector<til::Phi*> CurrentArguments;<br>
> + std::vector<til::SExpr*> CurrentInstructions;<br>
> + std::vector<til::Phi*> IncompleteArgs;<br>
> til::BasicBlock *CurrentBB;<br>
> BlockInfo *CurrentBlockInfo;<br>
> };<br>
><br>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h<br>
> URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h?rev=217556&r1=217555&r2=217556&view=diff" target="_blank">http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h?rev=217556&r1=217555&r2=217556&view=diff</a><br>
> ==============================================================================<br>
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h (original)<br>
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyLogical.h Wed Sep 10 17:12:52 2014<br>
> @@ -41,13 +41,13 @@ private:<br>
> };<br>
><br>
> class Terminal : public LExpr {<br>
> - til::SExprRef Expr;<br>
> + til::SExpr *Expr;<br>
><br>
> public:<br>
> Terminal(til::SExpr *Expr) : LExpr(LExpr::Terminal), Expr(Expr) {}<br>
><br>
> - const til::SExpr *expr() const { return Expr.get(); }<br>
> - til::SExpr *expr() { return Expr.get(); }<br>
> + const til::SExpr *expr() const { return Expr; }<br>
> + til::SExpr *expr() { return Expr; }<br>
><br>
> static bool classof(const LExpr *E) { return E->kind() == LExpr::Terminal; }<br>
> };<br>
><br>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def<br>
> URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def?rev=217556&r1=217555&r2=217556&view=diff" target="_blank">http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def?rev=217556&r1=217555&r2=217556&view=diff</a><br>
> ==============================================================================<br>
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def (original)<br>
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyOps.def Wed Sep 10 17:12:52 2014<br>
> @@ -44,8 +44,11 @@ TIL_OPCODE_DEF(Cast)<br>
> TIL_OPCODE_DEF(SCFG)<br>
> TIL_OPCODE_DEF(BasicBlock)<br>
> TIL_OPCODE_DEF(Phi)<br>
> +<br>
> +// Terminator instructions<br>
> TIL_OPCODE_DEF(Goto)<br>
> TIL_OPCODE_DEF(Branch)<br>
> +TIL_OPCODE_DEF(Return)<br>
><br>
> // pseudo-terms<br>
> TIL_OPCODE_DEF(Identifier)<br>
><br>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h<br>
> URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h?rev=217556&r1=217555&r2=217556&view=diff" target="_blank">http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h?rev=217556&r1=217555&r2=217556&view=diff</a><br>
> ==============================================================================<br>
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h (original)<br>
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTIL.h Wed Sep 10 17:12:52 2014<br>
> @@ -63,24 +63,27 @@ namespace threadSafety {<br>
> namespace til {<br>
><br>
><br>
> +/// Enum for the different distinct classes of SExpr<br>
> enum TIL_Opcode {<br>
> #define TIL_OPCODE_DEF(X) COP_##X,<br>
> #include "ThreadSafetyOps.def"<br>
> #undef TIL_OPCODE_DEF<br>
> };<br>
><br>
> +/// Opcode for unary arithmetic operations.<br>
> enum TIL_UnaryOpcode : unsigned char {<br>
> UOP_Minus, // -<br>
> UOP_BitNot, // ~<br>
> UOP_LogicNot // !<br>
> };<br>
><br>
> +/// Opcode for binary arithmetic operations.<br>
> enum TIL_BinaryOpcode : unsigned char {<br>
> + BOP_Add, // +<br>
> + BOP_Sub, // -<br>
> BOP_Mul, // *<br>
> BOP_Div, // /<br>
> BOP_Rem, // %<br>
> - BOP_Add, // +<br>
> - BOP_Sub, // -<br>
> BOP_Shl, // <<<br>
> BOP_Shr, // >><br>
> BOP_BitAnd, // &<br>
> @@ -90,10 +93,11 @@ enum TIL_BinaryOpcode : unsigned char {<br>
> BOP_Neq, // !=<br>
> BOP_Lt, // <<br>
> BOP_Leq, // <=<br>
> - BOP_LogicAnd, // &&<br>
> - BOP_LogicOr // ||<br>
> + BOP_LogicAnd, // && (no short-circuit)<br>
> + BOP_LogicOr // || (no short-circuit)<br>
> };<br>
><br>
> +/// Opcode for cast operations.<br>
> enum TIL_CastOpcode : unsigned char {<br>
> CAST_none = 0,<br>
> CAST_extendNum, // extend precision of numeric type<br>
> @@ -107,21 +111,24 @@ const TIL_Opcode COP_Min = COP_Fu<br>
> const TIL_Opcode COP_Max = COP_Branch;<br>
> const TIL_UnaryOpcode UOP_Min = UOP_Minus;<br>
> const TIL_UnaryOpcode UOP_Max = UOP_LogicNot;<br>
> -const TIL_BinaryOpcode BOP_Min = BOP_Mul;<br>
> +const TIL_BinaryOpcode BOP_Min = BOP_Add;<br>
> const TIL_BinaryOpcode BOP_Max = BOP_LogicOr;<br>
> const TIL_CastOpcode CAST_Min = CAST_none;<br>
> const TIL_CastOpcode CAST_Max = CAST_toInt;<br>
><br>
> +/// Return the name of a unary opcode.<br>
> StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);<br>
> +<br>
> +/// Return the name of a binary opcode.<br>
> StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);<br>
><br>
><br>
> -// ValueTypes are data types that can actually be held in registers.<br>
> -// All variables and expressions must have a vBNF_Nonealue type.<br>
> -// Pointer types are further subdivided into the various heap-allocated<br>
> -// types, such as functions, records, etc.<br>
> -// Structured types that are passed by value (e.g. complex numbers)<br>
> -// require special handling; they use BT_ValueRef, and size ST_0.<br>
> +/// ValueTypes are data types that can actually be held in registers.<br>
> +/// All variables and expressions must have a value type.<br>
> +/// Pointer types are further subdivided into the various heap-allocated<br>
> +/// types, such as functions, records, etc.<br>
> +/// Structured types that are passed by value (e.g. complex numbers)<br>
> +/// require special handling; they use BT_ValueRef, and size ST_0.<br>
> struct ValueType {<br>
> enum BaseType : unsigned char {<br>
> BT_Void = 0,<br>
> @@ -247,8 +254,10 @@ inline ValueType ValueType::getValueType<br>
> }<br>
><br>
><br>
> +class BasicBlock;<br>
> +<br>
><br>
> -// Base class for AST nodes in the typed intermediate language.<br>
> +/// Base class for AST nodes in the typed intermediate language.<br>
> class SExpr {<br>
> public:<br>
> TIL_Opcode opcode() const { return static_cast<TIL_Opcode>(Opcode); }<br>
> @@ -267,71 +276,47 @@ public:<br>
> // template <class C> typename C::CType compare(CType* E, C& Cmp) {<br>
> // compare all subexpressions, following the comparator interface<br>
> // }<br>
> -<br>
> void *operator new(size_t S, MemRegionRef &R) {<br>
> return ::operator new(S, R);<br>
> }<br>
><br>
> - // SExpr objects cannot be deleted.<br>
> + /// SExpr objects cannot be deleted.<br>
> // This declaration is public to workaround a gcc bug that breaks building<br>
> // with REQUIRES_EH=1.<br>
> void operator delete(void *) LLVM_DELETED_FUNCTION;<br>
><br>
> + /// Returns the instruction ID for this expression.<br>
> + /// All basic block instructions have a unique ID (i.e. virtual register).<br>
> + unsigned id() const { return SExprID; }<br>
> +<br>
> + /// Returns the block, if this is an instruction in a basic block,<br>
> + /// otherwise returns null.<br>
> + BasicBlock* block() const { return Block; }<br>
> +<br>
> + /// Set the basic block and instruction ID for this expression.<br>
> + void setID(BasicBlock *B, unsigned id) { Block = B; SExprID = id; }<br>
> +<br>
> protected:<br>
> - SExpr(TIL_Opcode Op) : Opcode(Op), Reserved(0), Flags(0) {}<br>
> - SExpr(const SExpr &E) : Opcode(E.Opcode), Reserved(0), Flags(E.Flags) {}<br>
> + SExpr(TIL_Opcode Op)<br>
> + : Opcode(Op), Reserved(0), Flags(0), SExprID(0), Block(nullptr) {}<br>
> + SExpr(const SExpr &E)<br>
> + : Opcode(E.Opcode), Reserved(0), Flags(E.Flags), SExprID(0),<br>
> + Block(nullptr) {}<br>
><br>
> const unsigned char Opcode;<br>
> unsigned char Reserved;<br>
> unsigned short Flags;<br>
> + unsigned SExprID;<br>
> + BasicBlock* Block;<br>
><br>
> private:<br>
> SExpr() LLVM_DELETED_FUNCTION;<br>
><br>
> - // SExpr objects must be created in an arena.<br>
> + /// SExpr objects must be created in an arena.<br>
> void *operator new(size_t) LLVM_DELETED_FUNCTION;<br>
> };<br>
><br>
><br>
> -// Class for owning references to SExprs.<br>
> -// Includes attach/detach logic for counting variable references and lazy<br>
> -// rewriting strategies.<br>
> -class SExprRef {<br>
> -public:<br>
> - SExprRef() : Ptr(nullptr) { }<br>
> - SExprRef(std::nullptr_t P) : Ptr(nullptr) { }<br>
> - SExprRef(SExprRef &&R) : Ptr(R.Ptr) { R.Ptr = nullptr; }<br>
> -<br>
> - // Defined after Variable and Future, below.<br>
> - inline SExprRef(SExpr *P);<br>
> - inline ~SExprRef();<br>
> -<br>
> - SExpr *get() { return Ptr; }<br>
> - const SExpr *get() const { return Ptr; }<br>
> -<br>
> - SExpr *operator->() { return get(); }<br>
> - const SExpr *operator->() const { return get(); }<br>
> -<br>
> - SExpr &operator*() { return *Ptr; }<br>
> - const SExpr &operator*() const { return *Ptr; }<br>
> -<br>
> - bool operator==(const SExprRef &R) const { return Ptr == R.Ptr; }<br>
> - bool operator!=(const SExprRef &R) const { return !operator==(R); }<br>
> - bool operator==(const SExpr *P) const { return Ptr == P; }<br>
> - bool operator!=(const SExpr *P) const { return !operator==(P); }<br>
> - bool operator==(std::nullptr_t) const { return Ptr == nullptr; }<br>
> - bool operator!=(std::nullptr_t) const { return Ptr != nullptr; }<br>
> -<br>
> - inline void reset(SExpr *E);<br>
> -<br>
> -private:<br>
> - inline void attach();<br>
> - inline void detach();<br>
> -<br>
> - SExpr *Ptr;<br>
> -};<br>
> -<br>
> -<br>
> // Contains various helper functions for SExprs.<br>
> namespace ThreadSafetyTIL {<br>
> inline bool isTrivial(const SExpr *E) {<br>
> @@ -343,62 +328,64 @@ namespace ThreadSafetyTIL {<br>
> // Nodes which declare variables<br>
> class Function;<br>
> class SFunction;<br>
> -class BasicBlock;<br>
> class Let;<br>
><br>
><br>
> -// A named variable, e.g. "x".<br>
> -//<br>
> -// There are two distinct places in which a Variable can appear in the AST.<br>
> -// A variable declaration introduces a new variable, and can occur in 3 places:<br>
> -// Let-expressions: (Let (x = t) u)<br>
> -// Functions: (Function (x : t) u)<br>
> -// Self-applicable functions (SFunction (x) t)<br>
> -//<br>
> -// If a variable occurs in any other location, it is a reference to an existing<br>
> -// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't<br>
> -// allocate a separate AST node for variable references; a reference is just a<br>
> -// pointer to the original declaration.<br>
> +/// A named variable, e.g. "x".<br>
> +///<br>
> +/// There are two distinct places in which a Variable can appear in the AST.<br>
> +/// A variable declaration introduces a new variable, and can occur in 3 places:<br>
> +/// Let-expressions: (Let (x = t) u)<br>
> +/// Functions: (Function (x : t) u)<br>
> +/// Self-applicable functions (SFunction (x) t)<br>
> +///<br>
> +/// If a variable occurs in any other location, it is a reference to an existing<br>
> +/// variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't<br>
> +/// allocate a separate AST node for variable references; a reference is just a<br>
> +/// pointer to the original declaration.<br>
> class Variable : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }<br>
><br>
> - // Let-variable, function parameter, or self-variable<br>
> enum VariableKind {<br>
> - VK_Let,<br>
> - VK_LetBB,<br>
> - VK_Fun,<br>
> - VK_SFun<br>
> + VK_Let, ///< Let-variable<br>
> + VK_Fun, ///< Function parameter<br>
> + VK_SFun ///< SFunction (self) parameter<br>
> };<br>
><br>
> - // These are defined after SExprRef contructor, below<br>
> - inline Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr);<br>
> - inline Variable(StringRef s, SExpr *D = nullptr);<br>
> - inline Variable(const Variable &Vd, SExpr *D);<br>
> + Variable(StringRef s, SExpr *D = nullptr)<br>
> + : SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr) {<br>
> + Flags = VK_Let;<br>
> + }<br>
> + Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr)<br>
> + : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),<br>
> + Definition(D), Cvdecl(Cvd) {<br>
> + Flags = VK_Let;<br>
> + }<br>
> + Variable(const Variable &Vd, SExpr *D) // rewrite constructor<br>
> + : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl) {<br>
> + Flags = Vd.kind();<br>
> + }<br>
><br>
> + /// Return the kind of variable (let, function param, or self)<br>
> VariableKind kind() const { return static_cast<VariableKind>(Flags); }<br>
><br>
> + /// Return the name of the variable, if any.<br>
> StringRef name() const { return Name; }<br>
> +<br>
> + /// Return the clang declaration for this variable, if any.<br>
> const clang::ValueDecl *clangDecl() const { return Cvdecl; }<br>
