Bug Summary

File:f:/llvm_COMMON/utils/TableGen/CodeGenDAGPatterns.cpp
Location:line 3228, column 17
Description:Memory is never released; potential leak of memory pointed to by 'Result'

Annotated Source Code

1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/ErrorHandling.h"
21#include "llvm/TableGen/Error.h"
22#include "llvm/TableGen/Record.h"
23#include <algorithm>
24#include <cstdio>
25#include <set>
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29// EEVT::TypeSet Implementation
30//===----------------------------------------------------------------------===//
31
32static inline bool isInteger(MVT::SimpleValueType VT) {
33 return EVT(VT).isInteger();
34}
35static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
36 return EVT(VT).isFloatingPoint();
37}
38static inline bool isVector(MVT::SimpleValueType VT) {
39 return EVT(VT).isVector();
40}
41static inline bool isScalar(MVT::SimpleValueType VT) {
42 return !EVT(VT).isVector();
43}
44
45EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
46 if (VT == MVT::iAny)
47 EnforceInteger(TP);
48 else if (VT == MVT::fAny)
49 EnforceFloatingPoint(TP);
50 else if (VT == MVT::vAny)
51 EnforceVector(TP);
52 else {
53 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||((void)0)
54 VT == MVT::iPTRAny) && "Not a concrete type!")((void)0);
55 TypeVec.push_back(VT);
56 }
57}
58
59
60EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
61 assert(!VTList.empty() && "empty list?")((void)0);
62 TypeVec.append(VTList.begin(), VTList.end());
63
64 if (!VTList.empty())
65 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&((void)0)
66 VTList[0] != MVT::fAny)((void)0);
67
68 // Verify no duplicates.
69 array_pod_sort(TypeVec.begin(), TypeVec.end());
70 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end())((void)0);
71}
72
73/// FillWithPossibleTypes - Set to all legal types and return true, only valid
74/// on completely unknown type sets.
75bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
76 bool (*Pred)(MVT::SimpleValueType),
77 const char *PredicateName) {
78 assert(isCompletelyUnknown())((void)0);
79 ArrayRef<MVT::SimpleValueType> LegalTypes =
80 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
81
82 if (TP.hasError())
83 return false;
84
85 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
86 if (Pred == 0 || Pred(LegalTypes[i]))
87 TypeVec.push_back(LegalTypes[i]);
88
89 // If we have nothing that matches the predicate, bail out.
90 if (TypeVec.empty()) {
91 TP.error("Type inference contradiction found, no " +
92 std::string(PredicateName) + " types found");
93 return false;
94 }
95 // No need to sort with one element.
96 if (TypeVec.size() == 1) return true;
97
98 // Remove duplicates.
99 array_pod_sort(TypeVec.begin(), TypeVec.end());
100 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
101
102 return true;
103}
104
105/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
106/// integer value type.
107bool EEVT::TypeSet::hasIntegerTypes() const {
108 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
109 if (isInteger(TypeVec[i]))
110 return true;
111 return false;
112}
113
114/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115/// a floating point value type.
116bool EEVT::TypeSet::hasFloatingPointTypes() const {
117 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
118 if (isFloatingPoint(TypeVec[i]))
119 return true;
120 return false;
121}
122
123/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
124/// value type.
125bool EEVT::TypeSet::hasVectorTypes() const {
126 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
127 if (isVector(TypeVec[i]))
128 return true;
129 return false;
130}
131
132
133std::string EEVT::TypeSet::getName() const {
134 if (TypeVec.empty()) return "<empty>";
135
136 std::string Result;
137
138 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
139 std::string VTName = llvm::getEnumName(TypeVec[i]);
140 // Strip off MVT:: prefix if present.
141 if (VTName.substr(0,5) == "MVT::")
142 VTName = VTName.substr(5);
143 if (i) Result += ':';
144 Result += VTName;
145 }
146
147 if (TypeVec.size() == 1)
148 return Result;
149 return "{" + Result + "}";
150}
151
152/// MergeInTypeInfo - This merges in type information from the specified
153/// argument. If 'this' changes, it returns true. If the two types are
154/// contradictory (e.g. merge f32 into i32) then this flags an error.
155bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
156 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
157 return false;
158
159 if (isCompletelyUnknown()) {
160 *this = InVT;
161 return true;
162 }
163
164 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns")((void)0);
165
166 // Handle the abstract cases, seeing if we can resolve them better.
167 switch (TypeVec[0]) {
168 default: break;
169 case MVT::iPTR:
170 case MVT::iPTRAny:
171 if (InVT.hasIntegerTypes()) {
172 EEVT::TypeSet InCopy(InVT);
173 InCopy.EnforceInteger(TP);
174 InCopy.EnforceScalar(TP);
175
176 if (InCopy.isConcrete()) {
177 // If the RHS has one integer type, upgrade iPTR to i32.
178 TypeVec[0] = InVT.TypeVec[0];
179 return true;
180 }
181
182 // If the input has multiple scalar integers, this doesn't add any info.
183 if (!InCopy.isCompletelyUnknown())
184 return false;
185 }
186 break;
187 }
188
189 // If the input constraint is iAny/iPTR and this is an integer type list,
190 // remove non-integer types from the list.
191 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
192 hasIntegerTypes()) {
193 bool MadeChange = EnforceInteger(TP);
194
195 // If we're merging in iPTR/iPTRAny and the node currently has a list of
196 // multiple different integer types, replace them with a single iPTR.
197 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
198 TypeVec.size() != 1) {
199 TypeVec.resize(1);
200 TypeVec[0] = InVT.TypeVec[0];
201 MadeChange = true;
202 }
203
204 return MadeChange;
205 }
206
207 // If this is a type list and the RHS is a typelist as well, eliminate entries
208 // from this list that aren't in the other one.
209 bool MadeChange = false;
210 TypeSet InputSet(*this);
211
212 for (unsigned i = 0; i != TypeVec.size(); ++i) {
213 bool InInVT = false;
214 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
215 if (TypeVec[i] == InVT.TypeVec[j]) {
216 InInVT = true;
217 break;
218 }
219
220 if (InInVT) continue;
221 TypeVec.erase(TypeVec.begin()+i--);
222 MadeChange = true;
223 }
224
225 // If we removed all of our types, we have a type contradiction.
226 if (!TypeVec.empty())
227 return MadeChange;
228
229 // FIXME: Really want an SMLoc here!
230 TP.error("Type inference contradiction found, merging '" +
231 InVT.getName() + "' into '" + InputSet.getName() + "'");
232 return false;
233}
234
235/// EnforceInteger - Remove all non-integer types from this set.
236bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
237 if (TP.hasError())
238 return false;
239 // If we know nothing, then get the full set.
240 if (TypeVec.empty())
241 return FillWithPossibleTypes(TP, isInteger, "integer");
242 if (!hasFloatingPointTypes())
243 return false;
244
245 TypeSet InputSet(*this);
246
247 // Filter out all the fp types.
248 for (unsigned i = 0; i != TypeVec.size(); ++i)
249 if (!isInteger(TypeVec[i]))
250 TypeVec.erase(TypeVec.begin()+i--);
251
252 if (TypeVec.empty()) {
253 TP.error("Type inference contradiction found, '" +
254 InputSet.getName() + "' needs to be integer");
255 return false;
256 }
257 return true;
258}
259
260/// EnforceFloatingPoint - Remove all integer types from this set.
261bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
262 if (TP.hasError())
263 return false;
264 // If we know nothing, then get the full set.
265 if (TypeVec.empty())
266 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
267
268 if (!hasIntegerTypes())
269 return false;
270
271 TypeSet InputSet(*this);
272
273 // Filter out all the fp types.
274 for (unsigned i = 0; i != TypeVec.size(); ++i)
275 if (!isFloatingPoint(TypeVec[i]))
276 TypeVec.erase(TypeVec.begin()+i--);
277
278 if (TypeVec.empty()) {
279 TP.error("Type inference contradiction found, '" +
280 InputSet.getName() + "' needs to be floating point");
281 return false;
282 }
283 return true;
284}
285
286/// EnforceScalar - Remove all vector types from this.
287bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
288 if (TP.hasError())
289 return false;
290
291 // If we know nothing, then get the full set.
292 if (TypeVec.empty())
293 return FillWithPossibleTypes(TP, isScalar, "scalar");
294
295 if (!hasVectorTypes())
296 return false;
297
298 TypeSet InputSet(*this);
299
300 // Filter out all the vector types.
301 for (unsigned i = 0; i != TypeVec.size(); ++i)
302 if (!isScalar(TypeVec[i]))
303 TypeVec.erase(TypeVec.begin()+i--);
304
305 if (TypeVec.empty()) {
306 TP.error("Type inference contradiction found, '" +
307 InputSet.getName() + "' needs to be scalar");
308 return false;
309 }
310 return true;
311}
312
313/// EnforceVector - Remove all vector types from this.
314bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
315 if (TP.hasError())
316 return false;
317
318 // If we know nothing, then get the full set.
319 if (TypeVec.empty())
320 return FillWithPossibleTypes(TP, isVector, "vector");
321
322 TypeSet InputSet(*this);
323 bool MadeChange = false;
324
325 // Filter out all the scalar types.
326 for (unsigned i = 0; i != TypeVec.size(); ++i)
327 if (!isVector(TypeVec[i])) {
328 TypeVec.erase(TypeVec.begin()+i--);
329 MadeChange = true;
330 }
331
332 if (TypeVec.empty()) {
333 TP.error("Type inference contradiction found, '" +
334 InputSet.getName() + "' needs to be a vector");
335 return false;
336 }
337 return MadeChange;
338}
339
340
341
342/// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
343/// this an other based on this information.
344bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
345 if (TP.hasError())
346 return false;
347
348 // Both operands must be integer or FP, but we don't care which.
349 bool MadeChange = false;
350
351 if (isCompletelyUnknown())
352 MadeChange = FillWithPossibleTypes(TP);
353
354 if (Other.isCompletelyUnknown())
355 MadeChange = Other.FillWithPossibleTypes(TP);
356
357 // If one side is known to be integer or known to be FP but the other side has
358 // no information, get at least the type integrality info in there.
359 if (!hasFloatingPointTypes())
360 MadeChange |= Other.EnforceInteger(TP);
361 else if (!hasIntegerTypes())
362 MadeChange |= Other.EnforceFloatingPoint(TP);
363 if (!Other.hasFloatingPointTypes())
364 MadeChange |= EnforceInteger(TP);
365 else if (!Other.hasIntegerTypes())
366 MadeChange |= EnforceFloatingPoint(TP);
367
368 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&((void)0)
369 "Should have a type list now")((void)0);
370
371 // If one contains vectors but the other doesn't pull vectors out.
372 if (!hasVectorTypes())
373 MadeChange |= Other.EnforceScalar(TP);
374 if (!hasVectorTypes())
375 MadeChange |= EnforceScalar(TP);
376
377 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
378 // If we are down to concrete types, this code does not currently
379 // handle nodes which have multiple types, where some types are
380 // integer, and some are fp. Assert that this is not the case.
381 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&((void)0)
382 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&((void)0)
383 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!")((void)0);
384
385 // Otherwise, if these are both vector types, either this vector
386 // must have a larger bitsize than the other, or this element type
387 // must be larger than the other.
388 EVT Type(TypeVec[0]);
389 EVT OtherType(Other.TypeVec[0]);
390
391 if (hasVectorTypes() && Other.hasVectorTypes()) {
392 if (Type.getSizeInBits() >= OtherType.getSizeInBits())
393 if (Type.getVectorElementType().getSizeInBits()
394 >= OtherType.getVectorElementType().getSizeInBits()) {
395 TP.error("Type inference contradiction found, '" +
396 getName() + "' element type not smaller than '" +
397 Other.getName() +"'!");
398 return false;
399 }
400 }
401 else
402 // For scalar types, the bitsize of this type must be larger
403 // than that of the other.
404 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) {
405 TP.error("Type inference contradiction found, '" +
406 getName() + "' is not smaller than '" +
407 Other.getName() +"'!");
408 return false;
409 }
410 }
411
412
413 // Handle int and fp as disjoint sets. This won't work for patterns
414 // that have mixed fp/int types but those are likely rare and would
415 // not have been accepted by this code previously.
416
417 // Okay, find the smallest type from the current set and remove it from the
418 // largest set.
419 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
420 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
421 if (isInteger(TypeVec[i])) {
422 SmallestInt = TypeVec[i];
423 break;
424 }
425 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
426 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
427 SmallestInt = TypeVec[i];
428
429 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
430 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
431 if (isFloatingPoint(TypeVec[i])) {
432 SmallestFP = TypeVec[i];
433 break;
434 }
435 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
436 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
437 SmallestFP = TypeVec[i];
438
439 int OtherIntSize = 0;
440 int OtherFPSize = 0;
441 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
442 Other.TypeVec.begin();
443 TVI != Other.TypeVec.end();
444 /* NULL */) {
445 if (isInteger(*TVI)) {
446 ++OtherIntSize;
447 if (*TVI == SmallestInt) {
448 TVI = Other.TypeVec.erase(TVI);
449 --OtherIntSize;
450 MadeChange = true;
451 continue;
452 }
453 }
454 else if (isFloatingPoint(*TVI)) {
455 ++OtherFPSize;
456 if (*TVI == SmallestFP) {
457 TVI = Other.TypeVec.erase(TVI);
458 --OtherFPSize;
459 MadeChange = true;
460 continue;
461 }
462 }
463 ++TVI;
464 }
465
466 // If this is the only type in the large set, the constraint can never be
467 // satisfied.
468 if ((Other.hasIntegerTypes() && OtherIntSize == 0)
469 || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) {
470 TP.error("Type inference contradiction found, '" +
471 Other.getName() + "' has nothing larger than '" + getName() +"'!");
472 return false;
473 }
474
475 // Okay, find the largest type in the Other set and remove it from the
476 // current set.
