r366450 - [RISCV] Hard float ABI support

Ilya Biryukov via cfe-commits cfe-commits at lists.llvm.org
Thu Jul 18 09:08:52 PDT 2019


Hi Alex,

I'm seeing a few test failures after your commit.
Any ideas on how to fix this?


Failing Tests (2):
    Clang :: Driver/riscv-abi.c
    Clang :: Preprocessor/riscv-target-features.c

The failures are:
/usr/local/google/home/ibiryukov/projects/llvm/clang/test/Preprocessor/riscv-target-features.c:71:18:
error: CHECK-DOUBLE: expected string not found in input
// CHECK-DOUBLE: __riscv_float_abi_double 1
                 ^
<stdin>:1:1: note: scanning from here
#define _ILP32 1
^
<stdin>:12:9: note: possible intended match here
#define __CHAR_BIT__ 8
        ^

/usr/local/google/home/ibiryukov/projects/llvm/clang/test/Driver/riscv-abi.c:16:18:
error: CHECK-ILP32F: expected string not found in input
// CHECK-ILP32F: error: unknown target ABI 'ilp32f'
                 ^
<stdin>:1:1: note: scanning from here
Hard-float 'f' ABI can't be used for a target that doesn't support the F
instruction set extension (ignoring target-abi)
^
<stdin>:1:93: note: possible intended match here
Hard-float 'f' ABI can't be used for a target that doesn't support the F
instruction set extension (ignoring target-abi)



On Thu, Jul 18, 2019 at 5:33 PM Alex Bradbury via cfe-commits <
cfe-commits at lists.llvm.org> wrote:

> Author: asb
> Date: Thu Jul 18 08:33:41 2019
> New Revision: 366450
>
> URL: http://llvm.org/viewvc/llvm-project?rev=366450&view=rev
> Log:
> [RISCV] Hard float ABI support
>
> The RISC-V hard float calling convention requires the frontend to:
>
> * Detect cases where, once "flattened", a struct can be passed using
> int+fp or fp+fp registers under the hard float ABI and coerce to the
> appropriate type(s) * Track usage of GPRs and FPRs in order to gate the
> above, and to
> determine when signext/zeroext attributes must be added to integer
> scalars
>
> This patch attempts to do this in compliance with the documented ABI,
> and uses ABIArgInfo::CoerceAndExpand in order to do this. @rjmccall, as
> author of that code I've tagged you as reviewer for initial feedback on
> my usage.
>
> Note that a previous version of the ABI indicated that when passing an
> int+fp struct using a GPR+FPR, the int would need to be sign or
> zero-extended appropriately. GCC never did this and the ABI was changed,
> which makes life easier as ABIArgInfo::CoerceAndExpand can't currently
> handle sign/zero-extension attributes.
>
> Differential Revision: https://reviews.llvm.org/D60456
>
> Added:
>     cfe/trunk/test/CodeGen/riscv32-ilp32d-abi.c
>     cfe/trunk/test/CodeGen/riscv32-ilp32f-abi.c
>     cfe/trunk/test/CodeGen/riscv32-ilp32f-ilp32d-abi.c
>     cfe/trunk/test/CodeGen/riscv64-lp64d-abi.c
>     cfe/trunk/test/CodeGen/riscv64-lp64f-lp64d-abi.c
> Modified:
>     cfe/trunk/lib/Basic/Targets/RISCV.cpp
>     cfe/trunk/lib/Basic/Targets/RISCV.h
>     cfe/trunk/lib/CodeGen/TargetInfo.cpp
>     cfe/trunk/test/CodeGen/riscv32-ilp32-ilp32f-abi.c
>     cfe/trunk/test/CodeGen/riscv32-ilp32-ilp32f-ilp32d-abi.c
>     cfe/trunk/test/CodeGen/riscv64-lp64-lp64f-abi.c
>     cfe/trunk/test/CodeGen/riscv64-lp64-lp64f-lp64d-abi.c
>     cfe/trunk/test/Preprocessor/riscv-target-features.c
>
> Modified: cfe/trunk/lib/Basic/Targets/RISCV.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Basic/Targets/RISCV.cpp?rev=366450&r1=366449&r2=366450&view=diff
>
> ==============================================================================
> --- cfe/trunk/lib/Basic/Targets/RISCV.cpp (original)
> +++ cfe/trunk/lib/Basic/Targets/RISCV.cpp Thu Jul 18 08:33:41 2019
> @@ -65,9 +65,18 @@ void RISCVTargetInfo::getTargetDefines(c
>    Builder.defineMacro("__riscv");
>    bool Is64Bit = getTriple().getArch() == llvm::Triple::riscv64;
>    Builder.defineMacro("__riscv_xlen", Is64Bit ? "64" : "32");
> -  // TODO: modify when more code models and ABIs are supported.
> +  // TODO: modify when more code models are supported.
>    Builder.defineMacro("__riscv_cmodel_medlow");
> -  Builder.defineMacro("__riscv_float_abi_soft");
> +
> +  StringRef ABIName = getABI();
> +  if (ABIName == "ilp32f" || ABIName == "lp64f")
> +    Builder.defineMacro("__riscv_float_abi_single");
> +  else if (ABIName == "ilp32d" || ABIName == "lp64d")
> +    Builder.defineMacro("__riscv_float_abi_double");
> +  else if (ABIName == "ilp32e")
> +    Builder.defineMacro("__riscv_abi_rve");
> +  else
> +    Builder.defineMacro("__riscv_float_abi_soft");
>
>    if (HasM) {
>      Builder.defineMacro("__riscv_mul");
>
> Modified: cfe/trunk/lib/Basic/Targets/RISCV.h
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Basic/Targets/RISCV.h?rev=366450&r1=366449&r2=366450&view=diff
>
> ==============================================================================
> --- cfe/trunk/lib/Basic/Targets/RISCV.h (original)
> +++ cfe/trunk/lib/Basic/Targets/RISCV.h Thu Jul 18 08:33:41 2019
> @@ -87,8 +87,7 @@ public:
>    }
>
>    bool setABI(const std::string &Name) override {
> -    // TODO: support ilp32f and ilp32d ABIs.
> -    if (Name == "ilp32") {
> +    if (Name == "ilp32" || Name == "ilp32f" || Name == "ilp32d") {
>        ABI = Name;
>        return true;
>      }
> @@ -105,8 +104,7 @@ public:
>    }
>
>    bool setABI(const std::string &Name) override {
> -    // TODO: support lp64f and lp64d ABIs.
> -    if (Name == "lp64") {
> +    if (Name == "lp64" || Name == "lp64f" || Name == "lp64d") {
>        ABI = Name;
>        return true;
>      }
>
> Modified: cfe/trunk/lib/CodeGen/TargetInfo.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.cpp?rev=366450&r1=366449&r2=366450&view=diff
>
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/TargetInfo.cpp (original)
> +++ cfe/trunk/lib/CodeGen/TargetInfo.cpp Thu Jul 18 08:33:41 2019
> @@ -9188,25 +9188,44 @@ static bool getTypeString(SmallStringEnc
>  namespace {
>  class RISCVABIInfo : public DefaultABIInfo {
>  private:
> -  unsigned XLen; // Size of the integer ('x') registers in bits.
> +  // Size of the integer ('x') registers in bits.
> +  unsigned XLen;
> +  // Size of the floating point ('f') registers in bits. Note that the
> target
> +  // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF
> target
> +  // with soft float ABI has FLen==0).
> +  unsigned FLen;
>    static const int NumArgGPRs = 8;
> +  static const int NumArgFPRs = 8;
> +  bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
> +                                      llvm::Type *&Field1Ty,
> +                                      CharUnits &Field1Off,
> +                                      llvm::Type *&Field2Ty,
> +                                      CharUnits &Field2Off) const;
>
>  public:
> -  RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
> -      : DefaultABIInfo(CGT), XLen(XLen) {}
> +  RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
> +      : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
>
>    // DefaultABIInfo's classifyReturnType and classifyArgumentType are
>    // non-virtual, but computeInfo is virtual, so we overload it.
>    void computeInfo(CGFunctionInfo &FI) const override;
>
> -  ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed,
> -                                  int &ArgGPRsLeft) const;
> +  ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int
> &ArgGPRsLeft,
> +                                  int &ArgFPRsLeft) const;
>    ABIArgInfo classifyReturnType(QualType RetTy) const;
>
>    Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
>                      QualType Ty) const override;
>
>    ABIArgInfo extendType(QualType Ty) const;
> +
> +  bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
> CharUnits &Field1Off,
> +                                llvm::Type *&Field2Ty, CharUnits
> &Field2Off,
> +                                int &NeededArgGPRs, int &NeededArgFPRs)
> const;
> +  ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
> +                                               CharUnits Field1Off,
> +                                               llvm::Type *Field2Ty,
> +                                               CharUnits Field2Off) const;
>  };
>  } // end anonymous namespace
>
> @@ -9228,18 +9247,214 @@ void RISCVABIInfo::computeInfo(CGFunctio
>    // different for variadic arguments, we must also track whether we are
>    // examining a vararg or not.