><br>
> - // Returns the definition (for let vars) or type (for parameter & self vars)<br>
> - SExpr *definition() { return Definition.get(); }<br>
> - const SExpr *definition() const { return Definition.get(); }<br>
> -<br>
> - void attachVar() const { ++NumUses; }<br>
> - void detachVar() const { assert(NumUses > 0); --NumUses; }<br>
> -<br>
> - unsigned getID() const { return Id; }<br>
> - unsigned getBlockID() const { return BlockID; }<br>
> -<br>
> - void setName(StringRef S) { Name = S; }<br>
> - void setID(unsigned Bid, unsigned I) {<br>
> - BlockID = static_cast<unsigned short>(Bid);<br>
> - Id = static_cast<unsigned short>(I);<br>
> - }<br>
> - void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }<br>
> - void setDefinition(SExpr *E);<br>
> + /// Return the definition of the variable.<br>
> + /// For let-vars, this is the setting expression.<br>
> + /// For function and self parameters, it is the type of the variable.<br>
> + SExpr *definition() { return Definition; }<br>
> + const SExpr *definition() const { return Definition; }<br>
> +<br>
> + void setName(StringRef S) { Name = S; }<br>
> void setKind(VariableKind K) { Flags = K; }<br>
> + void setDefinition(SExpr *E) { Definition = E; }<br>
> + void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -418,17 +405,13 @@ private:<br>
> friend class Let;<br>
><br>
> StringRef Name; // The name of the variable.<br>
> - SExprRef Definition; // The TIL type or definition<br>
> + SExpr* Definition; // The TIL type or definition<br>
> const clang::ValueDecl *Cvdecl; // The clang declaration for this variable.<br>
> -<br>
> - unsigned short BlockID;<br>
> - unsigned short Id;<br>
> - mutable unsigned NumUses;<br>
> };<br>
><br>
><br>
> -// Placeholder for an expression that has not yet been created.<br>
> -// Used to implement lazy copy and rewriting strategies.<br>
> +/// Placeholder for an expression that has not yet been created.<br>
> +/// Used to implement lazy copy and rewriting strategies.<br>
> class Future : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }<br>
> @@ -439,22 +422,14 @@ public:<br>
> FS_done<br>
> };<br>
><br>
> - Future() :<br>
> - SExpr(COP_Future), Status(FS_pending), Result(nullptr), Location(nullptr)<br>
> - {}<br>
> + Future() : SExpr(COP_Future), Status(FS_pending), Result(nullptr) {}<br>
> +<br>
> private:<br>
> virtual ~Future() LLVM_DELETED_FUNCTION;<br>
> -public:<br>
> -<br>
> - // Registers the location in the AST where this future is stored.<br>
> - // Forcing the future will automatically update the AST.<br>
> - static inline void registerLocation(SExprRef *Member) {<br>
> - if (Future *F = dyn_cast_or_null<Future>(Member->get()))<br>
> - F->Location = Member;<br>
> - }<br>
><br>
> +public:<br>
> // A lazy rewriting strategy should subclass Future and override this method.<br>
> - virtual SExpr *create() { return nullptr; }<br>
> + virtual SExpr *compute() { return nullptr; }<br>
><br>
> // Return the result of this future if it exists, otherwise return null.<br>
> SExpr *maybeGetResult() const {<br>
> @@ -465,8 +440,7 @@ public:<br>
> SExpr *result() {<br>
> switch (Status) {<br>
> case FS_pending:<br>
> - force();<br>
> - return Result;<br>
> + return force();<br>
> case FS_evaluating:<br>
> return nullptr; // infinite loop; illegal recursion.<br>
> case FS_done:<br>
> @@ -488,81 +462,14 @@ public:<br>
> }<br>
><br>
> private:<br>
> - // Force the future.<br>
> - inline void force();<br>
> + SExpr* force();<br>
><br>
> FutureStatus Status;<br>
> SExpr *Result;<br>
> - SExprRef *Location;<br>
> };<br>
><br>
><br>
> -inline void SExprRef::attach() {<br>
> - if (!Ptr)<br>
> - return;<br>
> -<br>
> - TIL_Opcode Op = Ptr->opcode();<br>
> - if (Op == COP_Variable) {<br>
> - cast<Variable>(Ptr)->attachVar();<br>
> - } else if (Op == COP_Future) {<br>
> - cast<Future>(Ptr)->registerLocation(this);<br>
> - }<br>
> -}<br>
> -<br>
> -inline void SExprRef::detach() {<br>
> - if (Ptr && Ptr->opcode() == COP_Variable) {<br>
> - cast<Variable>(Ptr)->detachVar();<br>
> - }<br>
> -}<br>
> -<br>
> -inline SExprRef::SExprRef(SExpr *P) : Ptr(P) {<br>
> - attach();<br>
> -}<br>
> -<br>
> -inline SExprRef::~SExprRef() {<br>
> - detach();<br>
> -}<br>
> -<br>
> -inline void SExprRef::reset(SExpr *P) {<br>
> - detach();<br>
> - Ptr = P;<br>
> - attach();<br>
> -}<br>
> -<br>
> -<br>
> -inline Variable::Variable(StringRef s, SExpr *D)<br>
> - : SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr),<br>
> - BlockID(0), Id(0), NumUses(0) {<br>
> - Flags = VK_Let;<br>
> -}<br>
> -<br>
> -inline Variable::Variable(SExpr *D, const clang::ValueDecl *Cvd)<br>
> - : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),<br>
> - Definition(D), Cvdecl(Cvd), BlockID(0), Id(0), NumUses(0) {<br>
> - Flags = VK_Let;<br>
> -}<br>
> -<br>
> -inline Variable::Variable(const Variable &Vd, SExpr *D) // rewrite constructor<br>
> - : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl),<br>
> - BlockID(0), Id(0), NumUses(0) {<br>
> - Flags = Vd.kind();<br>
> -}<br>
> -<br>
> -inline void Variable::setDefinition(SExpr *E) {<br>
> - Definition.reset(E);<br>
> -}<br>
> -<br>
> -void Future::force() {<br>
> - Status = FS_evaluating;<br>
> - SExpr *R = create();<br>
> - Result = R;<br>
> - if (Location)<br>
> - Location->reset(R);<br>
> - Status = FS_done;<br>
> -}<br>
> -<br>
> -<br>
> -// Placeholder for C++ expressions that cannot be represented in the TIL.<br>
> +/// Placeholder for expressions that cannot be represented in the TIL.<br>
> class Undefined : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }<br>
> @@ -585,7 +492,7 @@ private:<br>
> };<br>
><br>
><br>
> -// Placeholder for a wildcard that matches any other expression.<br>
> +/// Placeholder for a wildcard that matches any other expression.<br>
> class Wildcard : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }<br>
> @@ -716,8 +623,8 @@ typename V::R_SExpr Literal::traverse(V<br>
> }<br>
><br>
><br>
> -// Literal pointer to an object allocated in memory.<br>
> -// At compile time, pointer literals are represented by symbolic names.<br>
> +/// A Literal pointer to an object allocated in memory.<br>
> +/// At compile time, pointer literals are represented by symbolic names.<br>
> class LiteralPtr : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }<br>
> @@ -743,9 +650,9 @@ private:<br>
> };<br>
><br>
><br>
> -// A function -- a.k.a. lambda abstraction.<br>
> -// Functions with multiple arguments are created by currying,<br>
> -// e.g. (function (x: Int) (function (y: Int) (add x y)))<br>
> +/// A function -- a.k.a. lambda abstraction.<br>
> +/// Functions with multiple arguments are created by currying,<br>
> +/// e.g. (Function (x: Int) (Function (y: Int) (Code { return x + y })))<br>
> class Function : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }<br>
> @@ -762,8 +669,8 @@ public:<br>
> Variable *variableDecl() { return VarDecl; }<br>
> const Variable *variableDecl() const { return VarDecl; }<br>
><br>
> - SExpr *body() { return Body.get(); }<br>
> - const SExpr *body() const { return Body.get(); }<br>
> + SExpr *body() { return Body; }<br>
> + const SExpr *body() const { return Body; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -790,13 +697,13 @@ public:<br>
><br>
> private:<br>
> Variable *VarDecl;<br>
> - SExprRef Body;<br>
> + SExpr* Body;<br>
> };<br>
><br>
><br>
> -// A self-applicable function.<br>
> -// A self-applicable function can be applied to itself. It's useful for<br>
> -// implementing objects and late binding<br>
> +/// A self-applicable function.<br>
> +/// A self-applicable function can be applied to itself. It's useful for<br>
> +/// implementing objects and late binding.<br>
> class SFunction : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }<br>
> @@ -805,20 +712,20 @@ public:<br>
> : SExpr(COP_SFunction), VarDecl(Vd), Body(B) {<br>
> assert(Vd->Definition == nullptr);<br>
> Vd->setKind(Variable::VK_SFun);<br>
> - Vd->Definition.reset(this);<br>
> + Vd->Definition = this;<br>
> }<br>
> SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor<br>
> : SExpr(F), VarDecl(Vd), Body(B) {<br>
> assert(Vd->Definition == nullptr);<br>
> Vd->setKind(Variable::VK_SFun);<br>
> - Vd->Definition.reset(this);<br>
> + Vd->Definition = this;<br>
> }<br>
><br>
> Variable *variableDecl() { return VarDecl; }<br>
> const Variable *variableDecl() const { return VarDecl; }<br>
><br>
> - SExpr *body() { return Body.get(); }<br>
> - const SExpr *body() const { return Body.get(); }<br>
> + SExpr *body() { return Body; }<br>
> + const SExpr *body() const { return Body; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -842,11 +749,11 @@ public:<br>
><br>
> private:<br>
> Variable *VarDecl;<br>
> - SExprRef Body;<br>
> + SExpr* Body;<br>
> };<br>
><br>
><br>
> -// A block of code -- e.g. the body of a function.<br>
> +/// A block of code -- e.g. the body of a function.<br>
> class Code : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }<br>
> @@ -855,11 +762,11 @@ public:<br>
> Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor<br>
> : SExpr(C), ReturnType(T), Body(B) {}<br>
><br>
> - SExpr *returnType() { return ReturnType.get(); }<br>
> - const SExpr *returnType() const { return ReturnType.get(); }<br>
> + SExpr *returnType() { return ReturnType; }<br>
> + const SExpr *returnType() const { return ReturnType; }<br>
><br>
> - SExpr *body() { return Body.get(); }<br>
> - const SExpr *body() const { return Body.get(); }<br>
> + SExpr *body() { return Body; }<br>
> + const SExpr *body() const { return Body; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -877,12 +784,12 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef ReturnType;<br>
> - SExprRef Body;<br>
> + SExpr* ReturnType;<br>
> + SExpr* Body;<br>
> };<br>
><br>
><br>
> -// A typed, writable location in memory<br>
> +/// A typed, writable location in memory<br>
> class Field : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }<br>
> @@ -891,11 +798,11 @@ public:<br>
> Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor<br>
> : SExpr(C), Range(R), Body(B) {}<br>
><br>
> - SExpr *range() { return Range.get(); }<br>
> - const SExpr *range() const { return Range.get(); }<br>
> + SExpr *range() { return Range; }<br>
> + const SExpr *range() const { return Range; }<br>
><br>
> - SExpr *body() { return Body.get(); }<br>
> - const SExpr *body() const { return Body.get(); }<br>
> + SExpr *body() { return Body; }<br>
> + const SExpr *body() const { return Body; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -913,12 +820,16 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Range;<br>
> - SExprRef Body;<br>
> + SExpr* Range;<br>
> + SExpr* Body;<br>
> };<br>
><br>
><br>
> -// Apply an argument to a function<br>
> +/// Apply an argument to a function.<br>
> +/// Note that this does not actually call the function. Functions are curried,<br>
> +/// so this returns a closure in which the first parameter has been applied.<br>
> +/// Once all parameters have been applied, Call can be used to invoke the<br>
> +/// function.<br>
> class Apply : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }<br>
> @@ -928,11 +839,11 @@ public:<br>
> : SExpr(A), Fun(F), Arg(Ar)<br>
> {}<br>
><br>
> - SExpr *fun() { return Fun.get(); }<br>
> - const SExpr *fun() const { return Fun.get(); }<br>
> + SExpr *fun() { return Fun; }<br>
> + const SExpr *fun() const { return Fun; }<br>
><br>
> - SExpr *arg() { return Arg.get(); }<br>
> - const SExpr *arg() const { return Arg.get(); }<br>
> + SExpr *arg() { return Arg; }<br>
> + const SExpr *arg() const { return Arg; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -950,12 +861,12 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Fun;<br>
> - SExprRef Arg;<br>
> + SExpr* Fun;<br>
> + SExpr* Arg;<br>
> };<br>
><br>
><br>
> -// Apply a self-argument to a self-applicable function<br>
> +/// Apply a self-argument to a self-applicable function.<br>
> class SApply : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }<br>
> @@ -964,18 +875,18 @@ public:<br>
> SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor<br>
> : SExpr(A), Sfun(Sf), Arg(Ar) {}<br>
><br>
> - SExpr *sfun() { return Sfun.get(); }<br>
> - const SExpr *sfun() const { return Sfun.get(); }<br>
> + SExpr *sfun() { return Sfun; }<br>
> + const SExpr *sfun() const { return Sfun; }<br>
><br>
> - SExpr *arg() { return Arg.get() ? Arg.get() : Sfun.get(); }<br>