477 MVT::SimpleValueType LargestInt = MVT::Other;
478 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
479 if (isInteger(Other.TypeVec[i])) {
480 LargestInt = Other.TypeVec[i];
481 break;
482 }
483 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
484 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
485 LargestInt = Other.TypeVec[i];
486
487 MVT::SimpleValueType LargestFP = MVT::Other;
488 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
489 if (isFloatingPoint(Other.TypeVec[i])) {
490 LargestFP = Other.TypeVec[i];
491 break;
492 }
493 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
494 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
495 LargestFP = Other.TypeVec[i];
496
497 int IntSize = 0;
498 int FPSize = 0;
499 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
500 TypeVec.begin();
501 TVI != TypeVec.end();
502 /* NULL */) {
503 if (isInteger(*TVI)) {
504 ++IntSize;
505 if (*TVI == LargestInt) {
506 TVI = TypeVec.erase(TVI);
507 --IntSize;
508 MadeChange = true;
509 continue;
510 }
511 }
512 else if (isFloatingPoint(*TVI)) {
513 ++FPSize;
514 if (*TVI == LargestFP) {
515 TVI = TypeVec.erase(TVI);
516 --FPSize;
517 MadeChange = true;
518 continue;
519 }
520 }
521 ++TVI;
522 }
523
524 // If this is the only type in the small set, the constraint can never be
525 // satisfied.
526 if ((hasIntegerTypes() && IntSize == 0)
527 || (hasFloatingPointTypes() && FPSize == 0)) {
528 TP.error("Type inference contradiction found, '" +
529 getName() + "' has nothing smaller than '" + Other.getName()+"'!");
530 return false;
531 }
532
533 return MadeChange;
534}
535
536/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
537/// whose element is specified by VTOperand.
538bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
539 TreePattern &TP) {
540 if (TP.hasError())
541 return false;
542
543 // "This" must be a vector and "VTOperand" must be a scalar.
544 bool MadeChange = false;
545 MadeChange |= EnforceVector(TP);
546 MadeChange |= VTOperand.EnforceScalar(TP);
547
548 // If we know the vector type, it forces the scalar to agree.
549 if (isConcrete()) {
550 EVT IVT = getConcrete();
551 IVT = IVT.getVectorElementType();
552 return MadeChange |
553 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
554 }
555
556 // If the scalar type is known, filter out vector types whose element types
557 // disagree.
558 if (!VTOperand.isConcrete())
559 return MadeChange;
560
561 MVT::SimpleValueType VT = VTOperand.getConcrete();
562
563 TypeSet InputSet(*this);
564
565 // Filter out all the types which don't have the right element type.
566 for (unsigned i = 0; i != TypeVec.size(); ++i) {
567 assert(isVector(TypeVec[i]) && "EnforceVector didn't work")((void)0);
568 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
569 TypeVec.erase(TypeVec.begin()+i--);
570 MadeChange = true;
571 }
572 }
573
574 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
575 TP.error("Type inference contradiction found, forcing '" +
576 InputSet.getName() + "' to have a vector element");
577 return false;
578 }
579 return MadeChange;
580}
581
582/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
583/// vector type specified by VTOperand.
584bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
585 TreePattern &TP) {
586 // "This" must be a vector and "VTOperand" must be a vector.
587 bool MadeChange = false;
588 MadeChange |= EnforceVector(TP);
589 MadeChange |= VTOperand.EnforceVector(TP);
590
591 // "This" must be larger than "VTOperand."
592 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
593
594 // If we know the vector type, it forces the scalar types to agree.
595 if (isConcrete()) {
596 EVT IVT = getConcrete();
597 IVT = IVT.getVectorElementType();
598
599 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
600 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
601 } else if (VTOperand.isConcrete()) {
602 EVT IVT = VTOperand.getConcrete();
603 IVT = IVT.getVectorElementType();
604
605 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
606 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
607 }
608
609 return MadeChange;
610}
611
612//===----------------------------------------------------------------------===//
613// Helpers for working with extended types.
614
615/// Dependent variable map for CodeGenDAGPattern variant generation
616typedef std::map<std::string, int> DepVarMap;
617
618/// Const iterator shorthand for DepVarMap
619typedef DepVarMap::const_iterator DepVarMap_citer;
620
621static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
622 if (N->isLeaf()) {
623 if (isa<DefInit>(N->getLeafValue()))
624 DepMap[N->getName()]++;
625 } else {
626 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
627 FindDepVarsOf(N->getChild(i), DepMap);
628 }
629}
630
631/// Find dependent variables within child patterns
632static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
633 DepVarMap depcounts;
634 FindDepVarsOf(N, depcounts);
635 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
636 if (i->second > 1) // std::pair<std::string, int>
637 DepVars.insert(i->first);
638 }
639}
640
641#ifndef NDEBUG1
642/// Dump the dependent variable set:
643static void DumpDepVars(MultipleUseVarSet &DepVars) {
644 if (DepVars.empty()) {
645 DEBUG(errs() << "<empty set>")do { } while (0);
646 } else {
647 DEBUG(errs() << "[ ")do { } while (0);
648 for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
649 e = DepVars.end(); i != e; ++i) {
650 DEBUG(errs() << (*i) << " ")do { } while (0);
651 }
652 DEBUG(errs() << "]")do { } while (0);
653 }
654}
655#endif
656
657
658//===----------------------------------------------------------------------===//
659// TreePredicateFn Implementation
660//===----------------------------------------------------------------------===//
661
662/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
663TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
664 assert((getPredCode().empty() || getImmCode().empty()) &&((void)0)
665 ".td file corrupt: can't have a node predicate *and* an imm predicate")((void)0);
666}
667
668std::string TreePredicateFn::getPredCode() const {
669 return PatFragRec->getRecord()->getValueAsString("PredicateCode");
670}
671
672std::string TreePredicateFn::getImmCode() const {
673 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
674}
675
676
677/// isAlwaysTrue - Return true if this is a noop predicate.
678bool TreePredicateFn::isAlwaysTrue() const {
679 return getPredCode().empty() && getImmCode().empty();
680}
681
682/// Return the name to use in the generated code to reference this, this is
683/// "Predicate_foo" if from a pattern fragment "foo".
684std::string TreePredicateFn::getFnName() const {
685 return "Predicate_" + PatFragRec->getRecord()->getName();
686}
687
688/// getCodeToRunOnSDNode - Return the code for the function body that
689/// evaluates this predicate. The argument is expected to be in "Node",
690/// not N. This handles casting and conversion to a concrete node type as
691/// appropriate.
692std::string TreePredicateFn::getCodeToRunOnSDNode() const {
693 // Handle immediate predicates first.
694 std::string ImmCode = getImmCode();
695 if (!ImmCode.empty()) {
696 std::string Result =
697 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
698 return Result + ImmCode;
699 }
700
701 // Handle arbitrary node predicates.
702 assert(!getPredCode().empty() && "Don't have any predicate code!")((void)0);
703 std::string ClassName;
704 if (PatFragRec->getOnlyTree()->isLeaf())
705 ClassName = "SDNode";
706 else {
707 Record *Op = PatFragRec->getOnlyTree()->getOperator();
708 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
709 }
710 std::string Result;
711 if (ClassName == "SDNode")
712 Result = " SDNode *N = Node;\n";
713 else
714 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
715
716 return Result + getPredCode();
717}
718
719//===----------------------------------------------------------------------===//
720// PatternToMatch implementation
721//
722
723
724/// getPatternSize - Return the 'size' of this pattern. We want to match large
725/// patterns before small ones. This is used to determine the size of a
726/// pattern.
727static unsigned getPatternSize(const TreePatternNode *P,
728 const CodeGenDAGPatterns &CGP) {
729 unsigned Size = 3; // The node itself.
730 // If the root node is a ConstantSDNode, increases its size.
731 // e.g. (set R32:$dst, 0).
732 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
733 Size += 2;
734
735 // FIXME: This is a hack to statically increase the priority of patterns
736 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
737 // Later we can allow complexity / cost for each pattern to be (optionally)
738 // specified. To get best possible pattern match we'll need to dynamically
739 // calculate the complexity of all patterns a dag can potentially map to.
740 const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
741 if (AM)
742 Size += AM->getNumOperands() * 3;
743
744 // If this node has some predicate function that must match, it adds to the
745 // complexity of this node.
746 if (!P->getPredicateFns().empty())
747 ++Size;
748
749 // Count children in the count if they are also nodes.
750 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
751 TreePatternNode *Child = P->getChild(i);
752 if (!Child->isLeaf() && Child->getNumTypes() &&
753 Child->getType(0) != MVT::Other)
754 Size += getPatternSize(Child, CGP);
755 else if (Child->isLeaf()) {
756 if (isa<IntInit>(Child->getLeafValue()))
757 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
758 else if (Child->getComplexPatternInfo(CGP))
759 Size += getPatternSize(Child, CGP);
760 else if (!Child->getPredicateFns().empty())
761 ++Size;
762 }
763 }
764
765 return Size;
766}
767
768/// Compute the complexity metric for the input pattern. This roughly
769/// corresponds to the number of nodes that are covered.
770unsigned PatternToMatch::
771getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
772 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
773}
774
775
776/// getPredicateCheck - Return a single string containing all of this
777/// pattern's predicates concatenated with "&&" operators.
778///
779std::string PatternToMatch::getPredicateCheck() const {
780 std::string PredicateCheck;
781 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
782 if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) {
783 Record *Def = Pred->getDef();
784 if (!Def->isSubClassOf("Predicate")) {
785#ifndef NDEBUG1
786 Def->dump();
787#endif
788 llvm_unreachable("Unknown predicate type!")__builtin_unreachable();
789 }
790 if (!PredicateCheck.empty())
791 PredicateCheck += " && ";
792 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
793 }
794 }
795
796 return PredicateCheck;
797}
798
799//===----------------------------------------------------------------------===//
800// SDTypeConstraint implementation
801//
802
803SDTypeConstraint::SDTypeConstraint(Record *R) {
804 OperandNo = R->getValueAsInt("OperandNum");
805
806 if (R->isSubClassOf("SDTCisVT")) {
807 ConstraintType = SDTCisVT;
808 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
809 if (x.SDTCisVT_Info.VT == MVT::isVoid)
810 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
811
812 } else if (R->isSubClassOf("SDTCisPtrTy")) {
813 ConstraintType = SDTCisPtrTy;
814 } else if (R->isSubClassOf("SDTCisInt")) {
815 ConstraintType = SDTCisInt;
816 } else if (R->isSubClassOf("SDTCisFP")) {
817 ConstraintType = SDTCisFP;
818 } else if (R->isSubClassOf("SDTCisVec")) {
819 ConstraintType = SDTCisVec;
820 } else if (R->isSubClassOf("SDTCisSameAs")) {
821 ConstraintType = SDTCisSameAs;
822 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
823 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
824 ConstraintType = SDTCisVTSmallerThanOp;
825 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
826 R->getValueAsInt("OtherOperandNum");
827 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
828 ConstraintType = SDTCisOpSmallerThanOp;
829 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
830 R->getValueAsInt("BigOperandNum");
831 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
832 ConstraintType = SDTCisEltOfVec;
833 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
834 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
835 ConstraintType = SDTCisSubVecOfVec;
836 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
837 R->getValueAsInt("OtherOpNum");
838 } else {
839 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
840 exit(1);
841 }
842}
843
844/// getOperandNum - Return the node corresponding to operand #OpNo in tree
845/// N, and the result number in ResNo.
846static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
847 const SDNodeInfo &NodeInfo,
848 unsigned &ResNo) {
849 unsigned NumResults = NodeInfo.getNumResults();
850 if (OpNo < NumResults) {
851 ResNo = OpNo;
852 return N;
853 }
854
855 OpNo -= NumResults;
856
857 if (OpNo >= N->getNumChildren()) {
858 errs() << "Invalid operand number in type constraint "
859 << (OpNo+NumResults) << " ";
860 N->dump();
861 errs() << '\n';
862 exit(1);
863 }
864
865 return N->getChild(OpNo);
866}
867
868/// ApplyTypeConstraint - Given a node in a pattern, apply this type
869/// constraint to the nodes operands. This returns true if it makes a
870/// change, false otherwise. If a type contradiction is found, flag an error.
871bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
872 const SDNodeInfo &NodeInfo,
873 TreePattern &TP) const {
874 if (TP.hasError())
875 return false;
876
877 unsigned ResNo = 0; // The result number being referenced.
878 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
879
880 switch (ConstraintType) {
881 case SDTCisVT:
882 // Operand must be a particular type.
883 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
884 case SDTCisPtrTy:
885 // Operand must be same as target pointer type.
886 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
887 case SDTCisInt:
888 // Require it to be one of the legal integer VTs.
889 return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
890 case SDTCisFP:
891 // Require it to be one of the legal fp VTs.
892 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
893 case SDTCisVec:
894 // Require it to be one of the legal vector VTs.
895 return NodeToApply->getExtType(ResNo).EnforceVector(TP);
896 case SDTCisSameAs: {
897 unsigned OResNo = 0;
898 TreePatternNode *OtherNode =
899 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
900 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
901 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
902 }
903 case SDTCisVTSmallerThanOp: {
904 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
905 // have an integer type that is smaller than the VT.
906 if (!NodeToApply->isLeaf() ||
907 !isa<DefInit>(NodeToApply->getLeafValue()) ||
908 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
909 ->isSubClassOf("ValueType")) {
910 TP.error(N->getOperator()->getName() + " expects a VT operand!");
911 return false;
912 }
913 MVT::SimpleValueType VT =
914 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
915
916 EEVT::TypeSet TypeListTmp(VT, TP);
917
918 unsigned OResNo = 0;
919 TreePatternNode *OtherNode =
920 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
921 OResNo);
922
923 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
924 }
925 case SDTCisOpSmallerThanOp: {
926 unsigned BResNo = 0;
927 TreePatternNode *BigOperand =
928 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
929 BResNo);
930 return NodeToApply->getExtType(ResNo).
931 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
932 }
933 case SDTCisEltOfVec: {
934 unsigned VResNo = 0;
935 TreePatternNode *VecOperand =
936 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
937 VResNo);
938
939 // Filter vector types out of VecOperand that don't have the right element
940 // type.
941 return VecOperand->getExtType(VResNo).
942 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
943 }
944 case SDTCisSubVecOfVec: {
945 unsigned VResNo = 0;
946 TreePatternNode *BigVecOperand =
947 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
948 VResNo);
949
950 // Filter vector types out of BigVecOperand that don't have the
951 // right subvector type.
952 return BigVecOperand->getExtType(VResNo).