>    int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
> +  int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
>    int NumFixedArgs = FI.getNumRequiredArgs();
>
>    int ArgNum = 0;
>    for (auto &ArgInfo : FI.arguments()) {
>      bool IsFixed = ArgNum < NumFixedArgs;
> -    ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed,
> ArgGPRsLeft);
> +    ArgInfo.info =
> +        classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft,
> ArgFPRsLeft);
>      ArgNum++;
>    }
>  }
>
> +// Returns true if the struct is a potential candidate for the floating
> point
> +// calling convention. If this function returns true, the caller is
> +// responsible for checking that if there is only a single field then that
> +// field is a float.
> +bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits
> CurOff,
> +                                                  llvm::Type *&Field1Ty,
> +                                                  CharUnits &Field1Off,
> +                                                  llvm::Type *&Field2Ty,
> +                                                  CharUnits &Field2Off)
> const {
> +  bool IsInt = Ty->isIntegralOrEnumerationType();
> +  bool IsFloat = Ty->isRealFloatingType();
> +
> +  if (IsInt || IsFloat) {
> +    uint64_t Size = getContext().getTypeSize(Ty);
> +    if (IsInt && Size > XLen)
> +      return false;
> +    // Can't be eligible if larger than the FP registers. Half precision
> isn't
> +    // currently supported on RISC-V and the ABI hasn't been confirmed, so
> +    // default to the integer ABI in that case.
> +    if (IsFloat && (Size > FLen || Size < 32))
> +      return false;
> +    // Can't be eligible if an integer type was already found (int+int
> pairs
> +    // are not eligible).
> +    if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
> +      return false;
> +    if (!Field1Ty) {
> +      Field1Ty = CGT.ConvertType(Ty);
> +      Field1Off = CurOff;
> +      return true;
> +    }
> +    if (!Field2Ty) {
> +      Field2Ty = CGT.ConvertType(Ty);
> +      Field2Off = CurOff;
> +      return true;
> +    }
> +    return false;
> +  }
> +
> +  if (auto CTy = Ty->getAs<ComplexType>()) {
> +    if (Field1Ty)
> +      return false;
> +    QualType EltTy = CTy->getElementType();
> +    if (getContext().getTypeSize(EltTy) > FLen)
> +      return false;
> +    Field1Ty = CGT.ConvertType(EltTy);
> +    Field1Off = CurOff;
> +    assert(CurOff.isZero() && "Unexpected offset for first field");
> +    Field2Ty = Field1Ty;
> +    Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
> +    return true;
> +  }
> +
> +  if (const ConstantArrayType *ATy =
> getContext().getAsConstantArrayType(Ty)) {
> +    uint64_t ArraySize = ATy->getSize().getZExtValue();
> +    QualType EltTy = ATy->getElementType();
> +    CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
> +    for (uint64_t i = 0; i < ArraySize; ++i) {
> +      bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
> Field1Off,
> +                                                Field2Ty, Field2Off);
> +      if (!Ret)
> +        return false;
> +      CurOff += EltSize;
> +    }
> +    return true;
> +  }
> +
> +  if (const auto *RTy = Ty->getAs<RecordType>()) {
> +    // Structures with either a non-trivial destructor or a non-trivial
> +    // copy constructor are not eligible for the FP calling convention.
> +    if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, CGT.getCXXABI()))
> +      return false;
> +    if (isEmptyRecord(getContext(), Ty, true))
> +      return true;
> +    const RecordDecl *RD = RTy->getDecl();
> +    // Unions aren't eligible unless they're empty (which is caught
> above).
> +    if (RD->isUnion())
> +      return false;
> +    int ZeroWidthBitFieldCount = 0;
> +    for (const FieldDecl *FD : RD->fields()) {
> +      const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
> +      uint64_t FieldOffInBits =
> Layout.getFieldOffset(FD->getFieldIndex());
> +      QualType QTy = FD->getType();
> +      if (FD->isBitField()) {
> +        unsigned BitWidth = FD->getBitWidthValue(getContext());
> +        // Allow a bitfield with a type greater than XLen as long as the
> +        // bitwidth is XLen or less.
> +        if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
> +          QTy = getContext().getIntTypeForBitwidth(XLen, false);
> +        if (BitWidth == 0) {
> +          ZeroWidthBitFieldCount++;
> +          continue;
> +        }
> +      }
> +
> +      bool Ret = detectFPCCEligibleStructHelper(
> +          QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
> +          Field1Ty, Field1Off, Field2Ty, Field2Off);
> +      if (!Ret)
> +        return false;
> +
> +      // As a quirk of the ABI, zero-width bitfields aren't ignored for
> fp+fp
> +      // or int+fp structs, but are ignored for a struct with an fp field
> and
> +      // any number of zero-width bitfields.
> +      if (Field2Ty && ZeroWidthBitFieldCount > 0)
> +        return false;
> +    }
> +    return Field1Ty != nullptr;
> +  }
> +
> +  return false;
> +}
> +
> +// Determine if a struct is eligible for passing according to the floating
> +// point calling convention (i.e., when flattened it contains a single fp
> +// value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
> +// NeededArgGPRs are incremented appropriately.
> +bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type
> *&Field1Ty,
> +                                            CharUnits &Field1Off,
> +                                            llvm::Type *&Field2Ty,
> +                                            CharUnits &Field2Off,
> +                                            int &NeededArgGPRs,
> +                                            int &NeededArgFPRs) const {
> +  Field1Ty = nullptr;
> +  Field2Ty = nullptr;
> +  NeededArgGPRs = 0;
> +  NeededArgFPRs = 0;
> +  bool IsCandidate = detectFPCCEligibleStructHelper(
> +      Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
> +  // Not really a candidate if we have a single int but no float.
> +  if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
> +    return IsCandidate = false;
> +  if (!IsCandidate)
> +    return false;
> +  if (Field1Ty && Field1Ty->isFloatingPointTy())
> +    NeededArgFPRs++;
> +  else if (Field1Ty)
> +    NeededArgGPRs++;
> +  if (Field2Ty && Field2Ty->isFloatingPointTy())
> +    NeededArgFPRs++;
> +  else if (Field2Ty)
> +    NeededArgGPRs++;
> +  return IsCandidate;
> +}
> +
> +// Call getCoerceAndExpand for the two-element flattened struct described
> by
> +// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
> appropriate
> +// coerceToType and unpaddedCoerceToType.
> +ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
> +    llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
> CharUnits Field2Off) const {
> +  SmallVector<llvm::Type *, 3> CoerceElts;
> +  SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
> +  if (!Field1Off.isZero())
> +    CoerceElts.push_back(llvm::ArrayType::get(
> +        llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
> +
> +  CoerceElts.push_back(Field1Ty);
> +  UnpaddedCoerceElts.push_back(Field1Ty);
> +
> +  if (!Field2Ty) {
> +    return ABIArgInfo::getCoerceAndExpand(
> +        llvm::StructType::get(getVMContext(), CoerceElts,
> !Field1Off.isZero()),
> +        UnpaddedCoerceElts[0]);
> +  }
> +
> +  CharUnits Field2Align =
> +
> CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
> +  CharUnits Field1Size =
> +      CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
> +  CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align);
> +
> +  CharUnits Padding = CharUnits::Zero();
> +  if (Field2Off > Field2OffNoPadNoPack)
> +    Padding = Field2Off - Field2OffNoPadNoPack;
> +  else if (Field2Off != Field2Align && Field2Off > Field1Size)
> +    Padding = Field2Off - Field1Size;
> +
> +  bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
> +
> +  if (!Padding.isZero())
> +    CoerceElts.push_back(llvm::ArrayType::get(
> +        llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
> +
> +  CoerceElts.push_back(Field2Ty);
> +  UnpaddedCoerceElts.push_back(Field2Ty);
> +
> +  auto CoerceToType =
> +      llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
> +  auto UnpaddedCoerceToType =
> +      llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
> +
> +  return ABIArgInfo::getCoerceAndExpand(CoerceToType,
> UnpaddedCoerceToType);
> +}
> +
>  ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
> -                                              int &ArgGPRsLeft) const {
> +                                              int &ArgGPRsLeft,
> +                                              int &ArgFPRsLeft) const {
>    assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
>    Ty = useFirstFieldIfTransparentUnion(Ty);
>
> @@ -9257,6 +9472,40 @@ ABIArgInfo RISCVABIInfo::classifyArgumen
>      return ABIArgInfo::getIgnore();
>
>    uint64_t Size = getContext().getTypeSize(Ty);
> +
> +  // Pass floating point values via FPRs if possible.
> +  if (IsFixed && Ty->isFloatingType() && FLen >= Size && ArgFPRsLeft) {
> +    ArgFPRsLeft--;
> +    return ABIArgInfo::getDirect();
> +  }
> +
> +  // Complex types for the hard float ABI must be passed direct rather
> than
> +  // using CoerceAndExpand.