> - const SExpr *arg() const { return Arg.get() ? Arg.get() : Sfun.get(); }<br>
> + SExpr *arg() { return Arg ? Arg : Sfun; }<br>
> + const SExpr *arg() const { return Arg ? Arg : Sfun; }<br>
><br>
> bool isDelegation() const { return Arg != nullptr; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));<br>
> - typename V::R_SExpr Na = Arg.get() ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))<br>
> + typename V::R_SExpr Na = Arg ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))<br>
> : nullptr;<br>
> return Vs.reduceSApply(*this, Nf, Na);<br>
> }<br>
> @@ -989,12 +900,12 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Sfun;<br>
> - SExprRef Arg;<br>
> + SExpr* Sfun;<br>
> + SExpr* Arg;<br>
> };<br>
><br>
><br>
> -// Project a named slot from a C++ struct or class.<br>
> +/// Project a named slot from a C++ struct or class.<br>
> class Project : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }<br>
> @@ -1009,8 +920,8 @@ public:<br>
> : SExpr(P), Rec(R), SlotName(P.SlotName), Cvdecl(P.Cvdecl)<br>
> { }<br>
><br>
> - SExpr *record() { return Rec.get(); }<br>
> - const SExpr *record() const { return Rec.get(); }<br>
> + SExpr *record() { return Rec; }<br>
> + const SExpr *record() const { return Rec; }<br>
><br>
> const clang::ValueDecl *clangDecl() const { return Cvdecl; }<br>
><br>
> @@ -1042,13 +953,13 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Rec;<br>
> + SExpr* Rec;<br>
> StringRef SlotName;<br>
> const clang::ValueDecl *Cvdecl;<br>
> };<br>
><br>
><br>
> -// Call a function (after all arguments have been applied).<br>
> +/// Call a function (after all arguments have been applied).<br>
> class Call : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }<br>
> @@ -1057,8 +968,8 @@ public:<br>
> : SExpr(COP_Call), Target(T), Cexpr(Ce) {}<br>
> Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}<br>
><br>
> - SExpr *target() { return Target.get(); }<br>
> - const SExpr *target() const { return Target.get(); }<br>
> + SExpr *target() { return Target; }<br>
> + const SExpr *target() const { return Target; }<br>
><br>
> const clang::CallExpr *clangCallExpr() const { return Cexpr; }<br>
><br>
> @@ -1074,12 +985,12 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Target;<br>
> + SExpr* Target;<br>
> const clang::CallExpr *Cexpr;<br>
> };<br>
><br>
><br>
> -// Allocate memory for a new value on the heap or stack.<br>
> +/// Allocate memory for a new value on the heap or stack.<br>
> class Alloc : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }<br>
> @@ -1094,8 +1005,8 @@ public:<br>
><br>
> AllocKind kind() const { return static_cast<AllocKind>(Flags); }<br>
><br>
> - SExpr *dataType() { return Dtype.get(); }<br>
> - const SExpr *dataType() const { return Dtype.get(); }<br>
> + SExpr *dataType() { return Dtype; }<br>
> + const SExpr *dataType() const { return Dtype; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -1112,11 +1023,11 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Dtype;<br>
> + SExpr* Dtype;<br>
> };<br>
><br>
><br>
> -// Load a value from memory.<br>
> +/// Load a value from memory.<br>
> class Load : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }<br>
> @@ -1124,8 +1035,8 @@ public:<br>
> Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}<br>
> Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}<br>
><br>
> - SExpr *pointer() { return Ptr.get(); }<br>
> - const SExpr *pointer() const { return Ptr.get(); }<br>
> + SExpr *pointer() { return Ptr; }<br>
> + const SExpr *pointer() const { return Ptr; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -1139,12 +1050,12 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Ptr;<br>
> + SExpr* Ptr;<br>
> };<br>
><br>
><br>
> -// Store a value to memory.<br>
> -// Source is a pointer, destination is the value to store.<br>
> +/// Store a value to memory.<br>
> +/// The destination is a pointer to a field, the source is the value to store.<br>
> class Store : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }<br>
> @@ -1152,11 +1063,11 @@ public:<br>
> Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}<br>
> Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}<br>
><br>
> - SExpr *destination() { return Dest.get(); } // Address to store to<br>
> - const SExpr *destination() const { return Dest.get(); }<br>
> + SExpr *destination() { return Dest; } // Address to store to<br>
> + const SExpr *destination() const { return Dest; }<br>
><br>
> - SExpr *source() { return Source.get(); } // Value to store<br>
> - const SExpr *source() const { return Source.get(); }<br>
> + SExpr *source() { return Source; } // Value to store<br>
> + const SExpr *source() const { return Source; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -1174,13 +1085,13 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Dest;<br>
> - SExprRef Source;<br>
> + SExpr* Dest;<br>
> + SExpr* Source;<br>
> };<br>
><br>
><br>
> -// If p is a reference to an array, then first(p) is a reference to the first<br>
> -// element. The usual array notation p[i] becomes first(p + i).<br>
> +/// If p is a reference to an array, then p[i] is a reference to the i'th<br>
> +/// element of the array.<br>
> class ArrayIndex : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }<br>
> @@ -1189,11 +1100,11 @@ public:<br>
> ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)<br>
> : SExpr(E), Array(A), Index(N) {}<br>
><br>
> - SExpr *array() { return Array.get(); }<br>
> - const SExpr *array() const { return Array.get(); }<br>
> + SExpr *array() { return Array; }<br>
> + const SExpr *array() const { return Array; }<br>
><br>
> - SExpr *index() { return Index.get(); }<br>
> - const SExpr *index() const { return Index.get(); }<br>
> + SExpr *index() { return Index; }<br>
> + const SExpr *index() const { return Index; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -1211,14 +1122,14 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Array;<br>
> - SExprRef Index;<br>
> + SExpr* Array;<br>
> + SExpr* Index;<br>
> };<br>
><br>
><br>
> -// Pointer arithmetic, restricted to arrays only.<br>
> -// If p is a reference to an array, then p + n, where n is an integer, is<br>
> -// a reference to a subarray.<br>
> +/// Pointer arithmetic, restricted to arrays only.<br>
> +/// If p is a reference to an array, then p + n, where n is an integer, is<br>
> +/// a reference to a subarray.<br>
> class ArrayAdd : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }<br>
> @@ -1227,11 +1138,11 @@ public:<br>
> ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)<br>
> : SExpr(E), Array(A), Index(N) {}<br>
><br>
> - SExpr *array() { return Array.get(); }<br>
> - const SExpr *array() const { return Array.get(); }<br>
> + SExpr *array() { return Array; }<br>
> + const SExpr *array() const { return Array; }<br>
><br>
> - SExpr *index() { return Index.get(); }<br>
> - const SExpr *index() const { return Index.get(); }<br>
> + SExpr *index() { return Index; }<br>
> + const SExpr *index() const { return Index; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -1249,12 +1160,13 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Array;<br>
> - SExprRef Index;<br>
> + SExpr* Array;<br>
> + SExpr* Index;<br>
> };<br>
><br>
><br>
> -// Simple unary operation -- e.g. !, ~, etc.<br>
> +/// Simple arithmetic unary operations, e.g. negate and not.<br>
> +/// These operations have no side-effects.<br>
> class UnaryOp : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }<br>
> @@ -1268,8 +1180,8 @@ public:<br>
> return static_cast<TIL_UnaryOpcode>(Flags);<br>
> }<br>
><br>
> - SExpr *expr() { return Expr0.get(); }<br>
> - const SExpr *expr() const { return Expr0.get(); }<br>
> + SExpr *expr() { return Expr0; }<br>
> + const SExpr *expr() const { return Expr0; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -1287,11 +1199,12 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Expr0;<br>
> + SExpr* Expr0;<br>
> };<br>
><br>
><br>
> -// Simple binary operation -- e.g. +, -, etc.<br>
> +/// Simple arithmetic binary operations, e.g. +, -, etc.<br>
> +/// These operations have no side effects.<br>
> class BinaryOp : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }<br>
> @@ -1309,11 +1222,11 @@ public:<br>
> return static_cast<TIL_BinaryOpcode>(Flags);<br>
> }<br>
><br>
> - SExpr *expr0() { return Expr0.get(); }<br>
> - const SExpr *expr0() const { return Expr0.get(); }<br>
> + SExpr *expr0() { return Expr0; }<br>
> + const SExpr *expr0() const { return Expr0; }<br>
><br>
> - SExpr *expr1() { return Expr1.get(); }<br>
> - const SExpr *expr1() const { return Expr1.get(); }<br>
> + SExpr *expr1() { return Expr1; }<br>
> + const SExpr *expr1() const { return Expr1; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -1335,12 +1248,14 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Expr0;<br>
> - SExprRef Expr1;<br>
> + SExpr* Expr0;<br>
> + SExpr* Expr1;<br>
> };<br>
><br>
><br>
> -// Cast expression<br>
> +/// Cast expressions.<br>
> +/// Cast expressions are essentially unary operations, but we treat them<br>
> +/// as a distinct AST node because they only change the type of the result.<br>
> class Cast : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }<br>
> @@ -1352,8 +1267,8 @@ public:<br>
> return static_cast<TIL_CastOpcode>(Flags);<br>
> }<br>
><br>
> - SExpr *expr() { return Expr0.get(); }<br>
> - const SExpr *expr() const { return Expr0.get(); }<br>
> + SExpr *expr() { return Expr0; }<br>
> + const SExpr *expr() const { return Expr0; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -1371,16 +1286,18 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Expr0;<br>
> + SExpr* Expr0;<br>
> };<br>
><br>
><br>
> class SCFG;<br>
><br>
><br>
> +/// Phi Node, for code in SSA form.<br>
> +/// Each Phi node has an array of possible values that it can take,<br>
> +/// depending on where control flow comes from.<br>
> class Phi : public SExpr {<br>
> public:<br>
> - // TODO: change to SExprRef<br>
> typedef SimpleArray<SExpr *> ValArray;<br>
><br>
> // In minimal SSA form, all Phi nodes are MultiVal.<br>
> @@ -1394,9 +1311,12 @@ public:<br>
><br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }<br>
><br>
> - Phi() : SExpr(COP_Phi) {}<br>
> - Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}<br>
> - Phi(const Phi &P, ValArray &&Vs) : SExpr(P), Values(std::move(Vs)) {}<br>
> + Phi()<br>
> + : SExpr(COP_Phi), Cvdecl(nullptr) {}<br>
> + Phi(MemRegionRef A, unsigned Nvals)<br>
> + : SExpr(COP_Phi), Values(A, Nvals), Cvdecl(nullptr) {}<br>
> + Phi(const Phi &P, ValArray &&Vs)<br>
> + : SExpr(P), Values(std::move(Vs)), Cvdecl(nullptr) {}<br>
><br>
> const ValArray &values() const { return Values; }<br>
> ValArray &values() { return Values; }<br>
> @@ -1404,6 +1324,12 @@ public:<br>
> Status status() const { return static_cast<Status>(Flags); }<br>
> void setStatus(Status s) { Flags = s; }<br>
><br>
> + /// Return the clang declaration of the variable for this Phi node, if any.<br>
> + const clang::ValueDecl *clangDecl() const { return Cvdecl; }<br>
> +<br>
> + /// Set the clang variable associated with this Phi node.<br>
> + void setClangDecl(const clang::ValueDecl *Cvd) { Cvdecl = Cvd; }<br>
> +<br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> typename V::template Container<typename V::R_SExpr><br>
> @@ -1423,65 +1349,260 @@ public:<br>
><br>
> private:<br>
> ValArray Values;<br>
> + const clang::ValueDecl* Cvdecl;<br>
> +};<br>
> +<br>
> +<br>
> +/// Base class for basic block terminators: Branch, Goto, and Return.<br>
> +class Terminator : public SExpr {<br>
> +public:<br>
> + static bool classof(const SExpr *E) {<br>
> + return E->opcode() >= COP_Goto && E->opcode() <= COP_Return;<br>
> + }<br>
> +<br>
> +protected:<br>
> + Terminator(TIL_Opcode Op) : SExpr(Op) {}<br>
> + Terminator(const SExpr &E) : SExpr(E) {}<br>
> +<br>
> +public:<br>
> + /// Return the list of basic blocks that this terminator can branch to.<br>
> + ArrayRef<BasicBlock*> successors();<br>
> +<br>
> + ArrayRef<BasicBlock*> successors() const {<br>
> + return const_cast<const Terminator*>(this)->successors();<br>
> + }<br>
> +};<br>
> +<br>
> +<br>
> +/// Jump to another basic block.<br>
> +/// A goto instruction is essentially a tail-recursive call into another<br>
> +/// block. In addition to the block pointer, it specifies an index into the<br>
> +/// phi nodes of that block. The index can be used to retrieve the "arguments"<br>
> +/// of the call.<br>
> +class Goto : public Terminator {<br>