953 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
954 }
955 }
956 llvm_unreachable("Invalid ConstraintType!")__builtin_unreachable();
957}
958
959// Update the node type to match an instruction operand or result as specified
960// in the ins or outs lists on the instruction definition. Return true if the
961// type was actually changed.
962bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
963 Record *Operand,
964 TreePattern &TP) {
965 // The 'unknown' operand indicates that types should be inferred from the
966 // context.
967 if (Operand->isSubClassOf("unknown_class"))
968 return false;
969
970 // The Operand class specifies a type directly.
971 if (Operand->isSubClassOf("Operand"))
972 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
973 TP);
974
975 // PointerLikeRegClass has a type that is determined at runtime.
976 if (Operand->isSubClassOf("PointerLikeRegClass"))
977 return UpdateNodeType(ResNo, MVT::iPTR, TP);
978
979 // Both RegisterClass and RegisterOperand operands derive their types from a
980 // register class def.
981 Record *RC = 0;
982 if (Operand->isSubClassOf("RegisterClass"))
983 RC = Operand;
984 else if (Operand->isSubClassOf("RegisterOperand"))
985 RC = Operand->getValueAsDef("RegClass");
986
987 assert(RC && "Unknown operand type")((void)0);
988 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
989 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
990}
991
992
993//===----------------------------------------------------------------------===//
994// SDNodeInfo implementation
995//
996SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
997 EnumName = R->getValueAsString("Opcode");
998 SDClassName = R->getValueAsString("SDClass");
999 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1000 NumResults = TypeProfile->getValueAsInt("NumResults");
1001 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1002
1003 // Parse the properties.
1004 Properties = 0;
1005 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
1006 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
1007 if (PropList[i]->getName() == "SDNPCommutative") {
1008 Properties |= 1 << SDNPCommutative;
1009 } else if (PropList[i]->getName() == "SDNPAssociative") {
1010 Properties |= 1 << SDNPAssociative;
1011 } else if (PropList[i]->getName() == "SDNPHasChain") {
1012 Properties |= 1 << SDNPHasChain;
1013 } else if (PropList[i]->getName() == "SDNPOutGlue") {
1014 Properties |= 1 << SDNPOutGlue;
1015 } else if (PropList[i]->getName() == "SDNPInGlue") {
1016 Properties |= 1 << SDNPInGlue;
1017 } else if (PropList[i]->getName() == "SDNPOptInGlue") {
1018 Properties |= 1 << SDNPOptInGlue;
1019 } else if (PropList[i]->getName() == "SDNPMayStore") {
1020 Properties |= 1 << SDNPMayStore;
1021 } else if (PropList[i]->getName() == "SDNPMayLoad") {
1022 Properties |= 1 << SDNPMayLoad;
1023 } else if (PropList[i]->getName() == "SDNPSideEffect") {
1024 Properties |= 1 << SDNPSideEffect;
1025 } else if (PropList[i]->getName() == "SDNPMemOperand") {
1026 Properties |= 1 << SDNPMemOperand;
1027 } else if (PropList[i]->getName() == "SDNPVariadic") {
1028 Properties |= 1 << SDNPVariadic;
1029 } else {
1030 errs() << "Unknown SD Node property '" << PropList[i]->getName()
1031 << "' on node '" << R->getName() << "'!\n";
1032 exit(1);
1033 }
1034 }
1035
1036
1037 // Parse the type constraints.
1038 std::vector<Record*> ConstraintList =
1039 TypeProfile->getValueAsListOfDefs("Constraints");
1040 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1041}
1042
1043/// getKnownType - If the type constraints on this node imply a fixed type
1044/// (e.g. all stores return void, etc), then return it as an
1045/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1046MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1047 unsigned NumResults = getNumResults();
1048 assert(NumResults <= 1 &&((void)0)
1049 "We only work with nodes with zero or one result so far!")((void)0);
1050 assert(ResNo == 0 && "Only handles single result nodes so far")((void)0);
1051
1052 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
1053 // Make sure that this applies to the correct node result.
1054 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
1055 continue;
1056
1057 switch (TypeConstraints[i].ConstraintType) {
1058 default: break;
1059 case SDTypeConstraint::SDTCisVT:
1060 return TypeConstraints[i].x.SDTCisVT_Info.VT;
1061 case SDTypeConstraint::SDTCisPtrTy:
1062 return MVT::iPTR;
1063 }
1064 }
1065 return MVT::Other;
1066}
1067
1068//===----------------------------------------------------------------------===//
1069// TreePatternNode implementation
1070//
1071
1072TreePatternNode::~TreePatternNode() {
1073#if 0 // FIXME: implement refcounted tree nodes!
1074 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1075 delete getChild(i);
1076#endif
1077}
1078
1079static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1080 if (Operator->getName() == "set" ||
1081 Operator->getName() == "implicit")
1082 return 0; // All return nothing.
1083
1084 if (Operator->isSubClassOf("Intrinsic"))
1085 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1086
1087 if (Operator->isSubClassOf("SDNode"))
1088 return CDP.getSDNodeInfo(Operator).getNumResults();
1089
1090 if (Operator->isSubClassOf("PatFrag")) {
1091 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1092 // the forward reference case where one pattern fragment references another
1093 // before it is processed.
1094 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1095 return PFRec->getOnlyTree()->getNumTypes();
1096
1097 // Get the result tree.
1098 DagInit *Tree = Operator->getValueAsDag("Fragment");
1099 Record *Op = 0;
1100 if (Tree)
1101 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1102 Op = DI->getDef();
1103 assert(Op && "Invalid Fragment")((void)0);
1104 return GetNumNodeResults(Op, CDP);
1105 }
1106
1107 if (Operator->isSubClassOf("Instruction")) {
1108 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1109
1110 // FIXME: Should allow access to all the results here.
1111 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1112
1113 // Add on one implicit def if it has a resolvable type.
1114 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1115 ++NumDefsToAdd;
1116 return NumDefsToAdd;
1117 }
1118
1119 if (Operator->isSubClassOf("SDNodeXForm"))
1120 return 1; // FIXME: Generalize SDNodeXForm
1121
1122 Operator->dump();
1123 errs() << "Unhandled node in GetNumNodeResults\n";
1124 exit(1);
1125}
1126
1127void TreePatternNode::print(raw_ostream &OS) const {
1128 if (isLeaf())
1129 OS << *getLeafValue();
1130 else
1131 OS << '(' << getOperator()->getName();
1132
1133 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1134 OS << ':' << getExtType(i).getName();
1135
1136 if (!isLeaf()) {
1137 if (getNumChildren() != 0) {
1138 OS << " ";
1139 getChild(0)->print(OS);
1140 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1141 OS << ", ";
1142 getChild(i)->print(OS);
1143 }
1144 }
1145 OS << ")";
1146 }
1147
1148 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1149 OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1150 if (TransformFn)
1151 OS << "<<X:" << TransformFn->getName() << ">>";
1152 if (!getName().empty())
1153 OS << ":$" << getName();
1154
1155}
1156void TreePatternNode::dump() const {
1157 print(errs());
1158}
1159
1160/// isIsomorphicTo - Return true if this node is recursively
1161/// isomorphic to the specified node. For this comparison, the node's
1162/// entire state is considered. The assigned name is ignored, since
1163/// nodes with differing names are considered isomorphic. However, if
1164/// the assigned name is present in the dependent variable set, then
1165/// the assigned name is considered significant and the node is
1166/// isomorphic if the names match.
1167bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1168 const MultipleUseVarSet &DepVars) const {
1169 if (N == this) return true;
1170 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1171 getPredicateFns() != N->getPredicateFns() ||
1172 getTransformFn() != N->getTransformFn())
1173 return false;
1174
1175 if (isLeaf()) {
1176 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1177 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1178 return ((DI->getDef() == NDI->getDef())
1179 && (DepVars.find(getName()) == DepVars.end()
1180 || getName() == N->getName()));
1181 }
1182 }
1183 return getLeafValue() == N->getLeafValue();
1184 }
1185
1186 if (N->getOperator() != getOperator() ||
1187 N->getNumChildren() != getNumChildren()) return false;
1188 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1189 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1190 return false;
1191 return true;
1192}
1193
1194/// clone - Make a copy of this tree and all of its children.
1195///
1196TreePatternNode *TreePatternNode::clone() const {
1197 TreePatternNode *New;
1198 if (isLeaf()) {
1199 New = new TreePatternNode(getLeafValue(), getNumTypes());
1200 } else {
1201 std::vector<TreePatternNode*> CChildren;
1202 CChildren.reserve(Children.size());
1203 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1204 CChildren.push_back(getChild(i)->clone());
1205 New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1206 }
1207 New->setName(getName());
1208 New->Types = Types;
1209 New->setPredicateFns(getPredicateFns());
1210 New->setTransformFn(getTransformFn());
1211 return New;
1212}
1213
1214/// RemoveAllTypes - Recursively strip all the types of this tree.
1215void TreePatternNode::RemoveAllTypes() {
1216 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1217 Types[i] = EEVT::TypeSet(); // Reset to unknown type.
1218 if (isLeaf()) return;
1219 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1220 getChild(i)->RemoveAllTypes();
1221}
1222
1223
1224/// SubstituteFormalArguments - Replace the formal arguments in this tree
1225/// with actual values specified by ArgMap.
1226void TreePatternNode::
1227SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1228 if (isLeaf()) return;
1229
1230 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1231 TreePatternNode *Child = getChild(i);
1232 if (Child->isLeaf()) {
1233 Init *Val = Child->getLeafValue();
1234 if (isa<DefInit>(Val) &&
1235 cast<DefInit>(Val)->getDef()->getName() == "node") {
1236 // We found a use of a formal argument, replace it with its value.
1237 TreePatternNode *NewChild = ArgMap[Child->getName()];
1238 assert(NewChild && "Couldn't find formal argument!")((void)0);
1239 assert((Child->getPredicateFns().empty() ||((void)0)
1240 NewChild->getPredicateFns() == Child->getPredicateFns()) &&((void)0)
1241 "Non-empty child predicate clobbered!")((void)0);
1242 setChild(i, NewChild);
1243 }
1244 } else {
1245 getChild(i)->SubstituteFormalArguments(ArgMap);
1246 }
1247 }
1248}
1249
1250
1251/// InlinePatternFragments - If this pattern refers to any pattern
1252/// fragments, inline them into place, giving us a pattern without any
1253/// PatFrag references.
1254TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1255 if (TP.hasError())
1256 return 0;
1257
1258 if (isLeaf())
1259 return this; // nothing to do.
1260 Record *Op = getOperator();
1261
1262 if (!Op->isSubClassOf("PatFrag")) {
1263 // Just recursively inline children nodes.
1264 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1265 TreePatternNode *Child = getChild(i);
1266 TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1267
1268 assert((Child->getPredicateFns().empty() ||((void)0)
1269 NewChild->getPredicateFns() == Child->getPredicateFns()) &&((void)0)
1270 "Non-empty child predicate clobbered!")((void)0);
1271
1272 setChild(i, NewChild);
1273 }
1274 return this;
1275 }
1276
1277 // Otherwise, we found a reference to a fragment. First, look up its
1278 // TreePattern record.
1279 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1280
1281 // Verify that we are passing the right number of operands.
1282 if (Frag->getNumArgs() != Children.size()) {
1283 TP.error("'" + Op->getName() + "' fragment requires " +
1284 utostr(Frag->getNumArgs()) + " operands!");
1285 return 0;
1286 }
1287
1288 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1289
1290 TreePredicateFn PredFn(Frag);
1291 if (!PredFn.isAlwaysTrue())
1292 FragTree->addPredicateFn(PredFn);
1293
1294 // Resolve formal arguments to their actual value.
1295 if (Frag->getNumArgs()) {
1296 // Compute the map of formal to actual arguments.
1297 std::map<std::string, TreePatternNode*> ArgMap;
1298 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1299 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1300
1301 FragTree->SubstituteFormalArguments(ArgMap);
1302 }
1303
1304 FragTree->setName(getName());
1305 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1306 FragTree->UpdateNodeType(i, getExtType(i), TP);
1307
1308 // Transfer in the old predicates.
1309 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1310 FragTree->addPredicateFn(getPredicateFns()[i]);
1311
1312 // Get a new copy of this fragment to stitch into here.
1313 //delete this; // FIXME: implement refcounting!
1314
1315 // The fragment we inlined could have recursive inlining that is needed. See
1316 // if there are any pattern fragments in it and inline them as needed.
1317 return FragTree->InlinePatternFragments(TP);
1318}
1319
1320/// getImplicitType - Check to see if the specified record has an implicit
1321/// type which should be applied to it. This will infer the type of register
1322/// references from the register file information, for example.
1323///
1324static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1325 bool NotRegisters, TreePattern &TP) {
1326 // Check to see if this is a register operand.
1327 if (R->isSubClassOf("RegisterOperand")) {
1328 assert(ResNo == 0 && "Regoperand ref only has one result!")((void)0);
1329 if (NotRegisters)
1330 return EEVT::TypeSet(); // Unknown.
1331 Record *RegClass = R->getValueAsDef("RegClass");
1332 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1333 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1334 }
1335
1336 // Check to see if this is a register or a register class.
1337 if (R->isSubClassOf("RegisterClass")) {
1338 assert(ResNo == 0 && "Regclass ref only has one result!")((void)0);
1339 if (NotRegisters)
1340 return EEVT::TypeSet(); // Unknown.
1341 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1342 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1343 }
1344
1345 if (R->isSubClassOf("PatFrag")) {
1346 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?")((void)0);
1347 // Pattern fragment types will be resolved when they are inlined.
1348 return EEVT::TypeSet(); // Unknown.
1349 }
1350
1351 if (R->isSubClassOf("Register")) {
1352 assert(ResNo == 0 && "Registers only produce one result!")((void)0);
1353 if (NotRegisters)
1354 return EEVT::TypeSet(); // Unknown.
1355 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1356 return EEVT::TypeSet(T.getRegisterVTs(R));
1357 }
1358
1359 if (R->isSubClassOf("SubRegIndex")) {
1360 assert(ResNo == 0 && "SubRegisterIndices only produce one result!")((void)0);
1361 return EEVT::TypeSet();
1362 }
1363
1364 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
1365 assert(ResNo == 0 && "This node only has one result!")((void)0);
1366 // Using a VTSDNode or CondCodeSDNode.