> +  if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
> +    QualType EltTy = Ty->getAs<ComplexType>()->getElementType();
> +    if (getContext().getTypeSize(EltTy) <= FLen) {
> +      ArgFPRsLeft -= 2;
> +      return ABIArgInfo::getDirect();
> +    }
> +  }
> +
> +  if (IsFixed && FLen && Ty->isStructureOrClassType()) {
> +    llvm::Type *Field1Ty = nullptr;
> +    llvm::Type *Field2Ty = nullptr;
> +    CharUnits Field1Off = CharUnits::Zero();
> +    CharUnits Field2Off = CharUnits::Zero();
> +    int NeededArgGPRs;
> +    int NeededArgFPRs;
> +    bool IsCandidate = detectFPCCEligibleStruct(
> +        Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededArgGPRs,
> NeededArgFPRs);
> +    if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
> +        NeededArgFPRs <= ArgFPRsLeft) {
> +      ArgGPRsLeft -= NeededArgGPRs;
> +      ArgFPRsLeft -= NeededArgFPRs;
> +      return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off,
> Field2Ty, Field2Off);
> +    }
> +  }
> +
>    uint64_t NeededAlign = getContext().getTypeAlign(Ty);
>    bool MustUseStack = false;
>    // Determine the number of GPRs needed to pass the current argument
> @@ -9315,10 +9564,12 @@ ABIArgInfo RISCVABIInfo::classifyReturnT
>      return ABIArgInfo::getIgnore();
>
>    int ArgGPRsLeft = 2;
> +  int ArgFPRsLeft = FLen ? 2 : 0;
>
>    // The rules for return and argument types are the same, so defer to
>    // classifyArgumentType.
> -  return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft);
> +  return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
> +                              ArgFPRsLeft);
>  }
>
>  Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
> @@ -9353,8 +9604,9 @@ ABIArgInfo RISCVABIInfo::extendType(Qual
>  namespace {
>  class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
>  public:
> -  RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen)
> -      : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen)) {}
> +  RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
> +                         unsigned FLen)
> +      : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {}
>
>    void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
>                             CodeGen::CodeGenModule &CGM) const override {
> @@ -9493,9 +9745,16 @@ const TargetCodeGenInfo &CodeGenModule::
>      return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
>
>    case llvm::Triple::riscv32:
> -    return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 32));
> -  case llvm::Triple::riscv64:
> -    return SetCGInfo(new RISCVTargetCodeGenInfo(Types, 64));
> +  case llvm::Triple::riscv64: {
> +    StringRef ABIStr = getTarget().getABI();
> +    unsigned XLen = getTarget().getPointerWidth(0);
> +    unsigned ABIFLen = 0;
> +    if (ABIStr.endswith("f"))
> +      ABIFLen = 32;
> +    else if (ABIStr.endswith("d"))
> +      ABIFLen = 64;
> +    return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
> +  }
>
>    case llvm::Triple::systemz: {
>      bool HasVector = getTarget().getABI() == "vector";
>
> Modified: cfe/trunk/test/CodeGen/riscv32-ilp32-ilp32f-abi.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/riscv32-ilp32-ilp32f-abi.c?rev=366450&r1=366449&r2=366450&view=diff
>
> ==============================================================================
> --- cfe/trunk/test/CodeGen/riscv32-ilp32-ilp32f-abi.c (original)
> +++ cfe/trunk/test/CodeGen/riscv32-ilp32-ilp32f-abi.c Thu Jul 18 08:33:41
> 2019
> @@ -1,4 +1,6 @@
>  // RUN: %clang_cc1 -triple riscv32 -emit-llvm %s -o - | FileCheck %s
> +// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
>
>  // This file contains test cases that will have the same output for the
> ilp32
>  // and ilp32f ABIs.
> @@ -35,8 +37,8 @@ int f_scalar_stack_1(int32_t a, int64_t
>  // the presence of large return values that consume a register due to the
> need
>  // to pass a pointer.
>
> -// CHECK-LABEL: define void @f_scalar_stack_2(%struct.large* noalias sret
> %agg.result, i32 %a, i64 %b, i64 %c, fp128 %d, i8 zeroext %e, i8 %f, i8 %g)
> -struct large f_scalar_stack_2(int32_t a, int64_t b, int64_t c, long
> double d,
> +// CHECK-LABEL: define void @f_scalar_stack_2(%struct.large* noalias sret
> %agg.result, i32 %a, i64 %b, double %c, fp128 %d, i8 zeroext %e, i8 %f, i8
> %g)
> +struct large f_scalar_stack_2(int32_t a, int64_t b, double c, long double
> d,
>                                uint8_t e, int8_t f, uint8_t g) {
>    return (struct large){a, e, f, g};
>  }
>
> Modified: cfe/trunk/test/CodeGen/riscv32-ilp32-ilp32f-ilp32d-abi.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/riscv32-ilp32-ilp32f-ilp32d-abi.c?rev=366450&r1=366449&r2=366450&view=diff
>
> ==============================================================================
> --- cfe/trunk/test/CodeGen/riscv32-ilp32-ilp32f-ilp32d-abi.c (original)
> +++ cfe/trunk/test/CodeGen/riscv32-ilp32-ilp32f-ilp32d-abi.c Thu Jul 18
> 08:33:41 2019
> @@ -1,6 +1,10 @@
>  // RUN: %clang_cc1 -triple riscv32 -emit-llvm %s -o - | FileCheck %s
>  // RUN: %clang_cc1 -triple riscv32 -emit-llvm -fforce-enable-int128 %s -o
> - \
>  // RUN:   | FileCheck %s -check-prefixes=CHECK,CHECK-FORCEINT128
> +// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
> +// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
>
>  // This file contains test cases that will have the same output for the
> ilp32,
>  // ilp32f, and ilp32d ABIs.
>
> Added: cfe/trunk/test/CodeGen/riscv32-ilp32d-abi.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/riscv32-ilp32d-abi.c?rev=366450&view=auto
>
> ==============================================================================
> --- cfe/trunk/test/CodeGen/riscv32-ilp32d-abi.c (added)
> +++ cfe/trunk/test/CodeGen/riscv32-ilp32d-abi.c Thu Jul 18 08:33:41 2019
> @@ -0,0 +1,282 @@
> +// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
> +
> +#include <stdint.h>
> +
> +// Verify that the tracking of used GPRs and FPRs works correctly by
> checking
> +// that small integers are sign/zero extended when passed in registers.
> +
> +// Doubles are passed in FPRs, so argument 'i' will be passed
> zero-extended
> +// because it will be passed in a GPR.
> +
> +// CHECK: define void @f_fpr_tracking(double %a, double %b, double %c,
> double %d, double %e, double %f, double %g, double %h, i8 zeroext %i)
> +void f_fpr_tracking(double a, double b, double c, double d, double e,
> double f,
> +                    double g, double h, uint8_t i) {}
> +
> +// Check that fp, fp+fp, and int+fp structs are lowered correctly. These
> will
> +// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
> +// available the widths are <= XLEN and FLEN, and should be expanded to
> +// separate arguments in IR. They are passed by the same rules for
> returns,
> +// but will be lowered to simple two-element structs if necessary (as
> LLVM IR
> +// functions cannot return multiple values).
> +
> +// A struct containing just one floating-point real is passed as though it
> +// were a standalone floating-point real.
> +
> +struct double_s { double f; };
> +
> +// CHECK: define void @f_double_s_arg(double)
> +void f_double_s_arg(struct double_s a) {}
> +
> +// CHECK: define double @f_ret_double_s()
> +struct double_s f_ret_double_s() {
> +  return (struct double_s){1.0};
> +}
> +
> +// A struct containing a double and any number of zero-width bitfields is
> +// passed as though it were a standalone floating-point real.
> +
> +struct zbf_double_s { int : 0; double f; };
> +struct zbf_double_zbf_s { int : 0; double f; int : 0; };
> +
> +// CHECK: define void @f_zbf_double_s_arg(double)
> +void f_zbf_double_s_arg(struct zbf_double_s a) {}
> +
> +// CHECK: define double @f_ret_zbf_double_s()
> +struct zbf_double_s f_ret_zbf_double_s() {
> +  return (struct zbf_double_s){1.0};
> +}
> +
> +// CHECK: define void @f_zbf_double_zbf_s_arg(double)
> +void f_zbf_double_zbf_s_arg(struct zbf_double_zbf_s a) {}
> +
> +// CHECK: define double @f_ret_zbf_double_zbf_s()
> +struct zbf_double_zbf_s f_ret_zbf_double_zbf_s() {
> +  return (struct zbf_double_zbf_s){1.0};
> +}
> +
> +// Check that structs containing two floating point values (FLEN <=
> width) are
> +// expanded provided sufficient FPRs are available.