> +public:<br>
> + static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }<br>
> +<br>
> + Goto(BasicBlock *B, unsigned I)<br>
> + : Terminator(COP_Goto), TargetBlock(B), Index(I) {}<br>
> + Goto(const Goto &G, BasicBlock *B, unsigned I)<br>
> + : Terminator(COP_Goto), TargetBlock(B), Index(I) {}<br>
> +<br>
> + const BasicBlock *targetBlock() const { return TargetBlock; }<br>
> + BasicBlock *targetBlock() { return TargetBlock; }<br>
> +<br>
> + /// Returns the index into the<br>
> + unsigned index() const { return Index; }<br>
> +<br>
> + /// Return the list of basic blocks that this terminator can branch to.<br>
> + ArrayRef<BasicBlock*> successors() {<br>
> + return ArrayRef<BasicBlock*>(&TargetBlock, 1);<br>
> + }<br>
> +<br>
> + template <class V><br>
> + typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> + BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);<br>
> + return Vs.reduceGoto(*this, Ntb);<br>
> + }<br>
> +<br>
> + template <class C><br>
> + typename C::CType compare(const Goto *E, C &Cmp) const {<br>
> + // TODO: implement CFG comparisons<br>
> + return Cmp.comparePointers(this, E);<br>
> + }<br>
> +<br>
> +private:<br>
> + BasicBlock *TargetBlock;<br>
> + unsigned Index;<br>
> +};<br>
> +<br>
> +<br>
> +/// A conditional branch to two other blocks.<br>
> +/// Note that unlike Goto, Branch does not have an index. The target blocks<br>
> +/// must be child-blocks, and cannot have Phi nodes.<br>
> +class Branch : public Terminator {<br>
> +public:<br>
> + static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }<br>
> +<br>
> + Branch(SExpr *C, BasicBlock *T, BasicBlock *E)<br>
> + : Terminator(COP_Branch), Condition(C) {<br>
> + Branches[0] = T;<br>
> + Branches[1] = E;<br>
> + }<br>
> + Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E)<br>
> + : Terminator(Br), Condition(C) {<br>
> + Branches[0] = T;<br>
> + Branches[1] = E;<br>
> + }<br>
> +<br>
> + const SExpr *condition() const { return Condition; }<br>
> + SExpr *condition() { return Condition; }<br>
> +<br>
> + const BasicBlock *thenBlock() const { return Branches[0]; }<br>
> + BasicBlock *thenBlock() { return Branches[0]; }<br>
> +<br>
> + const BasicBlock *elseBlock() const { return Branches[1]; }<br>
> + BasicBlock *elseBlock() { return Branches[1]; }<br>
> +<br>
> + /// Return the list of basic blocks that this terminator can branch to.<br>
> + ArrayRef<BasicBlock*> successors() {<br>
> + return ArrayRef<BasicBlock*>(Branches, 2);<br>
> + }<br>
> +<br>
> + template <class V><br>
> + typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> + auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));<br>
> + BasicBlock *Ntb = Vs.reduceBasicBlockRef(Branches[0]);<br>
> + BasicBlock *Nte = Vs.reduceBasicBlockRef(Branches[1]);<br>
> + return Vs.reduceBranch(*this, Nc, Ntb, Nte);<br>
> + }<br>
> +<br>
> + template <class C><br>
> + typename C::CType compare(const Branch *E, C &Cmp) const {<br>
> + // TODO: implement CFG comparisons<br>
> + return Cmp.comparePointers(this, E);<br>
> + }<br>
> +<br>
> +private:<br>
> + SExpr* Condition;<br>
> + BasicBlock *Branches[2];<br>
> +};<br>
> +<br>
> +<br>
> +/// Return from the enclosing function, passing the return value to the caller.<br>
> +/// Only the exit block should end with a return statement.<br>
> +class Return : public Terminator {<br>
> +public:<br>
> + static bool classof(const SExpr *E) { return E->opcode() == COP_Return; }<br>
> +<br>
> + Return(SExpr* Rval) : Terminator(COP_Return), Retval(Rval) {}<br>
> + Return(const Return &R, SExpr* Rval) : Terminator(R), Retval(Rval) {}<br>
> +<br>
> + /// Return an empty list.<br>
> + ArrayRef<BasicBlock*> successors() {<br>
> + return ArrayRef<BasicBlock*>();<br>
> + }<br>
> +<br>
> + SExpr *returnValue() { return Retval; }<br>
> + const SExpr *returnValue() const { return Retval; }<br>
> +<br>
> + template <class V><br>
> + typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> + auto Ne = Vs.traverse(Retval, Vs.subExprCtx(Ctx));<br>
> + return Vs.reduceReturn(*this, Ne);<br>
> + }<br>
> +<br>
> + template <class C><br>
> + typename C::CType compare(const Return *E, C &Cmp) const {<br>
> + return Cmp.compare(Retval, E->Retval);<br>
> + }<br>
> +<br>
> +private:<br>
> + SExpr* Retval;<br>
> };<br>
><br>
><br>
> -// A basic block is part of an SCFG, and can be treated as a function in<br>
> -// continuation passing style. It consists of a sequence of phi nodes, which<br>
> -// are "arguments" to the function, followed by a sequence of instructions.<br>
> -// Both arguments and instructions define new variables. It ends with a<br>
> -// branch or goto to another basic block in the same SCFG.<br>
> +inline ArrayRef<BasicBlock*> Terminator::successors() {<br>
> + switch (opcode()) {<br>
> + case COP_Goto: return cast<Goto>(this)->successors();<br>
> + case COP_Branch: return cast<Branch>(this)->successors();<br>
> + case COP_Return: return cast<Return>(this)->successors();<br>
> + default:<br>
> + return ArrayRef<BasicBlock*>();<br>
> + }<br>
> +}<br>
> +<br>
> +<br>
> +/// A basic block is part of an SCFG. It can be treated as a function in<br>
> +/// continuation passing style. A block consists of a sequence of phi nodes,<br>
> +/// which are "arguments" to the function, followed by a sequence of<br>
> +/// instructions. It ends with a Terminator, which is a Branch or Goto to<br>
> +/// another basic block in the same SCFG.<br>
> class BasicBlock : public SExpr {<br>
> public:<br>
> - typedef SimpleArray<Variable*> VarArray;<br>
> + typedef SimpleArray<SExpr*> InstrArray;<br>
> typedef SimpleArray<BasicBlock*> BlockArray;<br>
><br>
> + // TopologyNodes are used to overlay tree structures on top of the CFG,<br>
> + // such as dominator and postdominator trees. Each block is assigned an<br>
> + // ID in the tree according to a depth-first search. Tree traversals are<br>
> + // always up, towards the parents.<br>
> + struct TopologyNode {<br>
> + TopologyNode() : NodeID(0), SizeOfSubTree(0), Parent(nullptr) {}<br>
> +<br>
> + bool isParentOf(const TopologyNode& OtherNode) {<br>
> + return OtherNode.NodeID > NodeID &&<br>
> + OtherNode.NodeID < NodeID + SizeOfSubTree;<br>
> + }<br>
> +<br>
> + bool isParentOfOrEqual(const TopologyNode& OtherNode) {<br>
> + return OtherNode.NodeID >= NodeID &&<br>
> + OtherNode.NodeID < NodeID + SizeOfSubTree;<br>
> + }<br>
> +<br>
> + int NodeID;<br>
> + int SizeOfSubTree; // Includes this node, so must be > 1.<br>
> + BasicBlock *Parent; // Pointer to parent.<br>
> + };<br>
> +<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }<br>
><br>
> - explicit BasicBlock(MemRegionRef A, BasicBlock* P = nullptr)<br>
> + explicit BasicBlock(MemRegionRef A)<br>
> : SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),<br>
> - Parent(P), Terminator(nullptr)<br>
> - { }<br>
> - BasicBlock(BasicBlock &B, VarArray &&As, VarArray &&Is, SExpr *T)<br>
> - : SExpr(COP_BasicBlock), Arena(B.Arena), CFGPtr(nullptr), BlockID(0),<br>
> - Parent(nullptr), Args(std::move(As)), Instrs(std::move(Is)),<br>
> - Terminator(T)<br>
> - { }<br>
> -<br>
> - unsigned blockID() const { return BlockID; }<br>
> - unsigned numPredecessors() const { return Predecessors.size(); }<br>
> + Visited(0), TermInstr(nullptr) {}<br>
> + BasicBlock(BasicBlock &B, MemRegionRef A, InstrArray &&As, InstrArray &&Is,<br>
> + Terminator *T)<br>
> + : SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),Visited(0),<br>
> + Args(std::move(As)), Instrs(std::move(Is)), TermInstr(T) {}<br>
> +<br>
> + /// Returns the block ID. Every block has a unique ID in the CFG.<br>
> + int blockID() const { return BlockID; }<br>
> +<br>
> + /// Returns the number of predecessors.<br>
> + size_t numPredecessors() const { return Predecessors.size(); }<br>
> + size_t numSuccessors() const { return successors().size(); }<br>
><br>
> const SCFG* cfg() const { return CFGPtr; }<br>
> SCFG* cfg() { return CFGPtr; }<br>
><br>
> - const BasicBlock *parent() const { return Parent; }<br>
> - BasicBlock *parent() { return Parent; }<br>
> + const BasicBlock *parent() const { return DominatorNode.Parent; }<br>
> + BasicBlock *parent() { return DominatorNode.Parent; }<br>
><br>
> - const VarArray &arguments() const { return Args; }<br>
> - VarArray &arguments() { return Args; }<br>
> + const InstrArray &arguments() const { return Args; }<br>
> + InstrArray &arguments() { return Args; }<br>
><br>
> - const VarArray &instructions() const { return Instrs; }<br>
> - VarArray &instructions() { return Instrs; }<br>
> + InstrArray &instructions() { return Instrs; }<br>
> + const InstrArray &instructions() const { return Instrs; }<br>
><br>
> - const BlockArray &predecessors() const { return Predecessors; }<br>
> + /// Returns a list of predecessors.<br>
> + /// The order of predecessors in the list is important; each phi node has<br>
> + /// exactly one argument for each precessor, in the same order.<br>
> BlockArray &predecessors() { return Predecessors; }<br>
> + const BlockArray &predecessors() const { return Predecessors; }<br>
> +<br>
> + ArrayRef<BasicBlock*> successors() { return TermInstr->successors(); }<br>
> + ArrayRef<BasicBlock*> successors() const { return TermInstr->successors(); }<br>
><br>
> - const SExpr *terminator() const { return Terminator.get(); }<br>
> - SExpr *terminator() { return Terminator.get(); }<br>
> + const Terminator *terminator() const { return TermInstr; }<br>
> + Terminator *terminator() { return TermInstr; }<br>
><br>
> - void setBlockID(unsigned i) { BlockID = i; }<br>
> - void setParent(BasicBlock *P) { Parent = P; }<br>
> - void setTerminator(SExpr *E) { Terminator.reset(E); }<br>
> -<br>
> - // Add a new argument. V must define a phi-node.<br>
> - void addArgument(Variable *V) {<br>
> - V->setKind(Variable::VK_LetBB);<br>
> + void setTerminator(Terminator *E) { TermInstr = E; }<br>
> +<br>
> + bool Dominates(const BasicBlock &Other) {<br>
> + return DominatorNode.isParentOfOrEqual(Other.DominatorNode);<br>
> + }<br>
> +<br>
> + bool PostDominates(const BasicBlock &Other) {<br>
> + return PostDominatorNode.isParentOfOrEqual(Other.PostDominatorNode);<br>
> + }<br>
> +<br>
> + /// Add a new argument.<br>
> + void addArgument(Phi *V) {<br>
> Args.reserveCheck(1, Arena);<br>
> Args.push_back(V);<br>
> }<br>
> - // Add a new instruction.<br>
> - void addInstruction(Variable *V) {<br>
> - V->setKind(Variable::VK_LetBB);<br>
> + /// Add a new instruction.<br>
> + void addInstruction(SExpr *V) {<br>
> Instrs.reserveCheck(1, Arena);<br>
> Instrs.push_back(V);<br>
> }<br>
> @@ -1498,34 +1619,29 @@ public:<br>
> // Reserve space for NumPreds predecessors, including space in phi nodes.<br>
> void reservePredecessors(unsigned NumPreds);<br>
><br>
> - // Return the index of BB, or Predecessors.size if BB is not a predecessor.<br>
> + /// Return the index of BB, or Predecessors.size if BB is not a predecessor.<br>
> unsigned findPredecessorIndex(const BasicBlock *BB) const {<br>
> auto I = std::find(Predecessors.cbegin(), Predecessors.cend(), BB);<br>
> return std::distance(Predecessors.cbegin(), I);<br>
> }<br>
><br>
> - // Set id numbers for variables.<br>
> - void renumberVars();<br>
> -<br>
> template <class V><br>
> typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> - typename V::template Container<Variable*> Nas(Vs, Args.size());<br>
> - typename V::template Container<Variable*> Nis(Vs, Instrs.size());<br>
> + typename V::template Container<SExpr*> Nas(Vs, Args.size());<br>
> + typename V::template Container<SExpr*> Nis(Vs, Instrs.size());<br>
><br>
> // Entering the basic block should do any scope initialization.<br>
> Vs.enterBasicBlock(*this);<br>
><br>
> - for (auto *A : Args) {<br>
> - auto Ne = Vs.traverse(A->Definition, Vs.subExprCtx(Ctx));<br>
> - Variable *Nvd = Vs.enterScope(*A, Ne);<br>
> - Nas.push_back(Nvd);<br>
> + for (auto *E : Args) {<br>
> + auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));<br>
> + Nas.push_back(Ne);<br>
> }<br>
> - for (auto *I : Instrs) {<br>
> - auto Ne = Vs.traverse(I->Definition, Vs.subExprCtx(Ctx));<br>
> - Variable *Nvd = Vs.enterScope(*I, Ne);<br>
> - Nis.push_back(Nvd);<br>
> + for (auto *E : Instrs) {<br>
> + auto Ne = Vs.traverse(E, Vs.subExprCtx(Ctx));<br>
> + Nis.push_back(Ne);<br>
> }<br>
> - auto Nt = Vs.traverse(Terminator, Ctx);<br>
> + auto Nt = Vs.traverse(TermInstr, Ctx);<br>
><br>
> // Exiting the basic block should handle any scope cleanup.<br>
> Vs.exitBasicBlock(*this);<br>