1367 return EEVT::TypeSet(MVT::Other, TP);
1368 }
1369
1370 if (R->isSubClassOf("ComplexPattern")) {
1371 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?")((void)0);
1372 if (NotRegisters)
1373 return EEVT::TypeSet(); // Unknown.
1374 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1375 TP);
1376 }
1377 if (R->isSubClassOf("PointerLikeRegClass")) {
1378 assert(ResNo == 0 && "Regclass can only have one result!")((void)0);
1379 return EEVT::TypeSet(MVT::iPTR, TP);
1380 }
1381
1382 if (R->getName() == "node" || R->getName() == "srcvalue" ||
1383 R->getName() == "zero_reg") {
1384 // Placeholder.
1385 return EEVT::TypeSet(); // Unknown.
1386 }
1387
1388 TP.error("Unknown node flavor used in pattern: " + R->getName());
1389 return EEVT::TypeSet(MVT::Other, TP);
1390}
1391
1392
1393/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1394/// CodeGenIntrinsic information for it, otherwise return a null pointer.
1395const CodeGenIntrinsic *TreePatternNode::
1396getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1397 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1398 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1399 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1400 return 0;
1401
1402 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1403 return &CDP.getIntrinsicInfo(IID);
1404}
1405
1406/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1407/// return the ComplexPattern information, otherwise return null.
1408const ComplexPattern *
1409TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1410 if (!isLeaf()) return 0;
1411
1412 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1413 if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1414 return &CGP.getComplexPattern(DI->getDef());
1415 return 0;
1416}
1417
1418/// NodeHasProperty - Return true if this node has the specified property.
1419bool TreePatternNode::NodeHasProperty(SDNP Property,
1420 const CodeGenDAGPatterns &CGP) const {
1421 if (isLeaf()) {
1422 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1423 return CP->hasProperty(Property);
1424 return false;
1425 }
1426
1427 Record *Operator = getOperator();
1428 if (!Operator->isSubClassOf("SDNode")) return false;
1429
1430 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1431}
1432
1433
1434
1435
1436/// TreeHasProperty - Return true if any node in this tree has the specified
1437/// property.
1438bool TreePatternNode::TreeHasProperty(SDNP Property,
1439 const CodeGenDAGPatterns &CGP) const {
1440 if (NodeHasProperty(Property, CGP))
1441 return true;
1442 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1443 if (getChild(i)->TreeHasProperty(Property, CGP))
1444 return true;
1445 return false;
1446}
1447
1448/// isCommutativeIntrinsic - Return true if the node corresponds to a
1449/// commutative intrinsic.
1450bool
1451TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1452 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1453 return Int->isCommutative;
1454 return false;
1455}
1456
1457
1458/// ApplyTypeConstraints - Apply all of the type constraints relevant to
1459/// this node and its children in the tree. This returns true if it makes a
1460/// change, false otherwise. If a type contradiction is found, flag an error.
1461bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1462 if (TP.hasError())
1463 return false;
1464
1465 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1466 if (isLeaf()) {
1467 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1468 // If it's a regclass or something else known, include the type.
1469 bool MadeChange = false;
1470 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1471 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1472 NotRegisters, TP), TP);
1473 return MadeChange;
1474 }
1475
1476 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1477 assert(Types.size() == 1 && "Invalid IntInit")((void)0);
1478
1479 // Int inits are always integers. :)
1480 bool MadeChange = Types[0].EnforceInteger(TP);
1481
1482 if (!Types[0].isConcrete())
1483 return MadeChange;
1484
1485 MVT::SimpleValueType VT = getType(0);
1486 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1487 return MadeChange;
1488
1489 unsigned Size = EVT(VT).getSizeInBits();
1490 // Make sure that the value is representable for this type.
1491 if (Size >= 32) return MadeChange;
1492
1493 // Check that the value doesn't use more bits than we have. It must either
1494 // be a sign- or zero-extended equivalent of the original.
1495 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1496 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1497 return MadeChange;
1498
1499 TP.error("Integer value '" + itostr(II->getValue()) +
1500 "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1501 return false;
1502 }
1503 return false;
1504 }
1505
1506 // special handling for set, which isn't really an SDNode.
1507 if (getOperator()->getName() == "set") {
1508 assert(getNumTypes() == 0 && "Set doesn't produce a value")((void)0);
1509 assert(getNumChildren() >= 2 && "Missing RHS of a set?")((void)0);
1510 unsigned NC = getNumChildren();
1511
1512 TreePatternNode *SetVal = getChild(NC-1);
1513 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1514
1515 for (unsigned i = 0; i < NC-1; ++i) {
1516 TreePatternNode *Child = getChild(i);
1517 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1518
1519 // Types of operands must match.
1520 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1521 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1522 }
1523 return MadeChange;
1524 }
1525
1526 if (getOperator()->getName() == "implicit") {
1527 assert(getNumTypes() == 0 && "Node doesn't produce a value")((void)0);
1528
1529 bool MadeChange = false;
1530 for (unsigned i = 0; i < getNumChildren(); ++i)
1531 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1532 return MadeChange;
1533 }
1534
1535 if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1536 bool MadeChange = false;
1537 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1538 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
1539
1540 assert(getChild(0)->getNumTypes() == 1 &&((void)0)
1541 getChild(1)->getNumTypes() == 1 && "Unhandled case")((void)0);
1542
1543 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care
1544 // what type it gets, so if it didn't get a concrete type just give it the
1545 // first viable type from the reg class.
1546 if (!getChild(1)->hasTypeSet(0) &&
1547 !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1548 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
1549 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
1550 }
1551 return MadeChange;
1552 }
1553
1554 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1555 bool MadeChange = false;
1556
1557 // Apply the result type to the node.
1558 unsigned NumRetVTs = Int->IS.RetVTs.size();
1559 unsigned NumParamVTs = Int->IS.ParamVTs.size();
1560
1561 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1562 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1563
1564 if (getNumChildren() != NumParamVTs + 1) {
1565 TP.error("Intrinsic '" + Int->Name + "' expects " +
1566 utostr(NumParamVTs) + " operands, not " +
1567 utostr(getNumChildren() - 1) + " operands!");
1568 return false;
1569 }
1570
1571 // Apply type info to the intrinsic ID.
1572 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1573
1574 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1575 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1576
1577 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1578 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case")((void)0);
1579 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1580 }
1581 return MadeChange;
1582 }
1583
1584 if (getOperator()->isSubClassOf("SDNode")) {
1585 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1586
1587 // Check that the number of operands is sane. Negative operands -> varargs.
1588 if (NI.getNumOperands() >= 0 &&
1589 getNumChildren() != (unsigned)NI.getNumOperands()) {
1590 TP.error(getOperator()->getName() + " node requires exactly " +
1591 itostr(NI.getNumOperands()) + " operands!");
1592 return false;
1593 }
1594
1595 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1596 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1597 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1598 return MadeChange;
1599 }
1600
1601 if (getOperator()->isSubClassOf("Instruction")) {
1602 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1603 CodeGenInstruction &InstInfo =
1604 CDP.getTargetInfo().getInstruction(getOperator());
1605
1606 bool MadeChange = false;
1607
1608 // Apply the result types to the node, these come from the things in the
1609 // (outs) list of the instruction.
1610 // FIXME: Cap at one result so far.
1611 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1612 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1613 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1614
1615 // If the instruction has implicit defs, we apply the first one as a result.
1616 // FIXME: This sucks, it should apply all implicit defs.
1617 if (!InstInfo.ImplicitDefs.empty()) {
1618 unsigned ResNo = NumResultsToAdd;
1619
1620 // FIXME: Generalize to multiple possible types and multiple possible
1621 // ImplicitDefs.
1622 MVT::SimpleValueType VT =
1623 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1624
1625 if (VT != MVT::Other)
1626 MadeChange |= UpdateNodeType(ResNo, VT, TP);
1627 }
1628
1629 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1630 // be the same.
1631 if (getOperator()->getName() == "INSERT_SUBREG") {
1632 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled")((void)0);
1633 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1634 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1635 }
1636
1637 unsigned ChildNo = 0;
1638 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1639 Record *OperandNode = Inst.getOperand(i);
1640
1641 // If the instruction expects a predicate or optional def operand, we
1642 // codegen this by setting the operand to it's default value if it has a
1643 // non-empty DefaultOps field.
1644 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1645 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1646 continue;
1647
1648 // Verify that we didn't run out of provided operands.
1649 if (ChildNo >= getNumChildren()) {
1650 TP.error("Instruction '" + getOperator()->getName() +
1651 "' expects more operands than were provided.");
1652 return false;
1653 }
1654
1655 TreePatternNode *Child = getChild(ChildNo++);
1656 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
1657
1658 // If the operand has sub-operands, they may be provided by distinct
1659 // child patterns, so attempt to match each sub-operand separately.
1660 if (OperandNode->isSubClassOf("Operand")) {
1661 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1662 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1663 // But don't do that if the whole operand is being provided by
1664 // a single ComplexPattern.
1665 const ComplexPattern *AM = Child->getComplexPatternInfo(CDP);
1666 if (!AM || AM->getNumOperands() < NumArgs) {
1667 // Match first sub-operand against the child we already have.
1668 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1669 MadeChange |=
1670 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1671
1672 // And the remaining sub-operands against subsequent children.
1673 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1674 if (ChildNo >= getNumChildren()) {
1675 TP.error("Instruction '" + getOperator()->getName() +
1676 "' expects more operands than were provided.");
1677 return false;
1678 }
1679 Child = getChild(ChildNo++);
1680
1681 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1682 MadeChange |=
1683 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1684 }
1685 continue;
1686 }
1687 }
1688 }
1689
1690 // If we didn't match by pieces above, attempt to match the whole
1691 // operand now.
1692 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1693 }
1694
1695 if (ChildNo != getNumChildren()) {
1696 TP.error("Instruction '" + getOperator()->getName() +
1697 "' was provided too many operands!");
1698 return false;
1699 }
1700
1701 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1702 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1703 return MadeChange;
1704 }
1705
1706 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!")((void)0);
1707
1708 // Node transforms always take one operand.
1709 if (getNumChildren() != 1) {
1710 TP.error("Node transform '" + getOperator()->getName() +
1711 "' requires one operand!");
1712 return false;
1713 }
1714
1715 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1716
1717
1718 // If either the output or input of the xform does not have exact
1719 // type info. We assume they must be the same. Otherwise, it is perfectly
1720 // legal to transform from one type to a completely different type.
1721#if 0
1722 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1723 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1724 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1725 return MadeChange;
1726 }
1727#endif
1728 return MadeChange;
1729}
1730
1731/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1732/// RHS of a commutative operation, not the on LHS.
1733static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1734 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1735 return true;
1736 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1737 return true;
1738 return false;
1739}
1740
1741
1742/// canPatternMatch - If it is impossible for this pattern to match on this
1743/// target, fill in Reason and return false. Otherwise, return true. This is
1744/// used as a sanity check for .td files (to prevent people from writing stuff
1745/// that can never possibly work), and to prevent the pattern permuter from
1746/// generating stuff that is useless.
1747bool TreePatternNode::canPatternMatch(std::string &Reason,
1748 const CodeGenDAGPatterns &CDP) {
1749 if (isLeaf()) return true;
1750
1751 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1752 if (!getChild(i)->canPatternMatch(Reason, CDP))
1753 return false;
1754
1755 // If this is an intrinsic, handle cases that would make it not match. For
1756 // example, if an operand is required to be an immediate.
1757 if (getOperator()->isSubClassOf("Intrinsic")) {
1758 // TODO:
1759 return true;
1760 }
1761
1762 // If this node is a commutative operator, check that the LHS isn't an
1763 // immediate.
1764 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1765 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1766 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1767 // Scan all of the operands of the node and make sure that only the last one
1768 // is a constant node, unless the RHS also is.
1769 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1770 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1771 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1772 if (OnlyOnRHSOfCommutative(getChild(i))) {
1773 Reason="Immediate value must be on the RHS of commutative operators!";
1774 return false;
1775 }
1776 }
1777 }
1778
1779 return true;
1780}
1781
1782//===----------------------------------------------------------------------===//
1783// TreePattern implementation
1784//
1785
1786TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1787 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1788 isInputPattern(isInput), HasError(false) {
1789 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1790 Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1791}
1792
1793TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1794 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1795 isInputPattern(isInput), HasError(false) {
1796 Trees.push_back(ParseTreePattern(Pat, ""));
1797}
1798
1799TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1800 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1801 isInputPattern(isInput), HasError(false) {
1802 Trees.push_back(Pat);
1803}
1804
1805void TreePattern::error(const std::string &Msg) {
1806 if (HasError)
1807 return;
1808 dump();
1809 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1810 HasError = true;
1811}
1812
1813void TreePattern::ComputeNamedNodes() {
1814 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1815 ComputeNamedNodes(Trees[i]);
1816}
1817
1818void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1819 if (!N->getName().empty())
1820 NamedNodes[N->getName()].push_back(N);
1821
1822 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1823 ComputeNamedNodes(N->getChild(i));
1824}
1825
1826
1827TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1828 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
1829 Record *R = DI->getDef();
1830
1831 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1832 // TreePatternNode of its own. For example:
1833 /// (foo GPR, imm) -> (foo GPR, (imm))
1834 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1835 return ParseTreePattern(
1836 DagInit::get(DI, "",
1837 std::vector<std::pair<Init*, std::string> >()),
1838 OpName);
1839
1840 // Input argument?
1841 TreePatternNode *Res = new TreePatternNode(DI, 1);
1842 if (R->getName() == "node" && !OpName.empty()) {
1843 if (OpName.empty())
1844 error("'node' argument requires a name to match with operand list");
1845 Args.push_back(OpName);
1846 }
1847
1848 Res->setName(OpName);
1849 return Res;
1850 }
1851
1852 if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
1853 if (!OpName.empty())
1854 error("Constant int argument should not have a name!");
1855 return new TreePatternNode(II, 1);
1856 }
1857
1858 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
1859 // Turn this into an IntInit.