> +
> +struct double_double_s { double f; double g; };
> +struct double_float_s { double f; float g; };
> +
> +// CHECK: define void @f_double_double_s_arg(double, double)
> +void f_double_double_s_arg(struct double_double_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_double_double_s()
> +struct double_double_s f_ret_double_double_s() {
> +  return (struct double_double_s){1.0, 2.0};
> +}
> +
> +// CHECK: define void @f_double_float_s_arg(double, float)
> +void f_double_float_s_arg(struct double_float_s a) {}
> +
> +// CHECK: define { double, float } @f_ret_double_float_s()
> +struct double_float_s f_ret_double_float_s() {
> +  return (struct double_float_s){1.0, 2.0};
> +}
> +
> +// CHECK: define void @f_double_double_s_arg_insufficient_fprs(float %a,
> double %b, double %c, double %d, double %e, double %f, double %g,
> %struct.double_double_s* %h)
> +void f_double_double_s_arg_insufficient_fprs(float a, double b, double c,
> double d,
> +    double e, double f, double g, struct double_double_s h) {}
> +
> +// Check that structs containing int+double values are expanded, provided
> +// sufficient FPRs and GPRs are available. The integer components are
> neither
> +// sign or zero-extended.
> +
> +struct double_int8_s { double f; int8_t i; };
> +struct double_uint8_s { double f; uint8_t i; };
> +struct double_int32_s { double f; int32_t i; };
> +struct double_int64_s { double f; int64_t i; };
> +struct double_int64bf_s { double f; int64_t i : 32; };
> +struct double_int8_zbf_s { double f; int8_t i; int : 0; };
> +
> +// CHECK: define void @f_double_int8_s_arg(double, i8)
> +void f_double_int8_s_arg(struct double_int8_s a) {}
> +
> +// CHECK: define { double, i8 } @f_ret_double_int8_s()
> +struct double_int8_s f_ret_double_int8_s() {
> +  return (struct double_int8_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_double_uint8_s_arg(double, i8)
> +void f_double_uint8_s_arg(struct double_uint8_s a) {}
> +
> +// CHECK: define { double, i8 } @f_ret_double_uint8_s()
> +struct double_uint8_s f_ret_double_uint8_s() {
> +  return (struct double_uint8_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_double_int32_s_arg(double, i32)
> +void f_double_int32_s_arg(struct double_int32_s a) {}
> +
> +// CHECK: define { double, i32 } @f_ret_double_int32_s()
> +struct double_int32_s f_ret_double_int32_s() {
> +  return (struct double_int32_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_double_int64_s_arg(%struct.double_int64_s* %a)
> +void f_double_int64_s_arg(struct double_int64_s a) {}
> +
> +// CHECK: define void @f_ret_double_int64_s(%struct.double_int64_s*
> noalias sret %agg.result)
> +struct double_int64_s f_ret_double_int64_s() {
> +  return (struct double_int64_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_double_int64bf_s_arg(double, i32)
> +void f_double_int64bf_s_arg(struct double_int64bf_s a) {}
> +
> +// CHECK: define { double, i32 } @f_ret_double_int64bf_s()
> +struct double_int64bf_s f_ret_double_int64bf_s() {
> +  return (struct double_int64bf_s){1.0, 2};
> +}
> +
> +// The zero-width bitfield means the struct can't be passed according to
> the
> +// floating point calling convention.
> +
> +// CHECK: define void @f_double_int8_zbf_s(double, i8)
> +void f_double_int8_zbf_s(struct double_int8_zbf_s a) {}
> +
> +// CHECK: define { double, i8 } @f_ret_double_int8_zbf_s()
> +struct double_int8_zbf_s f_ret_double_int8_zbf_s() {
> +  return (struct double_int8_zbf_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_double_int8_s_arg_insufficient_gprs(i32 %a, i32
> %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, %struct.double_int8_s*
> %i)
> +void f_double_int8_s_arg_insufficient_gprs(int a, int b, int c, int d,
> int e,
> +                                          int f, int g, int h, struct
> double_int8_s i) {}
> +
> +// CHECK: define void @f_struct_double_int8_insufficient_fprs(float %a,
> double %b, double %c, double %d, double %e, double %f, double %g, double
> %h, %struct.double_int8_s* %i)
> +void f_struct_double_int8_insufficient_fprs(float a, double b, double c,
> double d,
> +                                           double e, double f, double g,
> double h, struct double_int8_s i) {}
> +
> +// Complex floating-point values or structs containing a single complex
> +// floating-point value should be passed as if it were an fp+fp struct.
> +
> +// CHECK: define void @f_doublecomplex(double %a.coerce0, double
> %a.coerce1)
> +void f_doublecomplex(double __complex__ a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublecomplex()
> +double __complex__ f_ret_doublecomplex() {
> +  return 1.0;
> +}
> +
> +struct doublecomplex_s { double __complex__ c; };
> +
> +// CHECK: define void @f_doublecomplex_s_arg(double, double)
> +void f_doublecomplex_s_arg(struct doublecomplex_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublecomplex_s()
> +struct doublecomplex_s f_ret_doublecomplex_s() {
> +  return (struct doublecomplex_s){1.0};
> +}
> +
> +// Test single or two-element structs that need flattening. e.g. those
> +// containing nested structs, doubles in small arrays, zero-length
> structs etc.
> +
> +struct doublearr1_s { double a[1]; };
> +
> +// CHECK: define void @f_doublearr1_s_arg(double)
> +void f_doublearr1_s_arg(struct doublearr1_s a) {}
> +
> +// CHECK: define double @f_ret_doublearr1_s()
> +struct doublearr1_s f_ret_doublearr1_s() {
> +  return (struct doublearr1_s){{1.0}};
> +}
> +
> +struct doublearr2_s { double a[2]; };
> +
> +// CHECK: define void @f_doublearr2_s_arg(double, double)
> +void f_doublearr2_s_arg(struct doublearr2_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublearr2_s()
> +struct doublearr2_s f_ret_doublearr2_s() {
> +  return (struct doublearr2_s){{1.0, 2.0}};
> +}
> +
> +struct doublearr2_tricky1_s { struct { double f[1]; } g[2]; };
> +
> +// CHECK: define void @f_doublearr2_tricky1_s_arg(double, double)
> +void f_doublearr2_tricky1_s_arg(struct doublearr2_tricky1_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublearr2_tricky1_s()
> +struct doublearr2_tricky1_s f_ret_doublearr2_tricky1_s() {
> +  return (struct doublearr2_tricky1_s){{{{1.0}}, {{2.0}}}};
> +}
> +
> +struct doublearr2_tricky2_s { struct {}; struct { double f[1]; } g[2]; };
> +
> +// CHECK: define void @f_doublearr2_tricky2_s_arg(double, double)
> +void f_doublearr2_tricky2_s_arg(struct doublearr2_tricky2_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublearr2_tricky2_s()
> +struct doublearr2_tricky2_s f_ret_doublearr2_tricky2_s() {
> +  return (struct doublearr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
> +}
> +
> +struct doublearr2_tricky3_s { union {}; struct { double f[1]; } g[2]; };
> +
> +// CHECK: define void @f_doublearr2_tricky3_s_arg(double, double)
> +void f_doublearr2_tricky3_s_arg(struct doublearr2_tricky3_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublearr2_tricky3_s()
> +struct doublearr2_tricky3_s f_ret_doublearr2_tricky3_s() {
> +  return (struct doublearr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
> +}
> +
> +struct doublearr2_tricky4_s { union {}; struct { struct {}; double f[1];
> } g[2]; };
> +
> +// CHECK: define void @f_doublearr2_tricky4_s_arg(double, double)
> +void f_doublearr2_tricky4_s_arg(struct doublearr2_tricky4_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublearr2_tricky4_s()
> +struct doublearr2_tricky4_s f_ret_doublearr2_tricky4_s() {
> +  return (struct doublearr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
> +}
> +
> +// Test structs that should be passed according to the normal integer
> calling
> +// convention.
> +
> +struct int_double_int_s { int a; double b; int c; };
> +
> +// CHECK: define void @f_int_double_int_s_arg(%struct.int_double_int_s*
> %a)
> +void f_int_double_int_s_arg(struct int_double_int_s a) {}
> +
> +// CHECK: define void @f_ret_int_double_int_s(%struct.int_double_int_s*
> noalias sret %agg.result)
> +struct int_double_int_s f_ret_int_double_int_s() {
> +  return (struct int_double_int_s){1, 2.0, 3};
> +}
> +
> +struct int64_double_s { int64_t a; double b; };
> +
> +// CHECK: define void @f_int64_double_s_arg(%struct.int64_double_s* %a)
> +void f_int64_double_s_arg(struct int64_double_s a) {}
> +
> +// CHECK: define void @f_ret_int64_double_s(%struct.int64_double_s*
> noalias sret %agg.result)
> +struct int64_double_s f_ret_int64_double_s() {
> +  return (struct int64_double_s){1, 2.0};
> +}
> +
> +struct char_char_double_s { char a; char b; double c; };
> +
> +// CHECK-LABEL: define void
> @f_char_char_double_s_arg(%struct.char_char_double_s* %a)
> +void f_char_char_double_s_arg(struct char_char_double_s a) {}
> +
> +// CHECK: define void
> @f_ret_char_char_double_s(%struct.char_char_double_s* noalias sret
> %agg.result)
> +struct char_char_double_s f_ret_char_char_double_s() {
> +  return (struct char_char_double_s){1, 2, 3.0};
> +}
> +
> +// Unions are always passed according to the integer calling convention,
> even
> +// if they can only contain a double.