> @@ -1542,22 +1658,32 @@ public:<br>
> private:<br>
> friend class SCFG;<br>
><br>
> - MemRegionRef Arena;<br>
> -<br>
> - SCFG *CFGPtr; // The CFG that contains this block.<br>
> - unsigned BlockID; // unique id for this BB in the containing CFG<br>
> - BasicBlock *Parent; // The parent block is the enclosing lexical scope.<br>
> - // The parent dominates this block.<br>
> - BlockArray Predecessors; // Predecessor blocks in the CFG.<br>
> - VarArray Args; // Phi nodes. One argument per predecessor.<br>
> - VarArray Instrs; // Instructions.<br>
> - SExprRef Terminator; // Branch or Goto<br>
> + int renumberInstrs(int id); // assign unique ids to all instructions<br>
> + int topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID);<br>
> + int topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID);<br>
> + void computeDominator();<br>
> + void computePostDominator();<br>
> +<br>
> +private:<br>
> + MemRegionRef Arena; // The arena used to allocate this block.<br>
> + SCFG *CFGPtr; // The CFG that contains this block.<br>
> + int BlockID : 31; // unique id for this BB in the containing CFG.<br>
> + // IDs are in topological order.<br>
> + int Visited : 1; // Bit to determine if a block has been visited<br>
> + // during a traversal.<br>
> + BlockArray Predecessors; // Predecessor blocks in the CFG.<br>
> + InstrArray Args; // Phi nodes. One argument per predecessor.<br>
> + InstrArray Instrs; // Instructions.<br>
> + Terminator* TermInstr; // Terminating instruction<br>
> +<br>
> + TopologyNode DominatorNode; // The dominator tree<br>
> + TopologyNode PostDominatorNode; // The post-dominator tree<br>
> };<br>
><br>
><br>
> -// An SCFG is a control-flow graph. It consists of a set of basic blocks, each<br>
> -// of which terminates in a branch to another basic block. There is one<br>
> -// entry point, and one exit point.<br>
> +/// An SCFG is a control-flow graph. It consists of a set of basic blocks,<br>
> +/// each of which terminates in a branch to another basic block. There is one<br>
> +/// entry point, and one exit point.<br>
> class SCFG : public SExpr {<br>
> public:<br>
> typedef SimpleArray<BasicBlock *> BlockArray;<br>
> @@ -1568,20 +1694,29 @@ public:<br>
><br>
> SCFG(MemRegionRef A, unsigned Nblocks)<br>
> : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks),<br>
> - Entry(nullptr), Exit(nullptr) {<br>
> - Entry = new (A) BasicBlock(A, nullptr);<br>
> - Exit = new (A) BasicBlock(A, Entry);<br>
> - auto *V = new (A) Variable(new (A) Phi());<br>
> + Entry(nullptr), Exit(nullptr), NumInstructions(0), Normal(false) {<br>
> + Entry = new (A) BasicBlock(A);<br>
> + Exit = new (A) BasicBlock(A);<br>
> + auto *V = new (A) Phi();<br>
> Exit->addArgument(V);<br>
> + Exit->setTerminator(new (A) Return(V));<br>
> add(Entry);<br>
> add(Exit);<br>
> }<br>
> SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba<br>
> : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)),<br>
> - Entry(nullptr), Exit(nullptr) {<br>
> + Entry(nullptr), Exit(nullptr), NumInstructions(0), Normal(false) {<br>
> // TODO: set entry and exit!<br>
> }<br>
><br>
> + /// Return true if this CFG is valid.<br>
> + bool valid() const { return Entry && Exit && Blocks.size() > 0; }<br>
> +<br>
> + /// Return true if this CFG has been normalized.<br>
> + /// After normalization, blocks are in topological order, and block and<br>
> + /// instruction IDs have been assigned.<br>
> + bool normal() const { return Normal; }<br>
> +<br>
> iterator begin() { return Blocks.begin(); }<br>
> iterator end() { return Blocks.end(); }<br>
><br>
> @@ -1596,9 +1731,17 @@ public:<br>
> const BasicBlock *exit() const { return Exit; }<br>
> BasicBlock *exit() { return Exit; }<br>
><br>
> + /// Return the number of blocks in the CFG.<br>
> + /// Block::blockID() will return a number less than numBlocks();<br>
> + size_t numBlocks() const { return Blocks.size(); }<br>
> +<br>
> + /// Return the total number of instructions in the CFG.<br>
> + /// This is useful for building instruction side-tables;<br>
> + /// A call to SExpr::id() will return a number less than numInstructions().<br>
> + unsigned numInstructions() { return NumInstructions; }<br>
> +<br>
> inline void add(BasicBlock *BB) {<br>
> - assert(BB->CFGPtr == nullptr || BB->CFGPtr == this);<br>
> - BB->setBlockID(Blocks.size());<br>
> + assert(BB->CFGPtr == nullptr);<br>
> BB->CFGPtr = this;<br>
> Blocks.reserveCheck(1, Arena);<br>
> Blocks.push_back(BB);<br>
> @@ -1607,13 +1750,13 @@ public:<br>
> void setEntry(BasicBlock *BB) { Entry = BB; }<br>
> void setExit(BasicBlock *BB) { Exit = BB; }<br>
><br>
> - // Set varable ids in all blocks.<br>
> - void renumberVars();<br>
> + void computeNormalForm();<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> Vs.enterCFG(*this);<br>
> typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());<br>
> +<br>
> for (auto *B : Blocks) {<br>
> Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );<br>
> }<br>
> @@ -1623,101 +1766,26 @@ public:<br>
><br>
> template <class C><br>
> typename C::CType compare(const SCFG *E, C &Cmp) const {<br>
> - // TODO -- implement CFG comparisons<br>
> + // TODO: implement CFG comparisons<br>
> return Cmp.comparePointers(this, E);<br>
> }<br>
><br>
> private:<br>
> + void renumberInstrs(); // assign unique ids to all instructions<br>
> +<br>
> +private:<br>
> MemRegionRef Arena;<br>
> BlockArray Blocks;<br>
> BasicBlock *Entry;<br>
> BasicBlock *Exit;<br>
> + unsigned NumInstructions;<br>
> + bool Normal;<br>
> };<br>
><br>
><br>
> -class Goto : public SExpr {<br>
> -public:<br>
> - static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }<br>
> -<br>
> - Goto(BasicBlock *B, unsigned I)<br>
> - : SExpr(COP_Goto), TargetBlock(B), Index(I) {}<br>
> - Goto(const Goto &G, BasicBlock *B, unsigned I)<br>
> - : SExpr(COP_Goto), TargetBlock(B), Index(I) {}<br>
> -<br>
> - const BasicBlock *targetBlock() const { return TargetBlock; }<br>
> - BasicBlock *targetBlock() { return TargetBlock; }<br>
> -<br>
> - unsigned index() const { return Index; }<br>
> -<br>
> - template <class V><br>
> - typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> - BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);<br>
> - return Vs.reduceGoto(*this, Ntb);<br>
> - }<br>
> -<br>
> - template <class C><br>
> - typename C::CType compare(const Goto *E, C &Cmp) const {<br>
> - // TODO -- implement CFG comparisons<br>
> - return Cmp.comparePointers(this, E);<br>
> - }<br>
> -<br>
> -private:<br>
> - BasicBlock *TargetBlock;<br>
> - unsigned Index; // Index into Phi nodes of target block.<br>
> -};<br>
> -<br>
> -<br>
> -class Branch : public SExpr {<br>
> -public:<br>
> - static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }<br>
> -<br>
> - Branch(SExpr *C, BasicBlock *T, BasicBlock *E, unsigned TI, unsigned EI)<br>
> - : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),<br>
> - ThenIndex(TI), ElseIndex(EI)<br>
> - {}<br>
> - Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E,<br>
> - unsigned TI, unsigned EI)<br>
> - : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),<br>
> - ThenIndex(TI), ElseIndex(EI)<br>
> - {}<br>
> -<br>
> - const SExpr *condition() const { return Condition; }<br>
> - SExpr *condition() { return Condition; }<br>
> -<br>
> - const BasicBlock *thenBlock() const { return ThenBlock; }<br>
> - BasicBlock *thenBlock() { return ThenBlock; }<br>
> -<br>
> - const BasicBlock *elseBlock() const { return ElseBlock; }<br>
> - BasicBlock *elseBlock() { return ElseBlock; }<br>
> -<br>
> - unsigned thenIndex() const { return ThenIndex; }<br>
> - unsigned elseIndex() const { return ElseIndex; }<br>
> -<br>
> - template <class V><br>
> - typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> - auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));<br>
> - BasicBlock *Ntb = Vs.reduceBasicBlockRef(ThenBlock);<br>
> - BasicBlock *Nte = Vs.reduceBasicBlockRef(ElseBlock);<br>
> - return Vs.reduceBranch(*this, Nc, Ntb, Nte);<br>
> - }<br>
><br>
> - template <class C><br>
> - typename C::CType compare(const Branch *E, C &Cmp) const {<br>
> - // TODO -- implement CFG comparisons<br>
> - return Cmp.comparePointers(this, E);<br>
> - }<br>
> -<br>
> -private:<br>
> - SExpr *Condition;<br>
> - BasicBlock *ThenBlock;<br>
> - BasicBlock *ElseBlock;<br>
> - unsigned ThenIndex;<br>
> - unsigned ElseIndex;<br>
> -};<br>
> -<br>
> -<br>
> -// An identifier, e.g. 'foo' or 'x'.<br>
> -// This is a pseduo-term; it will be lowered to a variable or projection.<br>
> +/// An identifier, e.g. 'foo' or 'x'.<br>
> +/// This is a pseduo-term; it will be lowered to a variable or projection.<br>
> class Identifier : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }<br>
> @@ -1742,8 +1810,8 @@ private:<br>
> };<br>
><br>
><br>
> -// An if-then-else expression.<br>
> -// This is a pseduo-term; it will be lowered to a branch in a CFG.<br>
> +/// An if-then-else expression.<br>
> +/// This is a pseduo-term; it will be lowered to a branch in a CFG.<br>
> class IfThenElse : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }<br>
> @@ -1755,14 +1823,14 @@ public:<br>
> : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E)<br>
> { }<br>
><br>
> - SExpr *condition() { return Condition.get(); } // Address to store to<br>
> - const SExpr *condition() const { return Condition.get(); }<br>
> + SExpr *condition() { return Condition; } // Address to store to<br>
> + const SExpr *condition() const { return Condition; }<br>
><br>
> - SExpr *thenExpr() { return ThenExpr.get(); } // Value to store<br>
> - const SExpr *thenExpr() const { return ThenExpr.get(); }<br>
> + SExpr *thenExpr() { return ThenExpr; } // Value to store<br>
> + const SExpr *thenExpr() const { return ThenExpr; }<br>
><br>
> - SExpr *elseExpr() { return ElseExpr.get(); } // Value to store<br>
> - const SExpr *elseExpr() const { return ElseExpr.get(); }<br>
> + SExpr *elseExpr() { return ElseExpr; } // Value to store<br>
> + const SExpr *elseExpr() const { return ElseExpr; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -1784,14 +1852,14 @@ public:<br>
> }<br>
><br>
> private:<br>
> - SExprRef Condition;<br>
> - SExprRef ThenExpr;<br>
> - SExprRef ElseExpr;<br>
> + SExpr* Condition;<br>
> + SExpr* ThenExpr;<br>
> + SExpr* ElseExpr;<br>
> };<br>
><br>
><br>
> -// A let-expression, e.g. let x=t; u.<br>
> -// This is a pseduo-term; it will be lowered to instructions in a CFG.<br>
> +/// A let-expression, e.g. let x=t; u.<br>
> +/// This is a pseduo-term; it will be lowered to instructions in a CFG.<br>
> class Let : public SExpr {<br>
> public:<br>
> static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }<br>
> @@ -1806,8 +1874,8 @@ public:<br>
> Variable *variableDecl() { return VarDecl; }<br>
> const Variable *variableDecl() const { return VarDecl; }<br>
><br>
> - SExpr *body() { return Body.get(); }<br>
> - const SExpr *body() const { return Body.get(); }<br>
> + SExpr *body() { return Body; }<br>
> + const SExpr *body() const { return Body; }<br>
><br>
> template <class V><br>
> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {<br>
> @@ -1834,14 +1902,14 @@ public:<br>
><br>
> private:<br>
> Variable *VarDecl;<br>
> - SExprRef Body;<br>
> + SExpr* Body;<br>
> };<br>
><br>
><br>
><br>
> const SExpr *getCanonicalVal(const SExpr *E);<br>
> SExpr* simplifyToCanonicalVal(SExpr *E);<br>
> -void simplifyIncompleteArg(Variable *V, til::Phi *Ph);<br>
> +void simplifyIncompleteArg(til::Phi *Ph);<br>
><br>
><br>
> } // end namespace til<br>
><br>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h<br>
> URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h?rev=217556&r1=217555&r2=217556&view=diff" target="_blank">http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h?rev=217556&r1=217555&r2=217556&view=diff</a><br>
> ==============================================================================<br>
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h (original)<br>
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h Wed Sep 10 17:12:52 2014<br>
> @@ -58,11 +58,16 @@ public:<br>
> // Traverse an expression -- returning a result of type R_SExpr.<br>
> // Override this method to do something for every expression, regardless<br>
> // of which kind it is.<br>
> - typename R::R_SExpr traverse(SExprRef &E, typename R::R_Ctx Ctx) {<br>
> - return traverse(E.get(), Ctx);<br>
> + // E is a reference, so this can be use for in-place updates.<br>