1860 Init *II = BI->convertInitializerTo(IntRecTy::get());
1861 if (II == 0 || !isa<IntInit>(II))
1862 error("Bits value must be constants!");
1863 return ParseTreePattern(II, OpName);
1864 }
1865
1866 DagInit *Dag = dyn_cast<DagInit>(TheInit);
1867 if (!Dag) {
1868 TheInit->dump();
1869 error("Pattern has unexpected init kind!");
1870 }
1871 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
1872 if (!OpDef) error("Pattern has unexpected operator type!");
1873 Record *Operator = OpDef->getDef();
1874
1875 if (Operator->isSubClassOf("ValueType")) {
1876 // If the operator is a ValueType, then this must be "type cast" of a leaf
1877 // node.
1878 if (Dag->getNumArgs() != 1)
1879 error("Type cast only takes one operand!");
1880
1881 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1882
1883 // Apply the type cast.
1884 assert(New->getNumTypes() == 1 && "FIXME: Unhandled")((void)0);
1885 New->UpdateNodeType(0, getValueType(Operator), *this);
1886
1887 if (!OpName.empty())
1888 error("ValueType cast should not have a name!");
1889 return New;
1890 }
1891
1892 // Verify that this is something that makes sense for an operator.
1893 if (!Operator->isSubClassOf("PatFrag") &&
1894 !Operator->isSubClassOf("SDNode") &&
1895 !Operator->isSubClassOf("Instruction") &&
1896 !Operator->isSubClassOf("SDNodeXForm") &&
1897 !Operator->isSubClassOf("Intrinsic") &&
1898 Operator->getName() != "set" &&
1899 Operator->getName() != "implicit")
1900 error("Unrecognized node '" + Operator->getName() + "'!");
1901
1902 // Check to see if this is something that is illegal in an input pattern.
1903 if (isInputPattern) {
1904 if (Operator->isSubClassOf("Instruction") ||
1905 Operator->isSubClassOf("SDNodeXForm"))
1906 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1907 } else {
1908 if (Operator->isSubClassOf("Intrinsic"))
1909 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1910
1911 if (Operator->isSubClassOf("SDNode") &&
1912 Operator->getName() != "imm" &&
1913 Operator->getName() != "fpimm" &&
1914 Operator->getName() != "tglobaltlsaddr" &&
1915 Operator->getName() != "tconstpool" &&
1916 Operator->getName() != "tjumptable" &&
1917 Operator->getName() != "tframeindex" &&
1918 Operator->getName() != "texternalsym" &&
1919 Operator->getName() != "tblockaddress" &&
1920 Operator->getName() != "tglobaladdr" &&
1921 Operator->getName() != "bb" &&
1922 Operator->getName() != "vt")
1923 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1924 }
1925
1926 std::vector<TreePatternNode*> Children;
1927
1928 // Parse all the operands.
1929 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1930 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1931
1932 // If the operator is an intrinsic, then this is just syntactic sugar for for
1933 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1934 // convert the intrinsic name to a number.
1935 if (Operator->isSubClassOf("Intrinsic")) {
1936 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1937 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1938
1939 // If this intrinsic returns void, it must have side-effects and thus a
1940 // chain.
1941 if (Int.IS.RetVTs.empty())
1942 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1943 else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1944 // Has side-effects, requires chain.
1945 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1946 else // Otherwise, no chain.
1947 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1948
1949 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1950 Children.insert(Children.begin(), IIDNode);
1951 }
1952
1953 unsigned NumResults = GetNumNodeResults(Operator, CDP);
1954 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1955 Result->setName(OpName);
1956
1957 if (!Dag->getName().empty()) {
1958 assert(Result->getName().empty())((void)0);
1959 Result->setName(Dag->getName());
1960 }
1961 return Result;
1962}
1963
1964/// SimplifyTree - See if we can simplify this tree to eliminate something that
1965/// will never match in favor of something obvious that will. This is here
1966/// strictly as a convenience to target authors because it allows them to write
1967/// more type generic things and have useless type casts fold away.
1968///
1969/// This returns true if any change is made.
1970static bool SimplifyTree(TreePatternNode *&N) {
1971 if (N->isLeaf())
1972 return false;
1973
1974 // If we have a bitconvert with a resolved type and if the source and
1975 // destination types are the same, then the bitconvert is useless, remove it.
1976 if (N->getOperator()->getName() == "bitconvert" &&
1977 N->getExtType(0).isConcrete() &&
1978 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
1979 N->getName().empty()) {
1980 N = N->getChild(0);
1981 SimplifyTree(N);
1982 return true;
1983 }
1984
1985 // Walk all children.
1986 bool MadeChange = false;
1987 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1988 TreePatternNode *Child = N->getChild(i);
1989 MadeChange |= SimplifyTree(Child);
1990 N->setChild(i, Child);
1991 }
1992 return MadeChange;
1993}
1994
1995
1996
1997/// InferAllTypes - Infer/propagate as many types throughout the expression
1998/// patterns as possible. Return true if all types are inferred, false
1999/// otherwise. Flags an error if a type contradiction is found.
2000bool TreePattern::
2001InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2002 if (NamedNodes.empty())
2003 ComputeNamedNodes();
2004
2005 bool MadeChange = true;
2006 while (MadeChange) {
2007 MadeChange = false;
2008 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2009 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
2010 MadeChange |= SimplifyTree(Trees[i]);
2011 }
2012
2013 // If there are constraints on our named nodes, apply them.
2014 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
2015 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
2016 SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
2017
2018 // If we have input named node types, propagate their types to the named
2019 // values here.
2020 if (InNamedTypes) {
2021 // FIXME: Should be error?
2022 assert(InNamedTypes->count(I->getKey()) &&((void)0)
2023 "Named node in output pattern but not input pattern?")((void)0);
2024
2025 const SmallVectorImpl<TreePatternNode*> &InNodes =
2026 InNamedTypes->find(I->getKey())->second;
2027
2028 // The input types should be fully resolved by now.
2029 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2030 // If this node is a register class, and it is the root of the pattern
2031 // then we're mapping something onto an input register. We allow
2032 // changing the type of the input register in this case. This allows
2033 // us to match things like:
2034 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2035 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
2036 DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue());
2037 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2038 DI->getDef()->isSubClassOf("RegisterOperand")))
2039 continue;
2040 }
2041
2042 assert(Nodes[i]->getNumTypes() == 1 &&((void)0)
2043 InNodes[0]->getNumTypes() == 1 &&((void)0)
2044 "FIXME: cannot name multiple result nodes yet")((void)0);
2045 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
2046 *this);
2047 }
2048 }
2049
2050 // If there are multiple nodes with the same name, they must all have the
2051 // same type.
2052 if (I->second.size() > 1) {
2053 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2054 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2055 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&((void)0)
2056 "FIXME: cannot name multiple result nodes yet")((void)0);
2057
2058 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2059 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2060 }
2061 }
2062 }
2063 }
2064
2065 bool HasUnresolvedTypes = false;
2066 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
2067 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
2068 return !HasUnresolvedTypes;
2069}
2070
2071void TreePattern::print(raw_ostream &OS) const {
2072 OS << getRecord()->getName();
2073 if (!Args.empty()) {
2074 OS << "(" << Args[0];
2075 for (unsigned i = 1, e = Args.size(); i != e; ++i)
2076 OS << ", " << Args[i];
2077 OS << ")";
2078 }
2079 OS << ": ";
2080
2081 if (Trees.size() > 1)
2082 OS << "[\n";
2083 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2084 OS << "\t";
2085 Trees[i]->print(OS);
2086 OS << "\n";
2087 }
2088
2089 if (Trees.size() > 1)
2090 OS << "]\n";
2091}
2092
2093void TreePattern::dump() const { print(errs()); }
2094
2095//===----------------------------------------------------------------------===//
2096// CodeGenDAGPatterns implementation
2097//
2098
2099CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2100 Records(R), Target(R) {
2101
2102 Intrinsics = LoadIntrinsics(Records, false);
2103 TgtIntrinsics = LoadIntrinsics(Records, true);
2104 ParseNodeInfo();
2105 ParseNodeTransforms();
2106 ParseComplexPatterns();
2107 ParsePatternFragments();
2108 ParseDefaultOperands();
2109 ParseInstructions();
2110 ParsePatterns();
2111
2112 // Generate variants. For example, commutative patterns can match
2113 // multiple ways. Add them to PatternsToMatch as well.
2114 GenerateVariants();
2115
2116 // Infer instruction flags. For example, we can detect loads,
2117 // stores, and side effects in many cases by examining an
2118 // instruction's pattern.
2119 InferInstructionFlags();
2120
2121 // Verify that instruction flags match the patterns.
2122 VerifyInstructionFlags();
2123}
2124
2125CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2126 for (pf_iterator I = PatternFragments.begin(),
2127 E = PatternFragments.end(); I != E; ++I)
2128 delete I->second;
2129}
2130
2131
2132Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2133 Record *N = Records.getDef(Name);
2134 if (!N || !N->isSubClassOf("SDNode")) {
2135 errs() << "Error getting SDNode '" << Name << "'!\n";
2136 exit(1);
2137 }
2138 return N;
2139}
2140
2141// Parse all of the SDNode definitions for the target, populating SDNodes.
2142void CodeGenDAGPatterns::ParseNodeInfo() {
2143 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2144 while (!Nodes.empty()) {
2145 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2146 Nodes.pop_back();
2147 }
2148
2149 // Get the builtin intrinsic nodes.
2150 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
2151 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
2152 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2153}
2154
2155/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2156/// map, and emit them to the file as functions.
2157void CodeGenDAGPatterns::ParseNodeTransforms() {
2158 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2159 while (!Xforms.empty()) {
2160 Record *XFormNode = Xforms.back();
2161 Record *SDNode = XFormNode->getValueAsDef("Opcode");
2162 std::string Code = XFormNode->getValueAsString("XFormFunction");
2163 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2164
2165 Xforms.pop_back();
2166 }
2167}
2168
2169void CodeGenDAGPatterns::ParseComplexPatterns() {
2170 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2171 while (!AMs.empty()) {
2172 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2173 AMs.pop_back();
2174 }
2175}
2176
2177
2178/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2179/// file, building up the PatternFragments map. After we've collected them all,
2180/// inline fragments together as necessary, so that there are no references left
2181/// inside a pattern fragment to a pattern fragment.
2182///
2183void CodeGenDAGPatterns::ParsePatternFragments() {
2184 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2185
2186 // First step, parse all of the fragments.
2187 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2188 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2189 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2190 PatternFragments[Fragments[i]] = P;
2191
2192 // Validate the argument list, converting it to set, to discard duplicates.
2193 std::vector<std::string> &Args = P->getArgList();
2194 std::set<std::string> OperandsSet(Args.begin(), Args.end());
2195
2196 if (OperandsSet.count(""))
2197 P->error("Cannot have unnamed 'node' values in pattern fragment!");
2198
2199 // Parse the operands list.
2200 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2201 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2202 // Special cases: ops == outs == ins. Different names are used to
2203 // improve readability.
2204 if (!OpsOp ||
2205 (OpsOp->getDef()->getName() != "ops" &&
2206 OpsOp->getDef()->getName() != "outs" &&
2207 OpsOp->getDef()->getName() != "ins"))
2208 P->error("Operands list should start with '(ops ... '!");
2209
2210 // Copy over the arguments.
2211 Args.clear();
2212 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2213 if (!isa<DefInit>(OpsList->getArg(j)) ||
2214 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2215 P->error("Operands list should all be 'node' values.");
2216 if (OpsList->getArgName(j).empty())
2217 P->error("Operands list should have names for each operand!");
2218 if (!OperandsSet.count(OpsList->getArgName(j)))
2219 P->error("'" + OpsList->getArgName(j) +
2220 "' does not occur in pattern or was multiply specified!");
2221 OperandsSet.erase(OpsList->getArgName(j));
2222 Args.push_back(OpsList->getArgName(j));
2223 }
2224
2225 if (!OperandsSet.empty())
2226 P->error("Operands list does not contain an entry for operand '" +
2227 *OperandsSet.begin() + "'!");
2228
2229 // If there is a code init for this fragment, keep track of the fact that
2230 // this fragment uses it.
2231 TreePredicateFn PredFn(P);
2232 if (!PredFn.isAlwaysTrue())
2233 P->getOnlyTree()->addPredicateFn(PredFn);
2234
2235 // If there is a node transformation corresponding to this, keep track of
2236 // it.
2237 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2238 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
2239 P->getOnlyTree()->setTransformFn(Transform);
2240 }
2241
2242 // Now that we've parsed all of the tree fragments, do a closure on them so
2243 // that there are not references to PatFrags left inside of them.
2244 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2245 TreePattern *ThePat = PatternFragments[Fragments[i]];
2246 ThePat->InlinePatternFragments();
2247
2248 // Infer as many types as possible. Don't worry about it if we don't infer
2249 // all of them, some may depend on the inputs of the pattern.
2250 ThePat->InferAllTypes();
2251 ThePat->resetError();
2252
2253 // If debugging, print out the pattern fragment result.
2254 DEBUG(ThePat->dump())do { } while (0);
2255 }
2256}
2257
2258void CodeGenDAGPatterns::ParseDefaultOperands() {
2259 std::vector<Record*> DefaultOps;
2260 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2261
2262 // Find some SDNode.
2263 assert(!SDNodes.empty() && "No SDNodes parsed?")((void)0);
2264 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2265
2266 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2267 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2268
2269 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2270 // SomeSDnode so that we can parse this.
2271 std::vector<std::pair<Init*, std::string> > Ops;
2272 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2273 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2274 DefaultInfo->getArgName(op)));
2275 DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2276
2277 // Create a TreePattern to parse this.
2278 TreePattern P(DefaultOps[i], DI, false, *this);
2279 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!")((void)0);
2280
2281 // Copy the operands over into a DAGDefaultOperand.
2282 DAGDefaultOperand DefaultOpInfo;
2283
2284 TreePatternNode *T = P.getTree(0);
2285 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2286 TreePatternNode *TPN = T->getChild(op);
2287 while (TPN->ApplyTypeConstraints(P, false))
2288 /* Resolve all types */;
2289
2290 if (TPN->ContainsUnresolvedType()) {
2291 PrintFatalError("Value #" + utostr(i) + " of OperandWithDefaultOps '" +
2292 DefaultOps[i]->getName() +"' doesn't have a concrete type!");
2293 }
2294 DefaultOpInfo.DefaultOps.push_back(TPN);
2295 }
2296
2297 // Insert it into the DefaultOperands map so we can find it later.