> +
> +union double_u { double a; };
> +
> +// CHECK: define void @f_double_u_arg(i64 %a.coerce)
> +void f_double_u_arg(union double_u a) {}
> +
> +// CHECK: define i64 @f_ret_double_u()
> +union double_u f_ret_double_u() {
> +  return (union double_u){1.0};
> +}
>
> Added: cfe/trunk/test/CodeGen/riscv32-ilp32f-abi.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/riscv32-ilp32f-abi.c?rev=366450&view=auto
>
> ==============================================================================
> --- cfe/trunk/test/CodeGen/riscv32-ilp32f-abi.c (added)
> +++ cfe/trunk/test/CodeGen/riscv32-ilp32f-abi.c Thu Jul 18 08:33:41 2019
> @@ -0,0 +1,45 @@
> +// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
> +
> +#include <stdint.h>
> +
> +// Doubles are still passed in GPRs, so the 'e' argument will be anyext as
> +// GPRs are exhausted.
> +
> +// CHECK: define void @f_fpr_tracking(double %a, double %b, double %c,
> double %d, i8 %e)
> +void f_fpr_tracking(double a, double b, double c, double d, int8_t e) {}
> +
> +// Lowering for doubles is unnmodified, as 64 > FLEN.
> +
> +struct double_s { double d; };
> +
> +// CHECK: define void @f_double_s_arg(i64 %a.coerce)
> +void f_double_s_arg(struct double_s a) {}
> +
> +// CHECK: define i64 @f_ret_double_s()
> +struct double_s f_ret_double_s() {
> +  return (struct double_s){1.0};
> +}
> +
> +struct double_double_s { double d; double e; };
> +
> +// CHECK: define void @f_double_double_s_arg(%struct.double_double_s* %a)
> +void f_double_double_s_arg(struct double_double_s a) {}
> +
> +// CHECK: define void @f_ret_double_double_s(%struct.double_double_s*
> noalias sret %agg.result)
> +struct double_double_s f_ret_double_double_s() {
> +  return (struct double_double_s){1.0, 2.0};
> +}
> +
> +struct double_int8_s { double d; int64_t i; };
> +
> +struct int_double_s { int a; double b; };
> +
> +// CHECK: define void @f_int_double_s_arg(%struct.int_double_s* %a)
> +void f_int_double_s_arg(struct int_double_s a) {}
> +
> +// CHECK: define void @f_ret_int_double_s(%struct.int_double_s* noalias
> sret %agg.result)
> +struct int_double_s f_ret_int_double_s() {
> +  return (struct int_double_s){1, 2.0};
> +}
> +
>
> Added: cfe/trunk/test/CodeGen/riscv32-ilp32f-ilp32d-abi.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/riscv32-ilp32f-ilp32d-abi.c?rev=366450&view=auto
>
> ==============================================================================
> --- cfe/trunk/test/CodeGen/riscv32-ilp32f-ilp32d-abi.c (added)
> +++ cfe/trunk/test/CodeGen/riscv32-ilp32f-ilp32d-abi.c Thu Jul 18 08:33:41
> 2019
> @@ -0,0 +1,275 @@
> +// RUN: %clang_cc1 -triple riscv32 -target-feature +f -target-abi ilp32f
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
> +// RUN: %clang_cc1 -triple riscv32 -target-feature +d -target-abi ilp32d
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
> +
> +#include <stdint.h>
> +
> +// Verify that the tracking of used GPRs and FPRs works correctly by
> checking
> +// that small integers are sign/zero extended when passed in registers.
> +
> +// Floats are passed in FPRs, so argument 'i' will be passed
> zero-extended
> +// because it will be passed in a GPR.
> +
> +// CHECK: define void @f_fpr_tracking(float %a, float %b, float %c, float
> %d, float %e, float %f, float %g, float %h, i8 zeroext %i)
> +void f_fpr_tracking(float a, float b, float c, float d, float e, float f,
> +                    float g, float h, uint8_t i) {}
> +
> +// Check that fp, fp+fp, and int+fp structs are lowered correctly. These
> will
> +// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
> +// available the widths are <= XLEN and FLEN, and should be expanded to
> +// separate arguments in IR. They are passed by the same rules for
> returns,
> +// but will be lowered to simple two-element structs if necessary (as
> LLVM IR
> +// functions cannot return multiple values).
> +
> +// A struct containing just one floating-point real is passed as though
> it
> +// were a standalone floating-point real.
> +
> +struct float_s { float f; };
> +
> +// CHECK: define void @f_float_s_arg(float)
> +void f_float_s_arg(struct float_s a) {}
> +
> +// CHECK: define float @f_ret_float_s()
> +struct float_s f_ret_float_s() {
> +  return (struct float_s){1.0};
> +}
> +
> +// A struct containing a float and any number of zero-width bitfields is
> +// passed as though it were a standalone floating-point real.
> +
> +struct zbf_float_s { int : 0; float f; };
> +struct zbf_float_zbf_s { int : 0; float f; int : 0; };
> +
> +// CHECK: define void @f_zbf_float_s_arg(float)
> +void f_zbf_float_s_arg(struct zbf_float_s a) {}
> +
> +// CHECK: define float @f_ret_zbf_float_s()
> +struct zbf_float_s f_ret_zbf_float_s() {
> +  return (struct zbf_float_s){1.0};
> +}
> +
> +// CHECK: define void @f_zbf_float_zbf_s_arg(float)
> +void f_zbf_float_zbf_s_arg(struct zbf_float_zbf_s a) {}
> +
> +// CHECK: define float @f_ret_zbf_float_zbf_s()
> +struct zbf_float_zbf_s f_ret_zbf_float_zbf_s() {
> +  return (struct zbf_float_zbf_s){1.0};
> +}
> +
> +// Check that structs containing two float values (FLEN <= width) are
> expanded
> +// provided sufficient FPRs are available.
> +
> +struct float_float_s { float f; float g; };
> +
> +// CHECK: define void @f_float_float_s_arg(float, float)
> +void f_float_float_s_arg(struct float_float_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_float_float_s()
> +struct float_float_s f_ret_float_float_s() {
> +  return (struct float_float_s){1.0, 2.0};
> +}
> +
> +// CHECK: define void @f_float_float_s_arg_insufficient_fprs(float %a,
> float %b, float %c, float %d, float %e, float %f, float %g, [2 x i32]
> %h.coerce)
> +void f_float_float_s_arg_insufficient_fprs(float a, float b, float c,
> float d,
> +    float e, float f, float g, struct float_float_s h) {}
> +
> +// Check that structs containing int+float values are expanded, provided
> +// sufficient FPRs and GPRs are available. The integer components are
> neither
> +// sign or zero-extended.
> +
> +struct float_int8_s { float f; int8_t i; };
> +struct float_uint8_s { float f; uint8_t i; };
> +struct float_int32_s { float f; int32_t i; };
> +struct float_int64_s { float f; int64_t i; };
> +struct float_int64bf_s { float f; int64_t i : 32; };
> +struct float_int8_zbf_s { float f; int8_t i; int : 0; };
> +
> +// CHECK: define void @f_float_int8_s_arg(float, i8)
> +void f_float_int8_s_arg(struct float_int8_s a) {}
> +
> +// CHECK: define { float, i8 } @f_ret_float_int8_s()
> +struct float_int8_s f_ret_float_int8_s() {
> +  return (struct float_int8_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_float_uint8_s_arg(float, i8)
> +void f_float_uint8_s_arg(struct float_uint8_s a) {}
> +
> +// CHECK: define { float, i8 } @f_ret_float_uint8_s()
> +struct float_uint8_s f_ret_float_uint8_s() {
> +  return (struct float_uint8_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_float_int32_s_arg(float, i32)
> +void f_float_int32_s_arg(struct float_int32_s a) {}
> +
> +// CHECK: define { float, i32 } @f_ret_float_int32_s()
> +struct float_int32_s f_ret_float_int32_s() {
> +  return (struct float_int32_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_float_int64_s_arg(%struct.float_int64_s* %a)
> +void f_float_int64_s_arg(struct float_int64_s a) {}
> +
> +// CHECK: define void @f_ret_float_int64_s(%struct.float_int64_s* noalias
> sret %agg.result)
> +struct float_int64_s f_ret_float_int64_s() {
> +  return (struct float_int64_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_float_int64bf_s_arg(float, i32)
> +void f_float_int64bf_s_arg(struct float_int64bf_s a) {}
> +
> +// CHECK: define { float, i32 } @f_ret_float_int64bf_s()
> +struct float_int64bf_s f_ret_float_int64bf_s() {
> +  return (struct float_int64bf_s){1.0, 2};
> +}
> +
> +// The zero-width bitfield means the struct can't be passed according to
> the
> +// floating point calling convention.