> + // The type T must be a subclass of SExpr.<br>
> + template <class T><br>
> + typename R::R_SExpr traverse(T* &E, typename R::R_Ctx Ctx) {<br>
> + return traverseSExpr(E, Ctx);<br>
> }<br>
><br>
> - typename R::R_SExpr traverse(SExpr *E, typename R::R_Ctx Ctx) {<br>
> + // Override this method to do something for every expression.<br>
> + // Does not allow in-place updates.<br>
> + typename R::R_SExpr traverseSExpr(SExpr *E, typename R::R_Ctx Ctx) {<br>
> return traverseByCase(E, Ctx);<br>
> }<br>
><br>
> @@ -75,6 +80,7 @@ public:<br>
> #include "ThreadSafetyOps.def"<br>
> #undef TIL_OPCODE_DEF<br>
> }<br>
> + return self()->reduceNull();<br>
> }<br>
><br>
> // Traverse e, by static dispatch on the type "X" of e.<br>
> @@ -92,10 +98,10 @@ public:<br>
> class SimpleReducerBase {<br>
> public:<br>
> enum TraversalKind {<br>
> - TRV_Normal,<br>
> - TRV_Decl,<br>
> - TRV_Lazy,<br>
> - TRV_Type<br>
> + TRV_Normal, // ordinary subexpressions<br>
> + TRV_Decl, // declarations (e.g. function bodies)<br>
> + TRV_Lazy, // expressions that require lazy evaluation<br>
> + TRV_Type // type expressions<br>
> };<br>
><br>
> // R_Ctx defines a "context" for the traversal, which encodes information<br>
> @@ -147,153 +153,6 @@ protected:<br>
> };<br>
><br>
><br>
> -// Implements a traversal that makes a deep copy of an SExpr.<br>
> -// The default behavior of reduce##X(...) is to create a copy of the original.<br>
> -// Subclasses can override reduce##X to implement non-destructive rewriting<br>
> -// passes.<br>
> -template<class Self><br>
> -class CopyReducer : public Traversal<Self, CopyReducerBase>,<br>
> - public CopyReducerBase {<br>
> -public:<br>
> - CopyReducer(MemRegionRef A) : CopyReducerBase(A) {}<br>
> -<br>
> -public:<br>
> - R_SExpr reduceNull() {<br>
> - return nullptr;<br>
> - }<br>
> - // R_SExpr reduceFuture(...) is never used.<br>
> -<br>
> - R_SExpr reduceUndefined(Undefined &Orig) {<br>
> - return new (Arena) Undefined(Orig);<br>
> - }<br>
> - R_SExpr reduceWildcard(Wildcard &Orig) {<br>
> - return new (Arena) Wildcard(Orig);<br>
> - }<br>
> -<br>
> - R_SExpr reduceLiteral(Literal &Orig) {<br>
> - return new (Arena) Literal(Orig);<br>
> - }<br>
> - template<class T><br>
> - R_SExpr reduceLiteralT(LiteralT<T> &Orig) {<br>
> - return new (Arena) LiteralT<T>(Orig);<br>
> - }<br>
> - R_SExpr reduceLiteralPtr(LiteralPtr &Orig) {<br>
> - return new (Arena) LiteralPtr(Orig);<br>
> - }<br>
> -<br>
> - R_SExpr reduceFunction(Function &Orig, Variable *Nvd, R_SExpr E0) {<br>
> - return new (Arena) Function(Orig, Nvd, E0);<br>
> - }<br>
> - R_SExpr reduceSFunction(SFunction &Orig, Variable *Nvd, R_SExpr E0) {<br>
> - return new (Arena) SFunction(Orig, Nvd, E0);<br>
> - }<br>
> - R_SExpr reduceCode(Code &Orig, R_SExpr E0, R_SExpr E1) {<br>
> - return new (Arena) Code(Orig, E0, E1);<br>
> - }<br>
> - R_SExpr reduceField(Field &Orig, R_SExpr E0, R_SExpr E1) {<br>
> - return new (Arena) Field(Orig, E0, E1);<br>
> - }<br>
> -<br>
> - R_SExpr reduceApply(Apply &Orig, R_SExpr E0, R_SExpr E1) {<br>
> - return new (Arena) Apply(Orig, E0, E1);<br>
> - }<br>
> - R_SExpr reduceSApply(SApply &Orig, R_SExpr E0, R_SExpr E1) {<br>
> - return new (Arena) SApply(Orig, E0, E1);<br>
> - }<br>
> - R_SExpr reduceProject(Project &Orig, R_SExpr E0) {<br>
> - return new (Arena) Project(Orig, E0);<br>
> - }<br>
> - R_SExpr reduceCall(Call &Orig, R_SExpr E0) {<br>
> - return new (Arena) Call(Orig, E0);<br>
> - }<br>
> -<br>
> - R_SExpr reduceAlloc(Alloc &Orig, R_SExpr E0) {<br>
> - return new (Arena) Alloc(Orig, E0);<br>
> - }<br>
> - R_SExpr reduceLoad(Load &Orig, R_SExpr E0) {<br>
> - return new (Arena) Load(Orig, E0);<br>
> - }<br>
> - R_SExpr reduceStore(Store &Orig, R_SExpr E0, R_SExpr E1) {<br>
> - return new (Arena) Store(Orig, E0, E1);<br>
> - }<br>
> - R_SExpr reduceArrayIndex(ArrayIndex &Orig, R_SExpr E0, R_SExpr E1) {<br>
> - return new (Arena) ArrayIndex(Orig, E0, E1);<br>
> - }<br>
> - R_SExpr reduceArrayAdd(ArrayAdd &Orig, R_SExpr E0, R_SExpr E1) {<br>
> - return new (Arena) ArrayAdd(Orig, E0, E1);<br>
> - }<br>
> - R_SExpr reduceUnaryOp(UnaryOp &Orig, R_SExpr E0) {<br>
> - return new (Arena) UnaryOp(Orig, E0);<br>
> - }<br>
> - R_SExpr reduceBinaryOp(BinaryOp &Orig, R_SExpr E0, R_SExpr E1) {<br>
> - return new (Arena) BinaryOp(Orig, E0, E1);<br>
> - }<br>
> - R_SExpr reduceCast(Cast &Orig, R_SExpr E0) {<br>
> - return new (Arena) Cast(Orig, E0);<br>
> - }<br>
> -<br>
> - R_SExpr reduceSCFG(SCFG &Orig, Container<BasicBlock *> &Bbs) {<br>
> - return nullptr; // FIXME: implement CFG rewriting<br>
> - }<br>
> - R_BasicBlock reduceBasicBlock(BasicBlock &Orig, Container<Variable *> &As,<br>
> - Container<Variable *> &Is, R_SExpr T) {<br>
> - return nullptr; // FIXME: implement CFG rewriting<br>
> - }<br>
> - R_SExpr reducePhi(Phi &Orig, Container<R_SExpr> &As) {<br>
> - return new (Arena) Phi(Orig, std::move(As.Elems));<br>
> - }<br>
> - R_SExpr reduceGoto(Goto &Orig, BasicBlock *B) {<br>
> - return new (Arena) Goto(Orig, B, 0); // FIXME: set index<br>
> - }<br>
> - R_SExpr reduceBranch(Branch &O, R_SExpr C, BasicBlock *B0, BasicBlock *B1) {<br>
> - return new (Arena) Branch(O, C, B0, B1, 0, 0); // FIXME: set indices<br>
> - }<br>
> -<br>
> - R_SExpr reduceIdentifier(Identifier &Orig) {<br>
> - return new (Arena) Identifier(Orig);<br>
> - }<br>
> - R_SExpr reduceIfThenElse(IfThenElse &Orig, R_SExpr C, R_SExpr T, R_SExpr E) {<br>
> - return new (Arena) IfThenElse(Orig, C, T, E);<br>
> - }<br>
> - R_SExpr reduceLet(Let &Orig, Variable *Nvd, R_SExpr B) {<br>
> - return new (Arena) Let(Orig, Nvd, B);<br>
> - }<br>
> -<br>
> - // Create a new variable from orig, and push it onto the lexical scope.<br>
> - Variable *enterScope(Variable &Orig, R_SExpr E0) {<br>
> - return new (Arena) Variable(Orig, E0);<br>
> - }<br>
> - // Exit the lexical scope of orig.<br>
> - void exitScope(const Variable &Orig) {}<br>
> -<br>
> - void enterCFG(SCFG &Cfg) {}<br>
> - void exitCFG(SCFG &Cfg) {}<br>
> - void enterBasicBlock(BasicBlock &BB) {}<br>
> - void exitBasicBlock(BasicBlock &BB) {}<br>
> -<br>
> - // Map Variable references to their rewritten definitions.<br>
> - Variable *reduceVariableRef(Variable *Ovd) { return Ovd; }<br>
> -<br>
> - // Map BasicBlock references to their rewritten definitions.<br>
> - BasicBlock *reduceBasicBlockRef(BasicBlock *Obb) { return Obb; }<br>
> -};<br>
> -<br>
> -<br>
> -class SExprCopier : public CopyReducer<SExprCopier> {<br>
> -public:<br>
> - typedef SExpr *R_SExpr;<br>
> -<br>
> - SExprCopier(MemRegionRef A) : CopyReducer(A) { }<br>
> -<br>
> - // Create a copy of e in region a.<br>
> - static SExpr *copy(SExpr *E, MemRegionRef A) {<br>
> - SExprCopier Copier(A);<br>
> - return Copier.traverse(E, TRV_Normal);<br>
> - }<br>
> -};<br>
> -<br>
> -<br>
> -<br>
> // Base class for visit traversals.<br>
> class VisitReducerBase : public SimpleReducerBase {<br>
> public:<br>
> @@ -368,8 +227,8 @@ public:<br>
> R_SExpr reduceSCFG(SCFG &Orig, Container<BasicBlock *> Bbs) {<br>
> return Bbs.Success;<br>
> }<br>
> - R_BasicBlock reduceBasicBlock(BasicBlock &Orig, Container<Variable *> &As,<br>
> - Container<Variable *> &Is, R_SExpr T) {<br>
> + R_BasicBlock reduceBasicBlock(BasicBlock &Orig, Container<R_SExpr> &As,<br>
> + Container<R_SExpr> &Is, R_SExpr T) {<br>
> return (As.Success && Is.Success && T);<br>
> }<br>
> R_SExpr reducePhi(Phi &Orig, Container<R_SExpr> &As) {<br>
> @@ -381,6 +240,9 @@ public:<br>
> R_SExpr reduceBranch(Branch &O, R_SExpr C, BasicBlock *B0, BasicBlock *B1) {<br>
> return C;<br>
> }<br>
> + R_SExpr reduceReturn(Return &O, R_SExpr E) {<br>
> + return E;<br>
> + }<br>
><br>
> R_SExpr reduceIdentifier(Identifier &Orig) {<br>
> return true;<br>
> @@ -433,7 +295,7 @@ public:<br>
> #include "ThreadSafetyOps.def"<br>
> #undef TIL_OPCODE_DEF<br>
> }<br>
> - llvm_unreachable("invalid enum");<br>
> + return false;<br>
> }<br>
> };<br>
><br>
> @@ -514,9 +376,9 @@ public:<br>
><br>
><br>
><br>
> -inline std::ostream& operator<<(std::ostream& SS, llvm::StringRef R) {<br>
> - return SS.write(R.data(), R.size());<br>
> -}<br>
> +// inline std::ostream& operator<<(std::ostream& SS, StringRef R) {<br>
> +// return SS.write(R.data(), R.size());<br>
> +// }<br>
<br>
</div></div>The commented code I mentioned.<br>
<div class="HOEnZb"><div class="h5"><br>
><br>
> // Pretty printer for TIL expressions<br>
> template <typename Self, typename StreamType><br>
> @@ -587,6 +449,7 @@ protected:<br>
> case COP_Phi: return Prec_Atom;<br>
> case COP_Goto: return Prec_Atom;<br>
> case COP_Branch: return Prec_Atom;<br>
> + case COP_Return: return Prec_Other;<br>
><br>
> case COP_Identifier: return Prec_Atom;<br>
> case COP_IfThenElse: return Prec_Other;<br>
> @@ -595,22 +458,29 @@ protected:<br>
> return Prec_MAX;<br>
> }<br>
><br>
> - void printBlockLabel(StreamType & SS, const BasicBlock *BB, unsigned index) {<br>
> + void printBlockLabel(StreamType & SS, const BasicBlock *BB, int index) {<br>
> if (!BB) {<br>
> SS << "BB_null";<br>
> return;<br>
> }<br>
> SS << "BB_";<br>
> SS << BB->blockID();<br>
> - SS << ":";<br>
> - SS << index;<br>
> + if (index >= 0) {<br>
> + SS << ":";<br>
> + SS << index;<br>
> + }<br>
> }<br>
><br>
> - void printSExpr(const SExpr *E, StreamType &SS, unsigned P) {<br>
> +<br>
> + void printSExpr(const SExpr *E, StreamType &SS, unsigned P, bool Sub=true) {<br>
> if (!E) {<br>
> self()->printNull(SS);<br>
> return;<br>
> }<br>
> + if (Sub && E->block() && E->opcode() != COP_Variable) {<br>
> + SS << "_x" << E->id();<br>
> + return;<br>
> + }<br>
> if (self()->precedence(E) > P) {<br>
> // Wrap expr in () if necessary.<br>
> SS << "(";<br>
> @@ -740,20 +610,11 @@ protected:<br>
> SS << E->clangDecl()->getNameAsString();<br>
> }<br>
><br>
> - void printVariable(const Variable *V, StreamType &SS, bool IsVarDecl = false) {<br>
> - if (!IsVarDecl && Cleanup) {<br>
> - const SExpr* E = getCanonicalVal(V);<br>
> - if (E != V) {<br>
> - printSExpr(E, SS, Prec_Atom);<br>
> - return;<br>
> - }<br>
> - }<br>
> - if (V->kind() == Variable::VK_LetBB)<br>
> - SS << V->name() << V->getBlockID() << "_" << V->getID();<br>
> - else if (CStyle && V->kind() == Variable::VK_SFun)<br>
> + void printVariable(const Variable *V, StreamType &SS, bool IsVarDecl=false) {<br>
> + if (CStyle && V->kind() == Variable::VK_SFun)<br>
> SS << "this";<br>
> else<br>
> - SS << V->name() << V->getID();<br>
> + SS << V->name() << V->id();<br>
> }<br>
><br>
> void printFunction(const Function *E, StreamType &SS, unsigned sugared = 0) {<br>
> @@ -927,32 +788,38 @@ protected:<br>
> newline(SS);<br>
> }<br>
><br>
> +<br>
> + void printBBInstr(const SExpr *E, StreamType &SS) {<br>
> + bool Sub = false;<br>
> + if (E->opcode() == COP_Variable) {<br>
> + auto *V = cast<Variable>(E);<br>
> + SS << "let " << V->name() << V->id() << " = ";<br>
> + E = V->definition();<br>
> + Sub = true;<br>
> + }<br>
> + else if (E->opcode() != COP_Store) {<br>
> + SS << "let _x" << E->id() << " = ";<br>
> + }<br>
> + self()->printSExpr(E, SS, Prec_MAX, Sub);<br>
> + SS << ";";<br>
> + newline(SS);<br>
> + }<br>
> +<br>
> void printBasicBlock(const BasicBlock *E, StreamType &SS) {<br>
> SS << "BB_" << E->blockID() << ":";<br>
> if (E->parent())<br>
> SS << " BB_" << E->parent()->blockID();<br>
> newline(SS);<br>
> - for (auto *A : E->arguments()) {<br>
> - SS << "let ";<br>
> - self()->printVariable(A, SS, true);<br>
> - SS << " = ";<br>
> - self()->printSExpr(A->definition(), SS, Prec_MAX);<br>
> - SS << ";";<br>
> - newline(SS);<br>
> - }<br>
> - for (auto *I : E->instructions()) {<br>
> - if (I->definition()->opcode() != COP_Store) {<br>
> - SS << "let ";<br>
> - self()->printVariable(I, SS, true);<br>
> - SS << " = ";<br>
> - }<br>
> - self()->printSExpr(I->definition(), SS, Prec_MAX);<br>
> - SS << ";";<br>
> - newline(SS);<br>
> - }<br>
> +<br>
> + for (auto *A : E->arguments())<br>
> + printBBInstr(A, SS);<br>
> +<br>
> + for (auto *I : E->instructions())<br>
> + printBBInstr(I, SS);<br>
> +<br>
> const SExpr *T = E->terminator();<br>
> if (T) {<br>
> - self()->printSExpr(T, SS, Prec_MAX);<br>
> + self()->printSExpr(T, SS, Prec_MAX, false);<br>
> SS << ";";<br>
> newline(SS);<br>
> }<br>
> @@ -983,9 +850,14 @@ protected:<br>
> SS << "branch (";<br>
> self()->printSExpr(E->condition(), SS, Prec_MAX);<br>
> SS << ") ";<br>
> - printBlockLabel(SS, E->thenBlock(), E->thenIndex());<br>
> + printBlockLabel(SS, E->thenBlock(), -1);<br>
> SS << " ";<br>