2298 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2299 }
2300}
2301
2302/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2303/// instruction input. Return true if this is a real use.
2304static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2305 std::map<std::string, TreePatternNode*> &InstInputs) {
2306 // No name -> not interesting.
2307 if (Pat->getName().empty()) {
2308 if (Pat->isLeaf()) {
2309 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2310 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2311 DI->getDef()->isSubClassOf("RegisterOperand")))
2312 I->error("Input " + DI->getDef()->getName() + " must be named!");
2313 }
2314 return false;
2315 }
2316
2317 Record *Rec;
2318 if (Pat->isLeaf()) {
2319 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2320 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2321 Rec = DI->getDef();
2322 } else {
2323 Rec = Pat->getOperator();
2324 }
2325
2326 // SRCVALUE nodes are ignored.
2327 if (Rec->getName() == "srcvalue")
2328 return false;
2329
2330 TreePatternNode *&Slot = InstInputs[Pat->getName()];
2331 if (!Slot) {
2332 Slot = Pat;
2333 return true;
2334 }
2335 Record *SlotRec;
2336 if (Slot->isLeaf()) {
2337 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2338 } else {
2339 assert(Slot->getNumChildren() == 0 && "can't be a use with children!")((void)0);
2340 SlotRec = Slot->getOperator();
2341 }
2342
2343 // Ensure that the inputs agree if we've already seen this input.
2344 if (Rec != SlotRec)
2345 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2346 if (Slot->getExtTypes() != Pat->getExtTypes())
2347 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2348 return true;
2349}
2350
2351/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2352/// part of "I", the instruction), computing the set of inputs and outputs of
2353/// the pattern. Report errors if we see anything naughty.
2354void CodeGenDAGPatterns::
2355FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2356 std::map<std::string, TreePatternNode*> &InstInputs,
2357 std::map<std::string, TreePatternNode*>&InstResults,
2358 std::vector<Record*> &InstImpResults) {
2359 if (Pat->isLeaf()) {
2360 bool isUse = HandleUse(I, Pat, InstInputs);
2361 if (!isUse && Pat->getTransformFn())
2362 I->error("Cannot specify a transform function for a non-input value!");
2363 return;
2364 }
2365
2366 if (Pat->getOperator()->getName() == "implicit") {
2367 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2368 TreePatternNode *Dest = Pat->getChild(i);
2369 if (!Dest->isLeaf())
2370 I->error("implicitly defined value should be a register!");
2371
2372 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2373 if (!Val || !Val->getDef()->isSubClassOf("Register"))
2374 I->error("implicitly defined value should be a register!");
2375 InstImpResults.push_back(Val->getDef());
2376 }
2377 return;
2378 }
2379
2380 if (Pat->getOperator()->getName() != "set") {
2381 // If this is not a set, verify that the children nodes are not void typed,
2382 // and recurse.
2383 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2384 if (Pat->getChild(i)->getNumTypes() == 0)
2385 I->error("Cannot have void nodes inside of patterns!");
2386 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2387 InstImpResults);
2388 }
2389
2390 // If this is a non-leaf node with no children, treat it basically as if
2391 // it were a leaf. This handles nodes like (imm).
2392 bool isUse = HandleUse(I, Pat, InstInputs);
2393
2394 if (!isUse && Pat->getTransformFn())
2395 I->error("Cannot specify a transform function for a non-input value!");
2396 return;
2397 }
2398
2399 // Otherwise, this is a set, validate and collect instruction results.
2400 if (Pat->getNumChildren() == 0)
2401 I->error("set requires operands!");
2402
2403 if (Pat->getTransformFn())
2404 I->error("Cannot specify a transform function on a set node!");
2405
2406 // Check the set destinations.
2407 unsigned NumDests = Pat->getNumChildren()-1;
2408 for (unsigned i = 0; i != NumDests; ++i) {
2409 TreePatternNode *Dest = Pat->getChild(i);
2410 if (!Dest->isLeaf())
2411 I->error("set destination should be a register!");
2412
2413 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2414 if (!Val)
2415 I->error("set destination should be a register!");
2416
2417 if (Val->getDef()->isSubClassOf("RegisterClass") ||
2418 Val->getDef()->isSubClassOf("RegisterOperand") ||
2419 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2420 if (Dest->getName().empty())
2421 I->error("set destination must have a name!");
2422 if (InstResults.count(Dest->getName()))
2423 I->error("cannot set '" + Dest->getName() +"' multiple times");
2424 InstResults[Dest->getName()] = Dest;
2425 } else if (Val->getDef()->isSubClassOf("Register")) {
2426 InstImpResults.push_back(Val->getDef());
2427 } else {
2428 I->error("set destination should be a register!");
2429 }
2430 }
2431
2432 // Verify and collect info from the computation.
2433 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2434 InstInputs, InstResults, InstImpResults);
2435}
2436
2437//===----------------------------------------------------------------------===//
2438// Instruction Analysis
2439//===----------------------------------------------------------------------===//
2440
2441class InstAnalyzer {
2442 const CodeGenDAGPatterns &CDP;
2443public:
2444 bool hasSideEffects;
2445 bool mayStore;
2446 bool mayLoad;
2447 bool isBitcast;
2448 bool isVariadic;
2449
2450 InstAnalyzer(const CodeGenDAGPatterns &cdp)
2451 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2452 isBitcast(false), isVariadic(false) {}
2453
2454 void Analyze(const TreePattern *Pat) {
2455 // Assume only the first tree is the pattern. The others are clobber nodes.
2456 AnalyzeNode(Pat->getTree(0));
2457 }
2458
2459 void Analyze(const PatternToMatch *Pat) {
2460 AnalyzeNode(Pat->getSrcPattern());
2461 }
2462
2463private:
2464 bool IsNodeBitcast(const TreePatternNode *N) const {
2465 if (hasSideEffects || mayLoad || mayStore || isVariadic)
2466 return false;
2467
2468 if (N->getNumChildren() != 2)
2469 return false;
2470
2471 const TreePatternNode *N0 = N->getChild(0);
2472 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2473 return false;
2474
2475 const TreePatternNode *N1 = N->getChild(1);
2476 if (N1->isLeaf())
2477 return false;
2478 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2479 return false;
2480
2481 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2482 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2483 return false;
2484 return OpInfo.getEnumName() == "ISD::BITCAST";
2485 }
2486
2487public:
2488 void AnalyzeNode(const TreePatternNode *N) {
2489 if (N->isLeaf()) {
2490 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2491 Record *LeafRec = DI->getDef();
2492 // Handle ComplexPattern leaves.
2493 if (LeafRec->isSubClassOf("ComplexPattern")) {
2494 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2495 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2496 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2497 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2498 }
2499 }
2500 return;
2501 }
2502
2503 // Analyze children.
2504 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2505 AnalyzeNode(N->getChild(i));
2506
2507 // Ignore set nodes, which are not SDNodes.
2508 if (N->getOperator()->getName() == "set") {
2509 isBitcast = IsNodeBitcast(N);
2510 return;
2511 }
2512
2513 // Get information about the SDNode for the operator.
2514 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2515
2516 // Notice properties of the node.
2517 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2518 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2519 if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2520 if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
2521
2522 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2523 // If this is an intrinsic, analyze it.
2524 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2525 mayLoad = true;// These may load memory.
2526
2527 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2528 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2529
2530 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2531 // WriteMem intrinsics can have other strange effects.
2532 hasSideEffects = true;
2533 }
2534 }
2535
2536};
2537
2538static bool InferFromPattern(CodeGenInstruction &InstInfo,
2539 const InstAnalyzer &PatInfo,
2540 Record *PatDef) {
2541 bool Error = false;
2542
2543 // Remember where InstInfo got its flags.
2544 if (InstInfo.hasUndefFlags())
2545 InstInfo.InferredFrom = PatDef;
2546
2547 // Check explicitly set flags for consistency.
2548 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2549 !InstInfo.hasSideEffects_Unset) {
2550 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2551 // the pattern has no side effects. That could be useful for div/rem
2552 // instructions that may trap.
2553 if (!InstInfo.hasSideEffects) {
2554 Error = true;
2555 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2556 Twine(InstInfo.hasSideEffects));
2557 }
2558 }
2559
2560 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2561 Error = true;
2562 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2563 Twine(InstInfo.mayStore));
2564 }
2565
2566 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2567 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2568 // Some targets translate imediates to loads.
2569 if (!InstInfo.mayLoad) {
2570 Error = true;
2571 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2572 Twine(InstInfo.mayLoad));
2573 }
2574 }
2575
2576 // Transfer inferred flags.
2577 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2578 InstInfo.mayStore |= PatInfo.mayStore;
2579 InstInfo.mayLoad |= PatInfo.mayLoad;
2580
2581 // These flags are silently added without any verification.
2582 InstInfo.isBitcast |= PatInfo.isBitcast;
2583
2584 // Don't infer isVariadic. This flag means something different on SDNodes and
2585 // instructions. For example, a CALL SDNode is variadic because it has the
2586 // call arguments as operands, but a CALL instruction is not variadic - it
2587 // has argument registers as implicit, not explicit uses.
2588
2589 return Error;
2590}
2591
2592/// hasNullFragReference - Return true if the DAG has any reference to the
2593/// null_frag operator.
2594static bool hasNullFragReference(DagInit *DI) {
2595 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2596 if (!OpDef) return false;
2597 Record *Operator = OpDef->getDef();
2598
2599 // If this is the null fragment, return true.
2600 if (Operator->getName() == "null_frag") return true;
2601 // If any of the arguments reference the null fragment, return true.
2602 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2603 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2604 if (Arg && hasNullFragReference(Arg))
2605 return true;
2606 }
2607
2608 return false;
2609}
2610
2611/// hasNullFragReference - Return true if any DAG in the list references
2612/// the null_frag operator.
2613static bool hasNullFragReference(ListInit *LI) {
2614 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2615 DagInit *DI = dyn_cast<DagInit>(LI->getElement(i));
2616 assert(DI && "non-dag in an instruction Pattern list?!")((void)0);
2617 if (hasNullFragReference(DI))
2618 return true;
2619 }
2620 return false;
2621}
2622
2623/// Get all the instructions in a tree.
2624static void
2625getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2626 if (Tree->isLeaf())
2627 return;
2628 if (Tree->getOperator()->isSubClassOf("Instruction"))
2629 Instrs.push_back(Tree->getOperator());
2630 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2631 getInstructionsInTree(Tree->getChild(i), Instrs);
2632}
2633
2634/// ParseInstructions - Parse all of the instructions, inlining and resolving
2635/// any fragments involved. This populates the Instructions list with fully
2636/// resolved instructions.
2637void CodeGenDAGPatterns::ParseInstructions() {
2638 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2639
2640 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2641 ListInit *LI = 0;
2642
2643 if (isa<ListInit>(Instrs[i]->getValueInit("Pattern")))
2644 LI = Instrs[i]->getValueAsListInit("Pattern");
2645
2646 // If there is no pattern, only collect minimal information about the
2647 // instruction for its operand list. We have to assume that there is one
2648 // result, as we have no detailed info. A pattern which references the
2649 // null_frag operator is as-if no pattern were specified. Normally this
2650 // is from a multiclass expansion w/ a SDPatternOperator passed in as
2651 // null_frag.
2652 if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2653 std::vector<Record*> Results;
2654 std::vector<Record*> Operands;
2655
2656 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2657
2658 if (InstInfo.Operands.size() != 0) {
2659 if (InstInfo.Operands.NumDefs == 0) {
2660 // These produce no results
2661 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2662 Operands.push_back(InstInfo.Operands[j].Rec);
2663 } else {
2664 // Assume the first operand is the result.
2665 Results.push_back(InstInfo.Operands[0].Rec);
2666
2667 // The rest are inputs.
2668 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2669 Operands.push_back(InstInfo.Operands[j].Rec);
2670 }
2671 }
2672
2673 // Create and insert the instruction.
2674 std::vector<Record*> ImpResults;
2675 Instructions.insert(std::make_pair(Instrs[i],
2676 DAGInstruction(0, Results, Operands, ImpResults)));
2677 continue; // no pattern.
2678 }
2679
2680 // Parse the instruction.
2681 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2682 // Inline pattern fragments into it.
2683 I->InlinePatternFragments();
2684
2685 // Infer as many types as possible. If we cannot infer all of them, we can
2686 // never do anything with this instruction pattern: report it to the user.
2687 if (!I->InferAllTypes())
2688 I->error("Could not infer all types in pattern!");
2689
2690 // InstInputs - Keep track of all of the inputs of the instruction, along
2691 // with the record they are declared as.
2692 std::map<std::string, TreePatternNode*> InstInputs;
2693
2694 // InstResults - Keep track of all the virtual registers that are 'set'
2695 // in the instruction, including what reg class they are.
2696 std::map<std::string, TreePatternNode*> InstResults;
2697
2698 std::vector<Record*> InstImpResults;
2699
2700 // Verify that the top-level forms in the instruction are of void type, and
2701 // fill in the InstResults map.
2702 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2703 TreePatternNode *Pat = I->getTree(j);
2704 if (Pat->getNumTypes() != 0)
2705 I->error("Top-level forms in instruction pattern should have"
2706 " void types");
2707
2708 // Find inputs and outputs, and verify the structure of the uses/defs.
2709 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2710 InstImpResults);
2711 }
2712
2713 // Now that we have inputs and outputs of the pattern, inspect the operands
2714 // list for the instruction. This determines the order that operands are
2715 // added to the machine instruction the node corresponds to.
2716 unsigned NumResults = InstResults.size();
2717
2718 // Parse the operands list from the (ops) list, validating it.
2719 assert(I->getArgList().empty() && "Args list should still be empty here!")((void)0);
2720 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2721
2722 // Check that all of the results occur first in the list.
2723 std::vector<Record*> Results;
2724 TreePatternNode *Res0Node = 0;
2725 for (unsigned i = 0; i != NumResults; ++i) {
2726 if (i == CGI.Operands.size())
2727 I->error("'" + InstResults.begin()->first +
2728 "' set but does not appear in operand list!");
2729 const std::string &OpName = CGI.Operands[i].Name;
2730
2731 // Check that it exists in InstResults.