> +
> +// CHECK: define void @f_float_int8_zbf_s(float, i8)
> +void f_float_int8_zbf_s(struct float_int8_zbf_s a) {}
> +
> +// CHECK: define { float, i8 } @f_ret_float_int8_zbf_s()
> +struct float_int8_zbf_s f_ret_float_int8_zbf_s() {
> +  return (struct float_int8_zbf_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_float_int8_s_arg_insufficient_gprs(i32 %a, i32
> %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, [2 x i32] %i.coerce)
> +void f_float_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int
> e,
> +                                          int f, int g, int h, struct
> float_int8_s i) {}
> +
> +// CHECK: define void @f_struct_float_int8_insufficient_fprs(float %a,
> float %b, float %c, float %d, float %e, float %f, float %g, float %h, [2 x
> i32] %i.coerce)
> +void f_struct_float_int8_insufficient_fprs(float a, float b, float c,
> float d,
> +                                           float e, float f, float g,
> float h, struct float_int8_s i) {}
> +
> +// Complex floating-point values or structs containing a single complex
> +// floating-point value should be passed as if it were an fp+fp struct.
> +
> +// CHECK: define void @f_floatcomplex(float %a.coerce0, float %a.coerce1)
> +void f_floatcomplex(float __complex__ a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatcomplex()
> +float __complex__ f_ret_floatcomplex() {
> +  return 1.0;
> +}
> +
> +struct floatcomplex_s { float __complex__ c; };
> +
> +// CHECK: define void @f_floatcomplex_s_arg(float, float)
> +void f_floatcomplex_s_arg(struct floatcomplex_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatcomplex_s()
> +struct floatcomplex_s f_ret_floatcomplex_s() {
> +  return (struct floatcomplex_s){1.0};
> +}
> +
> +// Test single or two-element structs that need flattening. e.g. those
> +// containing nested structs, floats in small arrays, zero-length structs
> etc.
> +
> +struct floatarr1_s { float a[1]; };
> +
> +// CHECK: define void @f_floatarr1_s_arg(float)
> +void f_floatarr1_s_arg(struct floatarr1_s a) {}
> +
> +// CHECK: define float @f_ret_floatarr1_s()
> +struct floatarr1_s f_ret_floatarr1_s() {
> +  return (struct floatarr1_s){{1.0}};
> +}
> +
> +struct floatarr2_s { float a[2]; };
> +
> +// CHECK: define void @f_floatarr2_s_arg(float, float)
> +void f_floatarr2_s_arg(struct floatarr2_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatarr2_s()
> +struct floatarr2_s f_ret_floatarr2_s() {
> +  return (struct floatarr2_s){{1.0, 2.0}};
> +}
> +
> +struct floatarr2_tricky1_s { struct { float f[1]; } g[2]; };
> +
> +// CHECK: define void @f_floatarr2_tricky1_s_arg(float, float)
> +void f_floatarr2_tricky1_s_arg(struct floatarr2_tricky1_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatarr2_tricky1_s()
> +struct floatarr2_tricky1_s f_ret_floatarr2_tricky1_s() {
> +  return (struct floatarr2_tricky1_s){{{{1.0}}, {{2.0}}}};
> +}
> +
> +struct floatarr2_tricky2_s { struct {}; struct { float f[1]; } g[2]; };
> +
> +// CHECK: define void @f_floatarr2_tricky2_s_arg(float, float)
> +void f_floatarr2_tricky2_s_arg(struct floatarr2_tricky2_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatarr2_tricky2_s()
> +struct floatarr2_tricky2_s f_ret_floatarr2_tricky2_s() {
> +  return (struct floatarr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
> +}
> +
> +struct floatarr2_tricky3_s { union {}; struct { float f[1]; } g[2]; };
> +
> +// CHECK: define void @f_floatarr2_tricky3_s_arg(float, float)
> +void f_floatarr2_tricky3_s_arg(struct floatarr2_tricky3_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatarr2_tricky3_s()
> +struct floatarr2_tricky3_s f_ret_floatarr2_tricky3_s() {
> +  return (struct floatarr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
> +}
> +
> +struct floatarr2_tricky4_s { union {}; struct { struct {}; float f[1]; }
> g[2]; };
> +
> +// CHECK: define void @f_floatarr2_tricky4_s_arg(float, float)
> +void f_floatarr2_tricky4_s_arg(struct floatarr2_tricky4_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatarr2_tricky4_s()
> +struct floatarr2_tricky4_s f_ret_floatarr2_tricky4_s() {
> +  return (struct floatarr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
> +}
> +
> +// Test structs that should be passed according to the normal integer
> calling
> +// convention.
> +
> +struct int_float_int_s { int a; float b; int c; };
> +
> +// CHECK: define void @f_int_float_int_s_arg(%struct.int_float_int_s* %a)
> +void f_int_float_int_s_arg(struct int_float_int_s a) {}
> +
> +// CHECK: define void @f_ret_int_float_int_s(%struct.int_float_int_s*
> noalias sret %agg.result)
> +struct int_float_int_s f_ret_int_float_int_s() {
> +  return (struct int_float_int_s){1, 2.0, 3};
> +}
> +
> +struct int64_float_s { int64_t a; float b; };
> +
> +// CHECK: define void @f_int64_float_s_arg(%struct.int64_float_s* %a)
> +void f_int64_float_s_arg(struct int64_float_s a) {}
> +
> +// CHECK: define void @f_ret_int64_float_s(%struct.int64_float_s* noalias
> sret %agg.result)
> +struct int64_float_s f_ret_int64_float_s() {
> +  return (struct int64_float_s){1, 2.0};
> +}
> +
> +struct char_char_float_s { char a; char b; float c; };
> +
> +// CHECK-LABEL: define void @f_char_char_float_s_arg([2 x i32] %a.coerce)
> +void f_char_char_float_s_arg(struct char_char_float_s a) {}
> +
> +// CHECK: define [2 x i32] @f_ret_char_char_float_s()
> +struct char_char_float_s f_ret_char_char_float_s() {
> +  return (struct char_char_float_s){1, 2, 3.0};
> +}
> +
> +// Unions are always passed according to the integer calling convention,
> even
> +// if they can only contain a float.
> +
> +union float_u { float a; };
> +
> +// CHECK: define void @f_float_u_arg(i32 %a.coerce)
> +void f_float_u_arg(union float_u a) {}
> +
> +// CHECK: define i32 @f_ret_float_u()
> +union float_u f_ret_float_u() {
> +  return (union float_u){1.0};
> +}
>
> Modified: cfe/trunk/test/CodeGen/riscv64-lp64-lp64f-abi.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/riscv64-lp64-lp64f-abi.c?rev=366450&r1=366449&r2=366450&view=diff
>
> ==============================================================================
> --- cfe/trunk/test/CodeGen/riscv64-lp64-lp64f-abi.c (original)
> +++ cfe/trunk/test/CodeGen/riscv64-lp64-lp64f-abi.c Thu Jul 18 08:33:41
> 2019
> @@ -1,4 +1,6 @@
>  // RUN: %clang_cc1 -triple riscv64 -emit-llvm %s -o - | FileCheck %s
> +// RUN: %clang_cc1 -triple riscv64 -target-feature +f -target-abi lp64f
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
>
>  // This file contains test cases that will have the same output for the
> lp64
>  // and lp64f ABIs.
>
> Modified: cfe/trunk/test/CodeGen/riscv64-lp64-lp64f-lp64d-abi.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/riscv64-lp64-lp64f-lp64d-abi.c?rev=366450&r1=366449&r2=366450&view=diff
>
> ==============================================================================
> --- cfe/trunk/test/CodeGen/riscv64-lp64-lp64f-lp64d-abi.c (original)
> +++ cfe/trunk/test/CodeGen/riscv64-lp64-lp64f-lp64d-abi.c Thu Jul 18
> 08:33:41 2019
> @@ -1,4 +1,8 @@
>  // RUN: %clang_cc1 -triple riscv64 -emit-llvm %s -o - | FileCheck %s
> +// RUN: %clang_cc1 -triple riscv64 -target-feature +f -target-abi lp64f
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
> +// RUN: %clang_cc1 -triple riscv64 -target-feature +d -target-abi lp64d
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
>
>  // This file contains test cases that will have the same output for the
> lp64,
>  // lp64f, and lp64d ABIs.
>
> Added: cfe/trunk/test/CodeGen/riscv64-lp64d-abi.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/riscv64-lp64d-abi.c?rev=366450&view=auto
>
> ==============================================================================
> --- cfe/trunk/test/CodeGen/riscv64-lp64d-abi.c (added)
> +++ cfe/trunk/test/CodeGen/riscv64-lp64d-abi.c Thu Jul 18 08:33:41 2019
> @@ -0,0 +1,272 @@
> +// RUN: %clang_cc1 -triple riscv64 -target-feature +d -target-abi lp64d
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
> +
> +#include <stdint.h>
> +
> +// Verify that the tracking of used GPRs and FPRs works correctly by
> checking
> +// that small integers are sign/zero extended when passed in registers.
> +
> +// Doubles are passed in FPRs, so argument 'i' will be passed
> zero-extended
> +// because it will be passed in a GPR.