> - printBlockLabel(SS, E->elseBlock(), E->elseIndex());<br>
> + printBlockLabel(SS, E->elseBlock(), -1);<br>
> + }<br>
> +<br>
> + void printReturn(const Return *E, StreamType &SS) {<br>
> + SS << "return ";<br>
> + self()->printSExpr(E->returnValue(), SS, Prec_Other);<br>
> }<br>
><br>
> void printIdentifier(const Identifier *E, StreamType &SS) {<br>
><br>
> Modified: cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h<br>
> URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h?rev=217556&r1=217555&r2=217556&view=diff" target="_blank">http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h?rev=217556&r1=217555&r2=217556&view=diff</a><br>
> ==============================================================================<br>
> --- cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h (original)<br>
> +++ cfe/trunk/include/clang/Analysis/Analyses/ThreadSafetyUtil.h Wed Sep 10 17:12:52 2014<br>
> @@ -142,20 +142,35 @@ public:<br>
> assert(i < Size && "Array index out of bounds.");<br>
> return Data[i];<br>
> }<br>
> + T &back() {<br>
> + assert(Size && "No elements in the array.");<br>
> + return Data[Size - 1];<br>
> + }<br>
> + const T &back() const {<br>
> + assert(Size && "No elements in the array.");<br>
> + return Data[Size - 1];<br>
> + }<br>
><br>
> iterator begin() { return Data; }<br>
> + iterator end() { return Data + Size; }<br>
> +<br>
> const_iterator begin() const { return Data; }<br>
> - iterator end() { return Data + Size; }<br>
> - const_iterator end() const { return Data + Size; }<br>
> + const_iterator end() const { return Data + Size; }<br>
><br>
> const_iterator cbegin() const { return Data; }<br>
> - const_iterator cend() const { return Data + Size; }<br>
> + const_iterator cend() const { return Data + Size; }<br>
><br>
> void push_back(const T &Elem) {<br>
> assert(Size < Capacity);<br>
> Data[Size++] = Elem;<br>
> }<br>
><br>
> + // drop last n elements from array<br>
> + void drop(unsigned n = 0) {<br>
> + assert(Size > n);<br>
> + Size -= n;<br>
> + }<br>
> +<br>
> void setValues(unsigned Sz, const T& C) {<br>
> assert(Sz <= Capacity);<br>
> Size = Sz;<br>
> @@ -173,6 +188,37 @@ public:<br>
> return J - Osz;<br>
> }<br>
><br>
> + // An adaptor to reverse a simple array<br>
> + class ReverseAdaptor {<br>
> + public:<br>
> + ReverseAdaptor(SimpleArray &Array) : Array(Array) {}<br>
> + // A reverse iterator used by the reverse adaptor<br>
> + class Iterator {<br>
> + public:<br>
> + Iterator(T *Data) : Data(Data) {}<br>
> + T &operator*() { return *Data; }<br>
> + const T &operator*() const { return *Data; }<br>
> + Iterator &operator++() {<br>
> + --Data;<br>
> + return *this;<br>
> + }<br>
> + bool operator!=(Iterator Other) { return Data != Other.Data; }<br>
> +<br>
> + private:<br>
> + T *Data;<br>
> + };<br>
> + Iterator begin() { return Array.end() - 1; }<br>
> + Iterator end() { return Array.begin() - 1; }<br>
> + const Iterator begin() const { return Array.end() - 1; }<br>
> + const Iterator end() const { return Array.begin() - 1; }<br>
> +<br>
> + private:<br>
> + SimpleArray &Array;<br>
> + };<br>
> +<br>
> + const ReverseAdaptor reverse() const { return ReverseAdaptor(*this); }<br>
> + ReverseAdaptor reverse() { return ReverseAdaptor(*this); }<br>
> +<br>
> private:<br>
> // std::max is annoying here, because it requires a reference,<br>
> // thus forcing InitialCapacity to be initialized outside the .h file.<br>
> @@ -187,6 +233,7 @@ private:<br>
> size_t Capacity;<br>
> };<br>
><br>
> +<br>
> } // end namespace til<br>
><br>
><br>
> @@ -312,6 +359,12 @@ private:<br>
> };<br>
><br>
><br>
> +inline std::ostream& operator<<(std::ostream& ss, const StringRef str) {<br>
> + ss << str.data();<br>
> + return ss;<br>
> +}<br>
> +<br>
> +<br>
> } // end namespace threadSafety<br>
> } // end namespace clang<br>
><br>
><br>
> Modified: cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp<br>
> URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp?rev=217556&r1=217555&r2=217556&view=diff" target="_blank">http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp?rev=217556&r1=217555&r2=217556&view=diff</a><br>
> ==============================================================================<br>
> --- cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp (original)<br>
> +++ cfe/trunk/lib/Analysis/ThreadSafetyCommon.cpp Wed Sep 10 17:12:52 2014<br>
> @@ -63,11 +63,9 @@ std::string getSourceLiteralString(const<br>
> namespace til {<br>
><br>
> // Return true if E is a variable that points to an incomplete Phi node.<br>
> -static bool isIncompleteVar(const SExpr *E) {<br>
> - if (const auto *V = dyn_cast<Variable>(E)) {<br>
> - if (const auto *Ph = dyn_cast<Phi>(V->definition()))<br>
> - return Ph->status() == Phi::PH_Incomplete;<br>
> - }<br>
> +static bool isIncompletePhi(const SExpr *E) {<br>
> + if (const auto *Ph = dyn_cast<Phi>(E))<br>
> + return Ph->status() == Phi::PH_Incomplete;<br>
> return false;<br>
> }<br>
><br>
> @@ -320,6 +318,8 @@ til::SExpr *SExprBuilder::translateCXXTh<br>
> const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {<br>
> if (auto *V = dyn_cast<til::Variable>(E))<br>
> return V->clangDecl();<br>
> + if (auto *Ph = dyn_cast<til::Phi>(E))<br>
> + return Ph->clangDecl();<br>
> if (auto *P = dyn_cast<til::Project>(E))<br>
> return P->clangDecl();<br>
> if (auto *L = dyn_cast<til::LiteralPtr>(E))<br>
> @@ -641,14 +641,14 @@ SExprBuilder::translateDeclStmt(const De<br>
> // If E is trivial returns E.<br>
> til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,<br>
> const ValueDecl *VD) {<br>
> - if (!E || !CurrentBB || til::ThreadSafetyTIL::isTrivial(E))<br>
> + if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))<br>
> return E;<br>
> -<br>
> - til::Variable *V = new (Arena) til::Variable(E, VD);<br>
> - CurrentInstructions.push_back(V);<br>
> + if (VD)<br>
> + E = new (Arena) til::Variable(E, VD);<br>
> + CurrentInstructions.push_back(E);<br>
> if (S)<br>
> - insertStmt(S, V);<br>
> - return V;<br>
> + insertStmt(S, E);<br>
> + return E;<br>
> }<br>
><br>
><br>
> @@ -705,11 +705,11 @@ void SExprBuilder::makePhiNodeVar(unsign<br>
> unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;<br>
> assert(ArgIndex > 0 && ArgIndex < NPreds);<br>
><br>
> - til::Variable *V = dyn_cast<til::Variable>(CurrentLVarMap[i].second);<br>
> - if (V && V->getBlockID() == CurrentBB->blockID()) {<br>
> + til::SExpr *CurrE = CurrentLVarMap[i].second;<br>
> + if (CurrE->block() == CurrentBB) {<br>
> // We already have a Phi node in the current block,<br>
> // so just add the new variable to the Phi node.<br>
> - til::Phi *Ph = dyn_cast<til::Phi>(V->definition());<br>
> + til::Phi *Ph = dyn_cast<til::Phi>(CurrE);<br>
> assert(Ph && "Expecting Phi node.");<br>
> if (E)<br>
> Ph->values()[ArgIndex] = E;<br>
> @@ -718,27 +718,26 @@ void SExprBuilder::makePhiNodeVar(unsign<br>
><br>
> // Make a new phi node: phi(..., E)<br>
> // All phi args up to the current index are set to the current value.<br>
> - til::SExpr *CurrE = CurrentLVarMap[i].second;<br>
> til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);<br>
> Ph->values().setValues(NPreds, nullptr);<br>
> for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)<br>
> Ph->values()[PIdx] = CurrE;<br>
> if (E)<br>
> Ph->values()[ArgIndex] = E;<br>
> + Ph->setClangDecl(CurrentLVarMap[i].first);<br>
> // If E is from a back-edge, or either E or CurrE are incomplete, then<br>
> // mark this node as incomplete; we may need to remove it later.<br>
> - if (!E || isIncompleteVar(E) || isIncompleteVar(CurrE)) {<br>
> + if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {<br>
> Ph->setStatus(til::Phi::PH_Incomplete);<br>
> }<br>
><br>
> // Add Phi node to current block, and update CurrentLVarMap[i]<br>
> - auto *Var = new (Arena) til::Variable(Ph, CurrentLVarMap[i].first);<br>
> - CurrentArguments.push_back(Var);<br>
> + CurrentArguments.push_back(Ph);<br>
> if (Ph->status() == til::Phi::PH_Incomplete)<br>
> - IncompleteArgs.push_back(Var);<br>
> + IncompleteArgs.push_back(Ph);<br>
><br>
> CurrentLVarMap.makeWritable();<br>
> - CurrentLVarMap.elem(i).second = Var;<br>
> + CurrentLVarMap.elem(i).second = Ph;<br>
> }<br>
><br>
><br>
> @@ -812,15 +811,13 @@ void SExprBuilder::mergePhiNodesBackEdge<br>
> unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;<br>
> assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());<br>
><br>
> - for (til::Variable *V : BB->arguments()) {<br>
> - til::Phi *Ph = dyn_cast_or_null<til::Phi>(V->definition());<br>
> + for (til::SExpr *PE : BB->arguments()) {<br>
> + til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);<br>
> assert(Ph && "Expecting Phi Node.");<br>
> assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");<br>
> - assert(V->clangDecl() && "No local variable for Phi node.");<br>
><br>
> - til::SExpr *E = lookupVarDecl(V->clangDecl());<br>
> + til::SExpr *E = lookupVarDecl(Ph->clangDecl());<br>
> assert(E && "Couldn't find local variable for Phi node.");<br>
> -<br>
> Ph->values()[ArgIndex] = E;<br>
> }<br>
> }<br>
> @@ -899,8 +896,8 @@ void SExprBuilder::enterCFGBlockBody(con<br>
> // Push those arguments onto the basic block.<br>
> CurrentBB->arguments().reserve(<br>
> static_cast<unsigned>(CurrentArguments.size()), Arena);<br>
> - for (auto *V : CurrentArguments)<br>
> - CurrentBB->addArgument(V);<br>
> + for (auto *A : CurrentArguments)<br>
> + CurrentBB->addArgument(A);<br>
> }<br>
><br>
><br>
> @@ -934,7 +931,7 @@ void SExprBuilder::exitCFGBlockBody(cons<br>
> til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;<br>
> // TODO: set index<br>
> unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;<br>
> - til::SExpr *Tm = new (Arena) til::Goto(BB, Idx);<br>
> + auto *Tm = new (Arena) til::Goto(BB, Idx);<br>
> CurrentBB->setTerminator(Tm);<br>
> }<br>
> else if (N == 2) {<br>
> @@ -942,9 +939,8 @@ void SExprBuilder::exitCFGBlockBody(cons<br>
> til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;<br>
> ++It;<br>
> til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;<br>
> - unsigned Idx1 = BB1 ? BB1->findPredecessorIndex(CurrentBB) : 0;<br>
> - unsigned Idx2 = BB2 ? BB2->findPredecessorIndex(CurrentBB) : 0;<br>
> - til::SExpr *Tm = new (Arena) til::Branch(C, BB1, BB2, Idx1, Idx2);<br>
> + // FIXME: make sure these arent' critical edges.<br>
> + auto *Tm = new (Arena) til::Branch(C, BB1, BB2);<br>
> CurrentBB->setTerminator(Tm);<br>
> }<br>
> }<br>
> @@ -971,10 +967,9 @@ void SExprBuilder::exitCFGBlock(const CF<br>
><br>
><br>
> void SExprBuilder::exitCFG(const CFGBlock *Last) {<br>
> - for (auto *V : IncompleteArgs) {<br>
> - til::Phi *Ph = dyn_cast<til::Phi>(V->definition());<br>
> - if (Ph && Ph->status() == til::Phi::PH_Incomplete)<br>
> - simplifyIncompleteArg(V, Ph);<br>
> + for (auto *Ph : IncompleteArgs) {<br>
> + if (Ph->status() == til::Phi::PH_Incomplete)<br>
> + simplifyIncompleteArg(Ph);<br>
> }<br>
><br>
> CurrentArguments.clear();<br>
><br>
> Modified: cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp<br>
> URL: <a href="http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp?rev=217556&r1=217555&r2=217556&view=diff" target="_blank">http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp?rev=217556&r1=217555&r2=217556&view=diff</a><br>
> ==============================================================================<br>
> --- cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp (original)<br>
> +++ cfe/trunk/lib/Analysis/ThreadSafetyTIL.cpp Wed Sep 10 17:12:52 2014<br>
> @@ -48,12 +48,20 @@ StringRef getBinaryOpcodeString(TIL_Bina<br>
> }<br>
><br>
><br>
> +SExpr* Future::force() {<br>
> + Status = FS_evaluating;<br>
> + Result = compute();<br>
> + Status = FS_done;<br>
> + return Result;<br>
> +}<br>
> +<br>
> +<br>
> unsigned BasicBlock::addPredecessor(BasicBlock *Pred) {<br>
> unsigned Idx = Predecessors.size();<br>
> Predecessors.reserveCheck(1, Arena);<br>
> Predecessors.push_back(Pred);<br>
> - for (Variable *V : Args) {<br>
> - if (Phi* Ph = dyn_cast<Phi>(V->definition())) {<br>
> + for (SExpr *E : Args) {<br>
> + if (Phi* Ph = dyn_cast<Phi>(E)) {<br>
> Ph->values().reserveCheck(1, Arena);<br>
> Ph->values().push_back(nullptr);<br>
> }<br>
> @@ -61,105 +69,73 @@ unsigned BasicBlock::addPredecessor(Basi<br>
> return Idx;<br>
> }<br>
><br>
> +<br>
> void BasicBlock::reservePredecessors(unsigned NumPreds) {<br>
> Predecessors.reserve(NumPreds, Arena);<br>
> - for (Variable *V : Args) {<br>
> - if (Phi* Ph = dyn_cast<Phi>(V->definition())) {<br>