2732 TreePatternNode *RNode = InstResults[OpName];
2733 if (RNode == 0)
2734 I->error("Operand $" + OpName + " does not exist in operand list!");
2735
2736 if (i == 0)
2737 Res0Node = RNode;
2738 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
2739 if (R == 0)
2740 I->error("Operand $" + OpName + " should be a set destination: all "
2741 "outputs must occur before inputs in operand list!");
2742
2743 if (CGI.Operands[i].Rec != R)
2744 I->error("Operand $" + OpName + " class mismatch!");
2745
2746 // Remember the return type.
2747 Results.push_back(CGI.Operands[i].Rec);
2748
2749 // Okay, this one checks out.
2750 InstResults.erase(OpName);
2751 }
2752
2753 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
2754 // the copy while we're checking the inputs.
2755 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2756
2757 std::vector<TreePatternNode*> ResultNodeOperands;
2758 std::vector<Record*> Operands;
2759 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2760 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2761 const std::string &OpName = Op.Name;
2762 if (OpName.empty())
2763 I->error("Operand #" + utostr(i) + " in operands list has no name!");
2764
2765 if (!InstInputsCheck.count(OpName)) {
2766 // If this is an operand with a DefaultOps set filled in, we can ignore
2767 // this. When we codegen it, we will do so as always executed.
2768 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
2769 // Does it have a non-empty DefaultOps field? If so, ignore this
2770 // operand.
2771 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2772 continue;
2773 }
2774 I->error("Operand $" + OpName +
2775 " does not appear in the instruction pattern");
2776 }
2777 TreePatternNode *InVal = InstInputsCheck[OpName];
2778 InstInputsCheck.erase(OpName); // It occurred, remove from map.
2779
2780 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
2781 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2782 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
2783 I->error("Operand $" + OpName + "'s register class disagrees"
2784 " between the operand and pattern");
2785 }
2786 Operands.push_back(Op.Rec);
2787
2788 // Construct the result for the dest-pattern operand list.
2789 TreePatternNode *OpNode = InVal->clone();
2790
2791 // No predicate is useful on the result.
2792 OpNode->clearPredicateFns();
2793
2794 // Promote the xform function to be an explicit node if set.
2795 if (Record *Xform = OpNode->getTransformFn()) {
2796 OpNode->setTransformFn(0);
2797 std::vector<TreePatternNode*> Children;
2798 Children.push_back(OpNode);
2799 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2800 }
2801
2802 ResultNodeOperands.push_back(OpNode);
2803 }
2804
2805 if (!InstInputsCheck.empty())
2806 I->error("Input operand $" + InstInputsCheck.begin()->first +
2807 " occurs in pattern but not in operands list!");
2808
2809 TreePatternNode *ResultPattern =
2810 new TreePatternNode(I->getRecord(), ResultNodeOperands,
2811 GetNumNodeResults(I->getRecord(), *this));
2812 // Copy fully inferred output node type to instruction result pattern.
2813 for (unsigned i = 0; i != NumResults; ++i)
2814 ResultPattern->setType(i, Res0Node->getExtType(i));
2815
2816 // Create and insert the instruction.
2817 // FIXME: InstImpResults should not be part of DAGInstruction.
2818 DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2819 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2820
2821 // Use a temporary tree pattern to infer all types and make sure that the
2822 // constructed result is correct. This depends on the instruction already
2823 // being inserted into the Instructions map.
2824 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2825 Temp.InferAllTypes(&I->getNamedNodesMap());
2826
2827 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2828 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2829
2830 DEBUG(I->dump())do { } while (0);
2831 }
2832
2833 // If we can, convert the instructions to be patterns that are matched!
2834 for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II =
2835 Instructions.begin(),
2836 E = Instructions.end(); II != E; ++II) {
2837 DAGInstruction &TheInst = II->second;
2838 TreePattern *I = TheInst.getPattern();
2839 if (I == 0) continue; // No pattern.
2840
2841 // FIXME: Assume only the first tree is the pattern. The others are clobber
2842 // nodes.
2843 TreePatternNode *Pattern = I->getTree(0);
2844 TreePatternNode *SrcPattern;
2845 if (Pattern->getOperator()->getName() == "set") {
2846 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2847 } else{
2848 // Not a set (store or something?)
2849 SrcPattern = Pattern;
2850 }
2851
2852 Record *Instr = II->first;
2853 AddPatternToMatch(I,
2854 PatternToMatch(Instr,
2855 Instr->getValueAsListInit("Predicates"),
2856 SrcPattern,
2857 TheInst.getResultPattern(),
2858 TheInst.getImpResults(),
2859 Instr->getValueAsInt("AddedComplexity"),
2860 Instr->getID()));
2861 }
2862}
2863
2864
2865typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2866
2867static void FindNames(const TreePatternNode *P,
2868 std::map<std::string, NameRecord> &Names,
2869 TreePattern *PatternTop) {
2870 if (!P->getName().empty()) {
2871 NameRecord &Rec = Names[P->getName()];
2872 // If this is the first instance of the name, remember the node.
2873 if (Rec.second++ == 0)
2874 Rec.first = P;
2875 else if (Rec.first->getExtTypes() != P->getExtTypes())
2876 PatternTop->error("repetition of value: $" + P->getName() +
2877 " where different uses have different types!");
2878 }
2879
2880 if (!P->isLeaf()) {
2881 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2882 FindNames(P->getChild(i), Names, PatternTop);
2883 }
2884}
2885
2886void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
2887 const PatternToMatch &PTM) {
2888 // Do some sanity checking on the pattern we're about to match.
2889 std::string Reason;
2890 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
2891 PrintWarning(Pattern->getRecord()->getLoc(),
2892 Twine("Pattern can never match: ") + Reason);
2893 return;
2894 }
2895
2896 // If the source pattern's root is a complex pattern, that complex pattern
2897 // must specify the nodes it can potentially match.
2898 if (const ComplexPattern *CP =
2899 PTM.getSrcPattern()->getComplexPatternInfo(*this))
2900 if (CP->getRootNodes().empty())
2901 Pattern->error("ComplexPattern at root must specify list of opcodes it"
2902 " could match");
2903
2904
2905 // Find all of the named values in the input and output, ensure they have the
2906 // same type.
2907 std::map<std::string, NameRecord> SrcNames, DstNames;
2908 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2909 FindNames(PTM.getDstPattern(), DstNames, Pattern);
2910
2911 // Scan all of the named values in the destination pattern, rejecting them if
2912 // they don't exist in the input pattern.
2913 for (std::map<std::string, NameRecord>::iterator
2914 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2915 if (SrcNames[I->first].first == 0)
2916 Pattern->error("Pattern has input without matching name in output: $" +
2917 I->first);
2918 }
2919
2920 // Scan all of the named values in the source pattern, rejecting them if the
2921 // name isn't used in the dest, and isn't used to tie two values together.
2922 for (std::map<std::string, NameRecord>::iterator
2923 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2924 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2925 Pattern->error("Pattern has dead named input: $" + I->first);
2926
2927 PatternsToMatch.push_back(PTM);
2928}
2929
2930
2931
2932void CodeGenDAGPatterns::InferInstructionFlags() {
2933 const std::vector<const CodeGenInstruction*> &Instructions =
2934 Target.getInstructionsByEnumValue();
2935
2936 // First try to infer flags from the primary instruction pattern, if any.
2937 SmallVector<CodeGenInstruction*, 8> Revisit;
2938 unsigned Errors = 0;
2939 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2940 CodeGenInstruction &InstInfo =
2941 const_cast<CodeGenInstruction &>(*Instructions[i]);
2942
2943 // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
2944 // This flag is obsolete and will be removed.
2945 if (InstInfo.neverHasSideEffects) {
2946 assert(!InstInfo.hasSideEffects)((void)0);
2947 InstInfo.hasSideEffects_Unset = false;
2948 }
2949
2950 // Get the primary instruction pattern.
2951 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
2952 if (!Pattern) {
2953 if (InstInfo.hasUndefFlags())
2954 Revisit.push_back(&InstInfo);
2955 continue;
2956 }
2957 InstAnalyzer PatInfo(*this);
2958 PatInfo.Analyze(Pattern);
2959 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
2960 }
2961
2962 // Second, look for single-instruction patterns defined outside the
2963 // instruction.
2964 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
2965 const PatternToMatch &PTM = *I;
2966
2967 // We can only infer from single-instruction patterns, otherwise we won't
2968 // know which instruction should get the flags.
2969 SmallVector<Record*, 8> PatInstrs;
2970 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
2971 if (PatInstrs.size() != 1)
2972 continue;
2973
2974 // Get the single instruction.
2975 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
2976
2977 // Only infer properties from the first pattern. We'll verify the others.
2978 if (InstInfo.InferredFrom)
2979 continue;
2980
2981 InstAnalyzer PatInfo(*this);
2982 PatInfo.Analyze(&PTM);
2983 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
2984 }
2985
2986 if (Errors)
2987 PrintFatalError("pattern conflicts");
2988
2989 // Revisit instructions with undefined flags and no pattern.
2990 if (Target.guessInstructionProperties()) {
2991 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
2992 CodeGenInstruction &InstInfo = *Revisit[i];
2993 if (InstInfo.InferredFrom)
2994 continue;
2995 // The mayLoad and mayStore flags default to false.
2996 // Conservatively assume hasSideEffects if it wasn't explicit.
2997 if (InstInfo.hasSideEffects_Unset)
2998 InstInfo.hasSideEffects = true;
2999 }
3000 return;
3001 }
3002
3003 // Complain about any flags that are still undefined.
3004 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3005 CodeGenInstruction &InstInfo = *Revisit[i];
3006 if (InstInfo.InferredFrom)
3007 continue;
3008 if (InstInfo.hasSideEffects_Unset)
3009 PrintError(InstInfo.TheDef->getLoc(),
3010 "Can't infer hasSideEffects from patterns");
3011 if (InstInfo.mayStore_Unset)
3012 PrintError(InstInfo.TheDef->getLoc(),
3013 "Can't infer mayStore from patterns");
3014 if (InstInfo.mayLoad_Unset)
3015 PrintError(InstInfo.TheDef->getLoc(),
3016 "Can't infer mayLoad from patterns");
3017 }
3018}
3019
3020
3021/// Verify instruction flags against pattern node properties.
3022void CodeGenDAGPatterns::VerifyInstructionFlags() {
3023 unsigned Errors = 0;
3024 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3025 const PatternToMatch &PTM = *I;
3026 SmallVector<Record*, 8> Instrs;
3027 getInstructionsInTree(PTM.getDstPattern(), Instrs);
3028 if (Instrs.empty())
3029 continue;
3030
3031 // Count the number of instructions with each flag set.
3032 unsigned NumSideEffects = 0;
3033 unsigned NumStores = 0;
3034 unsigned NumLoads = 0;
3035 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3036 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3037 NumSideEffects += InstInfo.hasSideEffects;
3038 NumStores += InstInfo.mayStore;
3039 NumLoads += InstInfo.mayLoad;
3040 }
3041
3042 // Analyze the source pattern.
3043 InstAnalyzer PatInfo(*this);
3044 PatInfo.Analyze(&PTM);
3045
3046 // Collect error messages.
3047 SmallVector<std::string, 4> Msgs;
3048
3049 // Check for missing flags in the output.
3050 // Permit extra flags for now at least.
3051 if (PatInfo.hasSideEffects && !NumSideEffects)
3052 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3053
3054 // Don't verify store flags on instructions with side effects. At least for
3055 // intrinsics, side effects implies mayStore.
3056 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3057 Msgs.push_back("pattern may store, but mayStore isn't set");
3058
3059 // Similarly, mayStore implies mayLoad on intrinsics.
3060 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3061 Msgs.push_back("pattern may load, but mayLoad isn't set");
3062
3063 // Print error messages.
3064 if (Msgs.empty())
3065 continue;
3066 ++Errors;
3067
3068 for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
3069 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
3070 (Instrs.size() == 1 ?
3071 "instruction" : "output instructions"));
3072 // Provide the location of the relevant instruction definitions.
3073 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3074 if (Instrs[i] != PTM.getSrcRecord())
3075 PrintError(Instrs[i]->getLoc(), "defined here");
3076 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3077 if (InstInfo.InferredFrom &&
3078 InstInfo.InferredFrom != InstInfo.TheDef &&
3079 InstInfo.InferredFrom != PTM.getSrcRecord())
3080 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
3081 }
3082 }
3083 if (Errors)
3084 PrintFatalError("Errors in DAG patterns");
3085}
3086
3087/// Given a pattern result with an unresolved type, see if we can find one
3088/// instruction with an unresolved result type. Force this result type to an
3089/// arbitrary element if it's possible types to converge results.
3090static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3091 if (N->isLeaf())
3092 return false;
3093
3094 // Analyze children.
3095 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3096 if (ForceArbitraryInstResultType(N->getChild(i), TP))
3097 return true;
3098
3099 if (!N->getOperator()->isSubClassOf("Instruction"))
3100 return false;
3101
3102 // If this type is already concrete or completely unknown we can't do
3103 // anything.
3104 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3105 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3106 continue;
3107
3108 // Otherwise, force its type to the first possibility (an arbitrary choice).
3109 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3110 return true;
3111 }
3112
3113 return false;
3114}
3115
3116void CodeGenDAGPatterns::ParsePatterns() {
3117 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3118
3119 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1
Assuming 'i' is not equal to 'e'
2
Loop condition is true. Entering loop body
3120 Record *CurPattern = Patterns[i];
3121 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3122
3123 // If the pattern references the null_frag, there's nothing to do.
3124 if (hasNullFragReference(Tree))
3
Taking false branch
3125 continue;
3126
3127 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3128
3129 // Inline pattern fragments into it.
3130 Pattern->InlinePatternFragments();
3131
3132 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3133 if (LI->getSize() == 0) continue; // no pattern.
4
Taking false branch
3134
3135 // Parse the instruction.
3136 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
5
Memory is allocated
3137
3138 // Inline pattern fragments into it.