> +
> +// CHECK: define void @f_fpr_tracking(double %a, double %b, double %c,
> double %d, double %e, double %f, double %g, double %h, i8 zeroext %i)
> +void f_fpr_tracking(double a, double b, double c, double d, double e,
> double f,
> +                    double g, double h, uint8_t i) {}
> +
> +// Check that fp, fp+fp, and int+fp structs are lowered correctly. These
> will
> +// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
> +// available the widths are <= XLEN and FLEN, and should be expanded to
> +// separate arguments in IR. They are passed by the same rules for
> returns,
> +// but will be lowered to simple two-element structs if necessary (as
> LLVM IR
> +// functions cannot return multiple values).
> +
> +// A struct containing just one floating-point real is passed as though it
> +// were a standalone floating-point real.
> +
> +struct double_s { double f; };
> +
> +// CHECK: define void @f_double_s_arg(double)
> +void f_double_s_arg(struct double_s a) {}
> +
> +// CHECK: define double @f_ret_double_s()
> +struct double_s f_ret_double_s() {
> +  return (struct double_s){1.0};
> +}
> +
> +// A struct containing a double and any number of zero-width bitfields is
> +// passed as though it were a standalone floating-point real.
> +
> +struct zbf_double_s { int : 0; double f; };
> +struct zbf_double_zbf_s { int : 0; double f; int : 0; };
> +
> +// CHECK: define void @f_zbf_double_s_arg(double)
> +void f_zbf_double_s_arg(struct zbf_double_s a) {}
> +
> +// CHECK: define double @f_ret_zbf_double_s()
> +struct zbf_double_s f_ret_zbf_double_s() {
> +  return (struct zbf_double_s){1.0};
> +}
> +
> +// CHECK: define void @f_zbf_double_zbf_s_arg(double)
> +void f_zbf_double_zbf_s_arg(struct zbf_double_zbf_s a) {}
> +
> +// CHECK: define double @f_ret_zbf_double_zbf_s()
> +struct zbf_double_zbf_s f_ret_zbf_double_zbf_s() {
> +  return (struct zbf_double_zbf_s){1.0};
> +}
> +
> +// Check that structs containing two floating point values (FLEN <=
> width) are
> +// expanded provided sufficient FPRs are available.
> +
> +struct double_double_s { double f; double g; };
> +struct double_float_s { double f; float g; };
> +
> +// CHECK: define void @f_double_double_s_arg(double, double)
> +void f_double_double_s_arg(struct double_double_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_double_double_s()
> +struct double_double_s f_ret_double_double_s() {
> +  return (struct double_double_s){1.0, 2.0};
> +}
> +
> +// CHECK: define void @f_double_float_s_arg(double, float)
> +void f_double_float_s_arg(struct double_float_s a) {}
> +
> +// CHECK: define { double, float } @f_ret_double_float_s()
> +struct double_float_s f_ret_double_float_s() {
> +  return (struct double_float_s){1.0, 2.0};
> +}
> +
> +// CHECK: define void @f_double_double_s_arg_insufficient_fprs(float %a,
> double %b, double %c, double %d, double %e, double %f, double %g, [2 x i64]
> %h.coerce)
> +void f_double_double_s_arg_insufficient_fprs(float a, double b, double c,
> double d,
> +    double e, double f, double g, struct double_double_s h) {}
> +
> +// Check that structs containing int+double values are expanded, provided
> +// sufficient FPRs and GPRs are available. The integer components are
> neither
> +// sign or zero-extended.
> +
> +struct double_int8_s { double f; int8_t i; };
> +struct double_uint8_s { double f; uint8_t i; };
> +struct double_int32_s { double f; int32_t i; };
> +struct double_int64_s { double f; int64_t i; };
> +struct double_int128bf_s { double f; __int128_t i : 64; };
> +struct double_int8_zbf_s { double f; int8_t i; int : 0; };
> +
> +// CHECK: define void @f_double_int8_s_arg(double, i8)
> +void f_double_int8_s_arg(struct double_int8_s a) {}
> +
> +// CHECK: define { double, i8 } @f_ret_double_int8_s()
> +struct double_int8_s f_ret_double_int8_s() {
> +  return (struct double_int8_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_double_uint8_s_arg(double, i8)
> +void f_double_uint8_s_arg(struct double_uint8_s a) {}
> +
> +// CHECK: define { double, i8 } @f_ret_double_uint8_s()
> +struct double_uint8_s f_ret_double_uint8_s() {
> +  return (struct double_uint8_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_double_int32_s_arg(double, i32)
> +void f_double_int32_s_arg(struct double_int32_s a) {}
> +
> +// CHECK: define { double, i32 } @f_ret_double_int32_s()
> +struct double_int32_s f_ret_double_int32_s() {
> +  return (struct double_int32_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_double_int64_s_arg(double, i64)
> +void f_double_int64_s_arg(struct double_int64_s a) {}
> +
> +// CHECK: define { double, i64 } @f_ret_double_int64_s()
> +struct double_int64_s f_ret_double_int64_s() {
> +  return (struct double_int64_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_double_int128bf_s_arg(double, i64)
> +void f_double_int128bf_s_arg(struct double_int128bf_s a) {}
> +
> +// CHECK: define { double, i64 } @f_ret_double_int128bf_s()
> +struct double_int128bf_s f_ret_double_int128bf_s() {
> +  return (struct double_int128bf_s){1.0, 2};
> +}
> +
> +// The zero-width bitfield means the struct can't be passed according to
> the
> +// floating point calling convention.
> +
> +// CHECK: define void @f_double_int8_zbf_s(double, i8)
> +void f_double_int8_zbf_s(struct double_int8_zbf_s a) {}
> +
> +// CHECK: define { double, i8 } @f_ret_double_int8_zbf_s()
> +struct double_int8_zbf_s f_ret_double_int8_zbf_s() {
> +  return (struct double_int8_zbf_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_double_int8_s_arg_insufficient_gprs(i32 signext
> %a, i32 signext %b, i32 signext %c, i32 signext %d, i32 signext %e, i32
> signext %f, i32 signext %g, i32 signext %h, [2 x i64] %i.coerce)
> +void f_double_int8_s_arg_insufficient_gprs(int a, int b, int c, int d,
> int e,
> +                                          int f, int g, int h, struct
> double_int8_s i) {}
> +
> +// CHECK: define void @f_struct_double_int8_insufficient_fprs(float %a,
> double %b, double %c, double %d, double %e, double %f, double %g, double
> %h, [2 x i64] %i.coerce)
> +void f_struct_double_int8_insufficient_fprs(float a, double b, double c,
> double d,
> +                                           double e, double f, double g,
> double h, struct double_int8_s i) {}
> +
> +// Complex floating-point values or structs containing a single complex
> +// floating-point value should be passed as if it were an fp+fp struct.
> +
> +// CHECK: define void @f_doublecomplex(double %a.coerce0, double
> %a.coerce1)
> +void f_doublecomplex(double __complex__ a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublecomplex()
> +double __complex__ f_ret_doublecomplex() {
> +  return 1.0;
> +}
> +
> +struct doublecomplex_s { double __complex__ c; };
> +
> +// CHECK: define void @f_doublecomplex_s_arg(double, double)
> +void f_doublecomplex_s_arg(struct doublecomplex_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublecomplex_s()
> +struct doublecomplex_s f_ret_doublecomplex_s() {
> +  return (struct doublecomplex_s){1.0};
> +}
> +
> +// Test single or two-element structs that need flattening. e.g. those
> +// containing nested structs, doubles in small arrays, zero-length
> structs etc.
> +
> +struct doublearr1_s { double a[1]; };
> +
> +// CHECK: define void @f_doublearr1_s_arg(double)
> +void f_doublearr1_s_arg(struct doublearr1_s a) {}
> +
> +// CHECK: define double @f_ret_doublearr1_s()
> +struct doublearr1_s f_ret_doublearr1_s() {
> +  return (struct doublearr1_s){{1.0}};
> +}
> +
> +struct doublearr2_s { double a[2]; };
> +
> +// CHECK: define void @f_doublearr2_s_arg(double, double)
> +void f_doublearr2_s_arg(struct doublearr2_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublearr2_s()
> +struct doublearr2_s f_ret_doublearr2_s() {
> +  return (struct doublearr2_s){{1.0, 2.0}};
> +}
> +
> +struct doublearr2_tricky1_s { struct { double f[1]; } g[2]; };
> +
> +// CHECK: define void @f_doublearr2_tricky1_s_arg(double, double)
> +void f_doublearr2_tricky1_s_arg(struct doublearr2_tricky1_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublearr2_tricky1_s()
> +struct doublearr2_tricky1_s f_ret_doublearr2_tricky1_s() {
> +  return (struct doublearr2_tricky1_s){{{{1.0}}, {{2.0}}}};
> +}
> +
> +struct doublearr2_tricky2_s { struct {}; struct { double f[1]; } g[2]; };
> +
> +// CHECK: define void @f_doublearr2_tricky2_s_arg(double, double)
> +void f_doublearr2_tricky2_s_arg(struct doublearr2_tricky2_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublearr2_tricky2_s()
> +struct doublearr2_tricky2_s f_ret_doublearr2_tricky2_s() {
> +  return (struct doublearr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
> +}
> +
> +struct doublearr2_tricky3_s { union {}; struct { double f[1]; } g[2]; };
> +
> +// CHECK: define void @f_doublearr2_tricky3_s_arg(double, double)
> +void f_doublearr2_tricky3_s_arg(struct doublearr2_tricky3_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublearr2_tricky3_s()
> +struct doublearr2_tricky3_s f_ret_doublearr2_tricky3_s() {
> +  return (struct doublearr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
> +}
> +
> +struct doublearr2_tricky4_s { union {}; struct { struct {}; double f[1];
> } g[2]; };
> +
> +// CHECK: define void @f_doublearr2_tricky4_s_arg(double, double)
> +void f_doublearr2_tricky4_s_arg(struct doublearr2_tricky4_s a) {}
> +
> +// CHECK: define { double, double } @f_ret_doublearr2_tricky4_s()
> +struct doublearr2_tricky4_s f_ret_doublearr2_tricky4_s() {
> +  return (struct doublearr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
> +}
> +
> +// Test structs that should be passed according to the normal integer
> calling
> +// convention.