> + for (SExpr *E : Args) {<br>
> + if (Phi* Ph = dyn_cast<Phi>(E)) {<br>
> Ph->values().reserve(NumPreds, Arena);<br>
> }<br>
> }<br>
> }<br>
><br>
> -void BasicBlock::renumberVars() {<br>
> - unsigned VID = 0;<br>
> - for (Variable *V : Args) {<br>
> - V->setID(BlockID, VID++);<br>
> - }<br>
> - for (Variable *V : Instrs) {<br>
> - V->setID(BlockID, VID++);<br>
> - }<br>
> -}<br>
> -<br>
> -void SCFG::renumberVars() {<br>
> - for (BasicBlock *B : Blocks) {<br>
> - B->renumberVars();<br>
> - }<br>
> -}<br>
> -<br>
> -<br>
><br>
> // If E is a variable, then trace back through any aliases or redundant<br>
> // Phi nodes to find the canonical definition.<br>
> const SExpr *getCanonicalVal(const SExpr *E) {<br>
> - while (auto *V = dyn_cast<Variable>(E)) {<br>
> - const SExpr *D;<br>
> - do {<br>
> - if (V->kind() != Variable::VK_Let)<br>
> - return V;<br>
> - D = V->definition();<br>
> - auto *V2 = dyn_cast<Variable>(D);<br>
> - if (V2)<br>
> - V = V2;<br>
> - else<br>
> - break;<br>
> - } while (true);<br>
> -<br>
> - if (ThreadSafetyTIL::isTrivial(D))<br>
> - return D;<br>
> -<br>
> - if (const Phi *Ph = dyn_cast<Phi>(D)) {<br>
> + while (true) {<br>
> + if (auto *V = dyn_cast<Variable>(E)) {<br>
> + if (V->kind() == Variable::VK_Let) {<br>
> + E = V->definition();<br>
> + continue;<br>
> + }<br>
> + }<br>
> + if (const Phi *Ph = dyn_cast<Phi>(E)) {<br>
> if (Ph->status() == Phi::PH_SingleVal) {<br>
> E = Ph->values()[0];<br>
> continue;<br>
> }<br>
> }<br>
> - return V;<br>
> + break;<br>
> }<br>
> return E;<br>
> }<br>
><br>
><br>
> -<br>
> // If E is a variable, then trace back through any aliases or redundant<br>
> // Phi nodes to find the canonical definition.<br>
> // The non-const version will simplify incomplete Phi nodes.<br>
> SExpr *simplifyToCanonicalVal(SExpr *E) {<br>
> - while (auto *V = dyn_cast<Variable>(E)) {<br>
> - SExpr *D;<br>
> - do {<br>
> + while (true) {<br>
> + if (auto *V = dyn_cast<Variable>(E)) {<br>
> if (V->kind() != Variable::VK_Let)<br>
> return V;<br>
> - D = V->definition();<br>
> - auto *V2 = dyn_cast<Variable>(D);<br>
> - if (V2)<br>
> - V = V2;<br>
> - else<br>
> - break;<br>
> - } while (true);<br>
> -<br>
> - if (ThreadSafetyTIL::isTrivial(D))<br>
> - return D;<br>
> -<br>
> - if (Phi *Ph = dyn_cast<Phi>(D)) {<br>
> + // Eliminate redundant variables, e.g. x = y, or x = 5,<br>
> + // but keep anything more complicated.<br>
> + if (til::ThreadSafetyTIL::isTrivial(V->definition())) {<br>
> + E = V->definition();<br>
> + continue;<br>
> + }<br>
> + return V;<br>
> + }<br>
> + if (auto *Ph = dyn_cast<Phi>(E)) {<br>
> if (Ph->status() == Phi::PH_Incomplete)<br>
> - simplifyIncompleteArg(V, Ph);<br>
> -<br>
> + simplifyIncompleteArg(Ph);<br>
> + // Eliminate redundant Phi nodes.<br>
> if (Ph->status() == Phi::PH_SingleVal) {<br>
> E = Ph->values()[0];<br>
> continue;<br>
> }<br>
> }<br>
> - return V;<br>
> + return E;<br>
> }<br>
> - return E;<br>
> }<br>
><br>
><br>
> -<br>
> // Trace the arguments of an incomplete Phi node to see if they have the same<br>
> // canonical definition. If so, mark the Phi node as redundant.<br>
> // getCanonicalVal() will recursively call simplifyIncompletePhi().<br>
> -void simplifyIncompleteArg(Variable *V, til::Phi *Ph) {<br>
> +void simplifyIncompleteArg(til::Phi *Ph) {<br>
> assert(Ph && Ph->status() == Phi::PH_Incomplete);<br>
><br>
> // eliminate infinite recursion -- assume that this node is not redundant.<br>
> @@ -168,18 +144,200 @@ void simplifyIncompleteArg(Variable *V,<br>
> SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);<br>
> for (unsigned i=1, n=Ph->values().size(); i<n; ++i) {<br>
> SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);<br>
> - if (Ei == V)<br>
> + if (Ei == Ph)<br>
> continue; // Recursive reference to itself. Don't count.<br>
> if (Ei != E0) {<br>
> return; // Status is already set to MultiVal.<br>
> }<br>
> }<br>
> Ph->setStatus(Phi::PH_SingleVal);<br>
> - // Eliminate Redundant Phi node.<br>
> - V->setDefinition(Ph->values()[0]);<br>
> }<br>
><br>
><br>
> +// Renumbers the arguments and instructions to have unique, sequential IDs.<br>
> +int BasicBlock::renumberInstrs(int ID) {<br>
> + for (auto *Arg : Args)<br>
> + Arg->setID(this, ID++);<br>
> + for (auto *Instr : Instrs)<br>
> + Instr->setID(this, ID++);<br>
> + TermInstr->setID(this, ID++);<br>
> + return ID;<br>
> +}<br>
> +<br>
> +// Sorts the CFGs blocks using a reverse post-order depth-first traversal.<br>
> +// Each block will be written into the Blocks array in order, and its BlockID<br>
> +// will be set to the index in the array. Sorting should start from the entry<br>
> +// block, and ID should be the total number of blocks.<br>
> +int BasicBlock::topologicalSort(SimpleArray<BasicBlock*>& Blocks, int ID) {<br>
> + if (Visited) return ID;<br>
> + Visited = 1;<br>
> + for (auto *Block : successors())<br>
> + ID = Block->topologicalSort(Blocks, ID);<br>
> + // set ID and update block array in place.<br>
> + // We may lose pointers to unreachable blocks.<br>
> + assert(ID > 0);<br>
> + BlockID = --ID;<br>
> + Blocks[BlockID] = this;<br>
> + return ID;<br>
> +}<br>
> +<br>
> +// Performs a reverse topological traversal, starting from the exit block and<br>
> +// following back-edges. The dominator is serialized before any predecessors,<br>
> +// which guarantees that all blocks are serialized after their dominator and<br>
> +// before their post-dominator (because it's a reverse topological traversal).<br>
> +// ID should be initially set to 0.<br>
> +//<br>
> +// This sort assumes that (1) dominators have been computed, (2) there are no<br>
> +// critical edges, and (3) the entry block is reachable from the exit block<br>
> +// and no blocks are accessable via traversal of back-edges from the exit that<br>
> +// weren't accessable via forward edges from the entry.<br>
> +int BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock*>& Blocks, int ID) {<br>
> + // Visited is assumed to have been set by the topologicalSort. This pass<br>
> + // assumes !Visited means that we've visited this node before.<br>
> + if (!Visited) return ID;<br>
> + Visited = 0;<br>
> + if (DominatorNode.Parent)<br>
> + ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID);<br>
> + for (auto *Pred : Predecessors)<br>
> + ID = Pred->topologicalFinalSort(Blocks, ID);<br>
> + assert(ID < Blocks.size());<br>
> + BlockID = ID++;<br>
> + Blocks[BlockID] = this;<br>
> + return ID;<br>
> +}<br>
> +<br>
> +// Computes the immediate dominator of the current block. Assumes that all of<br>
> +// its predecessors have already computed their dominators. This is achieved<br>
> +// by visiting the nodes in topological order.<br>
> +void BasicBlock::computeDominator() {<br>
> + BasicBlock *Candidate = nullptr;<br>
> + // Walk backwards from each predecessor to find the common dominator node.<br>
> + for (auto *Pred : Predecessors) {<br>
> + // Skip back-edges<br>
> + if (Pred->BlockID >= BlockID) continue;<br>
> + // If we don't yet have a candidate for dominator yet, take this one.<br>
> + if (Candidate == nullptr) {<br>
> + Candidate = Pred;<br>
> + continue;<br>
> + }<br>
> + // Walk the alternate and current candidate back to find a common ancestor.<br>
> + auto *Alternate = Pred;<br>
> + while (Alternate != Candidate) {<br>
> + if (Candidate->BlockID > Alternate->BlockID)<br>
> + Candidate = Candidate->DominatorNode.Parent;<br>
> + else<br>
> + Alternate = Alternate->DominatorNode.Parent;<br>
> + }<br>
> + }<br>
> + DominatorNode.Parent = Candidate;<br>
> + DominatorNode.SizeOfSubTree = 1;<br>
> +}<br>
> +<br>
> +// Computes the immediate post-dominator of the current block. Assumes that all<br>
> +// of its successors have already computed their post-dominators. This is<br>
> +// achieved visiting the nodes in reverse topological order.<br>
> +void BasicBlock::computePostDominator() {<br>
> + BasicBlock *Candidate = nullptr;<br>
> + // Walk back from each predecessor to find the common post-dominator node.<br>
> + for (auto *Succ : successors()) {<br>
> + // Skip back-edges<br>
> + if (Succ->BlockID <= BlockID) continue;<br>
> + // If we don't yet have a candidate for post-dominator yet, take this one.<br>
> + if (Candidate == nullptr) {<br>
> + Candidate = Succ;<br>
> + continue;<br>
> + }<br>
> + // Walk the alternate and current candidate back to find a common ancestor.<br>
> + auto *Alternate = Succ;<br>
> + while (Alternate != Candidate) {<br>
> + if (Candidate->BlockID < Alternate->BlockID)<br>
> + Candidate = Candidate->PostDominatorNode.Parent;<br>
> + else<br>
> + Alternate = Alternate->PostDominatorNode.Parent;<br>
> + }<br>
> + }<br>
> + PostDominatorNode.Parent = Candidate;<br>
> + PostDominatorNode.SizeOfSubTree = 1;<br>
> +}<br>
> +<br>
> +<br>
> +// Renumber instructions in all blocks<br>
> +void SCFG::renumberInstrs() {<br>
> + int InstrID = 0;<br>
> + for (auto *Block : Blocks)<br>
> + InstrID = Block->renumberInstrs(InstrID);<br>
> +}<br>
> +<br>
> +<br>
> +static inline void computeNodeSize(BasicBlock *B,<br>
> + BasicBlock::TopologyNode BasicBlock::*TN) {<br>
> + BasicBlock::TopologyNode *N = &(B->*TN);<br>
> + if (N->Parent) {<br>
> + BasicBlock::TopologyNode *P = &(N->Parent->*TN);<br>
> + // Initially set ID relative to the (as yet uncomputed) parent ID<br>
> + N->NodeID = P->SizeOfSubTree;<br>
> + P->SizeOfSubTree += N->SizeOfSubTree;<br>
> + }<br>
> +}<br>
> +<br>
> +static inline void computeNodeID(BasicBlock *B,<br>
> + BasicBlock::TopologyNode BasicBlock::*TN) {<br>
> + BasicBlock::TopologyNode *N = &(B->*TN);<br>
> + if (N->Parent) {<br>
> + BasicBlock::TopologyNode *P = &(N->Parent->*TN);<br>
> + N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node.<br>
> + }<br>
> +}<br>
> +<br>
> +<br>
> +// Normalizes a CFG. Normalization has a few major components:<br>
> +// 1) Removing unreachable blocks.<br>
> +// 2) Computing dominators and post-dominators<br>
> +// 3) Topologically sorting the blocks into the "Blocks" array.<br>
> +void SCFG::computeNormalForm() {<br>
> + // Topologically sort the blocks starting from the entry block.<br>
> + int NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size());<br>
> + if (NumUnreachableBlocks > 0) {<br>
> + // If there were unreachable blocks shift everything down, and delete them.<br>
> + for (size_t I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) {<br>
> + size_t NI = I - NumUnreachableBlocks;<br>
> + Blocks[NI] = Blocks[I];<br>
> + Blocks[NI]->BlockID = NI;<br>
> + // FIXME: clean up predecessor pointers to unreachable blocks?<br>
> + }<br>
> + Blocks.drop(NumUnreachableBlocks);<br>
> + }<br>
> +<br>
> + // Compute dominators.<br>
> + for (auto *Block : Blocks)<br>
> + Block->computeDominator();<br>
> +<br>
> + // Once dominators have been computed, the final sort may be performed.<br>
> + int NumBlocks = Exit->topologicalFinalSort(Blocks, 0);<br>
> + assert(NumBlocks == Blocks.size());<br>
> + (void) NumBlocks;<br>
> +<br>
> + // Renumber the instructions now that we have a final sort.<br>
> + renumberInstrs();<br>
> +<br>
> + // Compute post-dominators and compute the sizes of each node in the<br>
> + // dominator tree.<br>
> + for (auto *Block : Blocks.reverse()) {<br>
> + Block->computePostDominator();<br>
> + computeNodeSize(Block, &BasicBlock::DominatorNode);<br>
> + }<br>
> + // Compute the sizes of each node in the post-dominator tree and assign IDs in<br>
> + // the dominator tree.<br>
> + for (auto *Block : Blocks) {<br>
> + computeNodeID(Block, &BasicBlock::DominatorNode);<br>
> + computeNodeSize(Block, &BasicBlock::PostDominatorNode);<br>
> + }<br>
> + // Assign IDs in the post-dominator tree.<br>
> + for (auto *Block : Blocks.reverse()) {<br>
> + computeNodeID(Block, &BasicBlock::PostDominatorNode);<br>
> + }<br>
> +}<br>
> +<br>
> } // end namespace til<br>
> } // end namespace threadSafety<br>
> } // end namespace clang<br>
><br>
><br>
> _______________________________________________<br>
> cfe-commits mailing list<br>
> <a href="mailto:cfe-commits@cs.uiuc.edu">cfe-commits@cs.uiuc.edu</a><br>
> <a href="http://lists.cs.uiuc.edu/mailman/listinfo/cfe-commits" target="_blank">http://lists.cs.uiuc.edu/mailman/listinfo/cfe-commits</a><br>
</div></div></blockquote></div><br><br clear="all"><div><br></div>-- <br>DeLesley Hutchins | Software Engineer | <a href="mailto:delesley@google.com" target="_blank">delesley@google.com</a> | 505-206-0315<br>
</div>