3139 Result->InlinePatternFragments();
3140
3141 if (Result->getNumTrees() != 1)
6
Taking false branch
3142 Result->error("Cannot handle instructions producing instructions "
3143 "with temporaries yet!");
3144
3145 bool IterateInference;
3146 bool InferredAllPatternTypes, InferredAllResultTypes;
3147 do {
10
Loop condition is false. Exiting loop
3148 // Infer as many types as possible. If we cannot infer all of them, we
3149 // can never do anything with this pattern: report it to the user.
3150 InferredAllPatternTypes =
3151 Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3152
3153 // Infer as many types as possible. If we cannot infer all of them, we
3154 // can never do anything with this pattern: report it to the user.
3155 InferredAllResultTypes =
3156 Result->InferAllTypes(&Pattern->getNamedNodesMap());
3157
3158 IterateInference = false;
3159
3160 // Apply the type of the result to the source pattern. This helps us
3161 // resolve cases where the input type is known to be a pointer type (which
3162 // is considered resolved), but the result knows it needs to be 32- or
3163 // 64-bits. Infer the other way for good measure.
3164 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
8
Loop condition is false. Execution continues on line 3182
3165 Pattern->getTree(0)->getNumTypes());
3166 i != e; ++i) {
7
Assuming 'i' is equal to 'e'
3167 IterateInference = Pattern->getTree(0)->
3168 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
3169 IterateInference |= Result->getTree(0)->
3170 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
3171 }
3172
3173 // If our iteration has converged and the input pattern's types are fully
3174 // resolved but the result pattern is not fully resolved, we may have a
3175 // situation where we have two instructions in the result pattern and
3176 // the instructions require a common register class, but don't care about
3177 // what actual MVT is used. This is actually a bug in our modelling:
3178 // output patterns should have register classes, not MVTs.
3179 //
3180 // In any case, to handle this, we just go through and disambiguate some
3181 // arbitrary types to the result pattern's nodes.
3182 if (!IterateInference && InferredAllPatternTypes &&
9
Taking false branch
3183 !InferredAllResultTypes)
3184 IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
3185 *Result);
3186 } while (IterateInference);
3187
3188 // Verify that we inferred enough types that we can do something with the
3189 // pattern and result. If these fire the user has to add type casts.
3190 if (!InferredAllPatternTypes)
11
Taking false branch
3191 Pattern->error("Could not infer all types in pattern!");
3192 if (!InferredAllResultTypes) {
12
Taking false branch
3193 Pattern->dump();
3194 Result->error("Could not infer all types in pattern result!");
3195 }
3196
3197 // Validate that the input pattern is correct.
3198 std::map<std::string, TreePatternNode*> InstInputs;
3199 std::map<std::string, TreePatternNode*> InstResults;
3200 std::vector<Record*> InstImpResults;
3201 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
13
Assuming 'j' is equal to 'ee'
14
Loop condition is false. Execution continues on line 3207
3202 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3203 InstInputs, InstResults,
3204 InstImpResults);
3205
3206 // Promote the xform function to be an explicit node if set.
3207 TreePatternNode *DstPattern = Result->getOnlyTree();
3208 std::vector<TreePatternNode*> ResultNodeOperands;
3209 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
15
Assuming 'ii' is equal to 'ee'
16
Loop condition is false. Execution continues on line 3219
3210 TreePatternNode *OpNode = DstPattern->getChild(ii);
3211 if (Record *Xform = OpNode->getTransformFn()) {
3212 OpNode->setTransformFn(0);
3213 std::vector<TreePatternNode*> Children;
3214 Children.push_back(OpNode);
3215 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3216 }
3217 ResultNodeOperands.push_back(OpNode);
3218 }
3219 DstPattern = Result->getOnlyTree();
3220 if (!DstPattern->isLeaf())
17
Taking true branch
3221 DstPattern = new TreePatternNode(DstPattern->getOperator(),
3222 ResultNodeOperands,
3223 DstPattern->getNumTypes());
3224
3225 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
18
Assuming 'i' is equal to 'e'
19
Loop condition is false. Execution continues on line 3228
3226 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
3227
3228 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
20
Memory is never released; potential leak of memory pointed to by 'Result'
3229 Temp.InferAllTypes();
3230
3231
3232 AddPatternToMatch(Pattern,
3233 PatternToMatch(CurPattern,
3234 CurPattern->getValueAsListInit("Predicates"),
3235 Pattern->getTree(0),
3236 Temp.getOnlyTree(), InstImpResults,
3237 CurPattern->getValueAsInt("AddedComplexity"),
3238 CurPattern->getID()));
3239 }
3240}
3241
3242/// CombineChildVariants - Given a bunch of permutations of each child of the
3243/// 'operator' node, put them together in all possible ways.
3244static void CombineChildVariants(TreePatternNode *Orig,
3245 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3246 std::vector<TreePatternNode*> &OutVariants,
3247 CodeGenDAGPatterns &CDP,
3248 const MultipleUseVarSet &DepVars) {
3249 // Make sure that each operand has at least one variant to choose from.
3250 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3251 if (ChildVariants[i].empty())
3252 return;
3253
3254 // The end result is an all-pairs construction of the resultant pattern.
3255 std::vector<unsigned> Idxs;
3256 Idxs.resize(ChildVariants.size());
3257 bool NotDone;
3258 do {
3259#ifndef NDEBUG1
3260 DEBUG(if (!Idxs.empty()) {do { } while (0)
3261 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";do { } while (0)
3262 for (unsigned i = 0; i < Idxs.size(); ++i) {do { } while (0)
3263 errs() << Idxs[i] << " ";do { } while (0)
3264 }do { } while (0)
3265 errs() << "]\n";do { } while (0)
3266 })do { } while (0);
3267#endif
3268 // Create the variant and add it to the output list.
3269 std::vector<TreePatternNode*> NewChildren;
3270 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3271 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3272 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3273 Orig->getNumTypes());
3274
3275 // Copy over properties.
3276 R->setName(Orig->getName());
3277 R->setPredicateFns(Orig->getPredicateFns());
3278 R->setTransformFn(Orig->getTransformFn());
3279 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3280 R->setType(i, Orig->getExtType(i));
3281
3282 // If this pattern cannot match, do not include it as a variant.
3283 std::string ErrString;
3284 if (!R->canPatternMatch(ErrString, CDP)) {
3285 delete R;
3286 } else {
3287 bool AlreadyExists = false;
3288
3289 // Scan to see if this pattern has already been emitted. We can get
3290 // duplication due to things like commuting:
3291 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3292 // which are the same pattern. Ignore the dups.
3293 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3294 if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3295 AlreadyExists = true;
3296 break;
3297 }
3298
3299 if (AlreadyExists)
3300 delete R;
3301 else
3302 OutVariants.push_back(R);
3303 }
3304
3305 // Increment indices to the next permutation by incrementing the
3306 // indicies from last index backward, e.g., generate the sequence
3307 // [0, 0], [0, 1], [1, 0], [1, 1].
3308 int IdxsIdx;
3309 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3310 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3311 Idxs[IdxsIdx] = 0;
3312 else
3313 break;
3314 }
3315 NotDone = (IdxsIdx >= 0);
3316 } while (NotDone);
3317}
3318
3319/// CombineChildVariants - A helper function for binary operators.
3320///
3321static void CombineChildVariants(TreePatternNode *Orig,
3322 const std::vector<TreePatternNode*> &LHS,
3323 const std::vector<TreePatternNode*> &RHS,
3324 std::vector<TreePatternNode*> &OutVariants,
3325 CodeGenDAGPatterns &CDP,
3326 const MultipleUseVarSet &DepVars) {
3327 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3328 ChildVariants.push_back(LHS);
3329 ChildVariants.push_back(RHS);
3330 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3331}
3332
3333
3334static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3335 std::vector<TreePatternNode *> &Children) {
3336 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!")((void)0);
3337 Record *Operator = N->getOperator();
3338
3339 // Only permit raw nodes.
3340 if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3341 N->getTransformFn()) {
3342 Children.push_back(N);
3343 return;
3344 }
3345
3346 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3347 Children.push_back(N->getChild(0));
3348 else
3349 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3350
3351 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3352 Children.push_back(N->getChild(1));
3353 else
3354 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3355}
3356
3357/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3358/// the (potentially recursive) pattern by using algebraic laws.
3359///
3360static void GenerateVariantsOf(TreePatternNode *N,
3361 std::vector<TreePatternNode*> &OutVariants,
3362 CodeGenDAGPatterns &CDP,
3363 const MultipleUseVarSet &DepVars) {
3364 // We cannot permute leaves.
3365 if (N->isLeaf()) {
3366 OutVariants.push_back(N);
3367 return;
3368 }
3369
3370 // Look up interesting info about the node.
3371 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3372
3373 // If this node is associative, re-associate.
3374 if (NodeInfo.hasProperty(SDNPAssociative)) {
3375 // Re-associate by pulling together all of the linked operators
3376 std::vector<TreePatternNode*> MaximalChildren;
3377 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3378
3379 // Only handle child sizes of 3. Otherwise we'll end up trying too many
3380 // permutations.
3381 if (MaximalChildren.size() == 3) {
3382 // Find the variants of all of our maximal children.
3383 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3384 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3385 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3386 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3387
3388 // There are only two ways we can permute the tree:
3389 // (A op B) op C and A op (B op C)
3390 // Within these forms, we can also permute A/B/C.
3391
3392 // Generate legal pair permutations of A/B/C.
3393 std::vector<TreePatternNode*> ABVariants;
3394 std::vector<TreePatternNode*> BAVariants;
3395 std::vector<TreePatternNode*> ACVariants;
3396 std::vector<TreePatternNode*> CAVariants;
3397 std::vector<TreePatternNode*> BCVariants;
3398 std::vector<TreePatternNode*> CBVariants;
3399 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3400 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3401 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3402 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3403 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3404 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3405
3406 // Combine those into the result: (x op x) op x
3407 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3408 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3409 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3410 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3411 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3412 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3413
3414 // Combine those into the result: x op (x op x)
3415 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3416 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3417 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3418 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3419 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3420 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3421 return;
3422 }
3423 }
3424
3425 // Compute permutations of all children.
3426 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3427 ChildVariants.resize(N->getNumChildren());
3428 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3429 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3430
3431 // Build all permutations based on how the children were formed.
3432 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3433
3434 // If this node is commutative, consider the commuted order.
3435 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3436 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3437 assert((N->getNumChildren()==2 || isCommIntrinsic) &&((void)0)
3438 "Commutative but doesn't have 2 children!")((void)0);
3439 // Don't count children which are actually register references.
3440 unsigned NC = 0;
3441 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3442 TreePatternNode *Child = N->getChild(i);
3443 if (Child->isLeaf())
3444 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3445 Record *RR = DI->getDef();
3446 if (RR->isSubClassOf("Register"))
3447 continue;
3448 }
3449 NC++;
3450 }
3451 // Consider the commuted order.
3452 if (isCommIntrinsic) {
3453 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3454 // operands are the commutative operands, and there might be more operands
3455 // after those.
3456 assert(NC >= 3 &&((void)0)
3457 "Commutative intrinsic should have at least 3 childrean!")((void)0);
3458 std::vector<std::vector<TreePatternNode*> > Variants;
3459 Variants.push_back(ChildVariants[0]); // Intrinsic id.
3460 Variants.push_back(ChildVariants[2]);
3461 Variants.push_back(ChildVariants[1]);
3462 for (unsigned i = 3; i != NC; ++i)
3463 Variants.push_back(ChildVariants[i]);
3464 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3465 } else if (NC == 2)
3466 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3467 OutVariants, CDP, DepVars);
3468 }
3469}
3470
3471
3472// GenerateVariants - Generate variants. For example, commutative patterns can
3473// match multiple ways. Add them to PatternsToMatch as well.
3474void CodeGenDAGPatterns::GenerateVariants() {
3475 DEBUG(errs() << "Generating instruction variants.\n")do { } while (0);
3476
3477 // Loop over all of the patterns we've collected, checking to see if we can
3478 // generate variants of the instruction, through the exploitation of
3479 // identities. This permits the target to provide aggressive matching without
3480 // the .td file having to contain tons of variants of instructions.
3481 //
3482 // Note that this loop adds new patterns to the PatternsToMatch list, but we
3483 // intentionally do not reconsider these. Any variants of added patterns have
3484 // already been added.
3485 //
3486 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3487 MultipleUseVarSet DepVars;
3488 std::vector<TreePatternNode*> Variants;
3489 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3490 DEBUG(errs() << "Dependent/multiply used variables: ")do { } while (0);
3491 DEBUG(DumpDepVars(DepVars))do { } while (0);
3492 DEBUG(errs() << "\n")do { } while (0);
3493 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3494 DepVars);
3495
3496 assert(!Variants.empty() && "Must create at least original variant!")((void)0);
3497 Variants.erase(Variants.begin()); // Remove the original pattern.
3498
3499 if (Variants.empty()) // No variants for this pattern.
3500 continue;
3501
3502 DEBUG(errs() << "FOUND VARIANTS OF: ";do { } while (0)
3503 PatternsToMatch[i].getSrcPattern()->dump();do { } while (0)
3504 errs() << "\n")do { } while (0);
3505
3506 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3507 TreePatternNode *Variant = Variants[v];
3508
3509 DEBUG(errs() << " VAR#" << v << ": ";do { } while (0)
3510 Variant->dump();do { } while (0)
3511 errs() << "\n")do { } while (0);
3512
3513 // Scan to see if an instruction or explicit pattern already matches this.
3514 bool AlreadyExists = false;
3515 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3516 // Skip if the top level predicates do not match.
3517 if (PatternsToMatch[i].getPredicates() !=
3518 PatternsToMatch[p].getPredicates())
3519 continue;
3520 // Check to see if this variant already exists.
3521 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3522 DepVars)) {
3523 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n")do { } while (0);
3524 AlreadyExists = true;
3525 break;
3526 }
3527 }
3528 // If we already have it, ignore the variant.
3529 if (AlreadyExists) continue;
3530
3531 // Otherwise, add it to the list of patterns we have.
3532 PatternsToMatch.
3533 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3534 PatternsToMatch[i].getPredicates(),
3535 Variant, PatternsToMatch[i].getDstPattern(),
3536 PatternsToMatch[i].getDstRegs(),
3537 PatternsToMatch[i].getAddedComplexity(),
3538 Record::getNewUID()));
3539 }
3540
3541 DEBUG(errs() << "\n")do { } while (0);
3542 }
3543}