> +
> +struct int_double_int_s { int a; double b; int c; };
> +
> +// CHECK: define void @f_int_double_int_s_arg(%struct.int_double_int_s*
> %a)
> +void f_int_double_int_s_arg(struct int_double_int_s a) {}
> +
> +// CHECK: define void @f_ret_int_double_int_s(%struct.int_double_int_s*
> noalias sret %agg.result)
> +struct int_double_int_s f_ret_int_double_int_s() {
> +  return (struct int_double_int_s){1, 2.0, 3};
> +}
> +
> +struct char_char_double_s { char a; char b; double c; };
> +
> +// CHECK-LABEL: define void @f_char_char_double_s_arg([2 x i64] %a.coerce)
> +void f_char_char_double_s_arg(struct char_char_double_s a) {}
> +
> +// CHECK: define [2 x i64] @f_ret_char_char_double_s()
> +struct char_char_double_s f_ret_char_char_double_s() {
> +  return (struct char_char_double_s){1, 2, 3.0};
> +}
> +
> +// Unions are always passed according to the integer calling convention,
> even
> +// if they can only contain a double.
> +
> +union double_u { double a; };
> +
> +// CHECK: define void @f_double_u_arg(i64 %a.coerce)
> +void f_double_u_arg(union double_u a) {}
> +
> +// CHECK: define i64 @f_ret_double_u()
> +union double_u f_ret_double_u() {
> +  return (union double_u){1.0};
> +}
>
> Added: cfe/trunk/test/CodeGen/riscv64-lp64f-lp64d-abi.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/riscv64-lp64f-lp64d-abi.c?rev=366450&view=auto
>
> ==============================================================================
> --- cfe/trunk/test/CodeGen/riscv64-lp64f-lp64d-abi.c (added)
> +++ cfe/trunk/test/CodeGen/riscv64-lp64f-lp64d-abi.c Thu Jul 18 08:33:41
> 2019
> @@ -0,0 +1,265 @@
> +// RUN: %clang_cc1 -triple riscv64 -target-feature +f -target-abi lp64f
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
> +// RUN: %clang_cc1 -triple riscv64 -target-feature +d -target-abi lp64d
> -emit-llvm %s -o - \
> +// RUN:     | FileCheck %s
> +
> +#include <stdint.h>
> +
> +// Verify that the tracking of used GPRs and FPRs works correctly by
> checking
> +// that small integers are sign/zero extended when passed in registers.
> +
> +// Floats are passed in FPRs, so argument 'i' will be passed zero-extended
> +// because it will be passed in a GPR.
> +
> +// CHECK: define void @f_fpr_tracking(float %a, float %b, float %c, float
> %d, float %e, float %f, float %g, float %h, i8 zeroext %i)
> +void f_fpr_tracking(float a, float b, float c, float d, float e, float f,
> +                    float g, float h, uint8_t i) {}
> +
> +// Check that fp, fp+fp, and int+fp structs are lowered correctly. These
> will
> +// be passed in FPR, FPR+FPR, or GPR+FPR regs if sufficient registers are
> +// available the widths are <= XLEN and FLEN, and should be expanded to
> +// separate arguments in IR. They are passed by the same rules for
> returns,
> +// but will be lowered to simple two-element structs if necessary (as
> LLVM IR
> +// functions cannot return multiple values).
> +
> +// A struct containing just one floating-point real is passed as though it
> +// were a standalone floating-point real.
> +
> +struct float_s { float f; };
> +
> +// CHECK: define void @f_float_s_arg(float)
> +void f_float_s_arg(struct float_s a) {}
> +
> +// CHECK: define float @f_ret_float_s()
> +struct float_s f_ret_float_s() {
> +  return (struct float_s){1.0};
> +}
> +
> +// A struct containing a float and any number of zero-width bitfields is
> +// passed as though it were a standalone floating-point real.
> +
> +struct zbf_float_s { int : 0; float f; };
> +struct zbf_float_zbf_s { int : 0; float f; int : 0; };
> +
> +// CHECK: define void @f_zbf_float_s_arg(float)
> +void f_zbf_float_s_arg(struct zbf_float_s a) {}
> +
> +// CHECK: define float @f_ret_zbf_float_s()
> +struct zbf_float_s f_ret_zbf_float_s() {
> +  return (struct zbf_float_s){1.0};
> +}
> +
> +// CHECK: define void @f_zbf_float_zbf_s_arg(float)
> +void f_zbf_float_zbf_s_arg(struct zbf_float_zbf_s a) {}
> +
> +// CHECK: define float @f_ret_zbf_float_zbf_s()
> +struct zbf_float_zbf_s f_ret_zbf_float_zbf_s() {
> +  return (struct zbf_float_zbf_s){1.0};
> +}
> +
> +// Check that structs containing two float values (FLEN <= width) are
> expanded
> +// provided sufficient FPRs are available.
> +
> +struct float_float_s { float f; float g; };
> +
> +// CHECK: define void @f_float_float_s_arg(float, float)
> +void f_float_float_s_arg(struct float_float_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_float_float_s()
> +struct float_float_s f_ret_float_float_s() {
> +  return (struct float_float_s){1.0, 2.0};
> +}
> +
> +// CHECK: define void @f_float_float_s_arg_insufficient_fprs(float %a,
> float %b, float %c, float %d, float %e, float %f, float %g, i64 %h.coerce)
> +void f_float_float_s_arg_insufficient_fprs(float a, float b, float c,
> float d,
> +    float e, float f, float g, struct float_float_s h) {}
> +
> +// Check that structs containing int+float values are expanded, provided
> +// sufficient FPRs and GPRs are available. The integer components are
> neither
> +// sign or zero-extended.
> +
> +struct float_int8_s { float f; int8_t i; };
> +struct float_uint8_s { float f; uint8_t i; };
> +struct float_int32_s { float f; int32_t i; };
> +struct float_int64_s { float f; int64_t i; };
> +struct float_int128bf_s { float f; __int128_t i : 64; };
> +struct float_int8_zbf_s { float f; int8_t i; int : 0; };
> +
> +// CHECK: define void @f_float_int8_s_arg(float, i8)
> +void f_float_int8_s_arg(struct float_int8_s a) {}
> +
> +// CHECK: define { float, i8 } @f_ret_float_int8_s()
> +struct float_int8_s f_ret_float_int8_s() {
> +  return (struct float_int8_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_float_uint8_s_arg(float, i8)
> +void f_float_uint8_s_arg(struct float_uint8_s a) {}
> +
> +// CHECK: define { float, i8 } @f_ret_float_uint8_s()
> +struct float_uint8_s f_ret_float_uint8_s() {
> +  return (struct float_uint8_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_float_int32_s_arg(float, i32)
> +void f_float_int32_s_arg(struct float_int32_s a) {}
> +
> +// CHECK: define { float, i32 } @f_ret_float_int32_s()
> +struct float_int32_s f_ret_float_int32_s() {
> +  return (struct float_int32_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_float_int64_s_arg(float, i64)
> +void f_float_int64_s_arg(struct float_int64_s a) {}
> +
> +// CHECK: define { float, i64 } @f_ret_float_int64_s()
> +struct float_int64_s f_ret_float_int64_s() {
> +  return (struct float_int64_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_float_int128bf_s_arg(float, i64)
> +void f_float_int128bf_s_arg(struct float_int128bf_s a) {}
> +
> +// CHECK: define <{ float, i64 }> @f_ret_float_int128bf_s()
> +struct float_int128bf_s f_ret_float_int128bf_s() {
> +  return (struct float_int128bf_s){1.0, 2};
> +}
> +
> +// The zero-width bitfield means the struct can't be passed according to
> the
> +// floating point calling convention.
> +
> +// CHECK: define void @f_float_int8_zbf_s(float, i8)
> +void f_float_int8_zbf_s(struct float_int8_zbf_s a) {}
> +
> +// CHECK: define { float, i8 } @f_ret_float_int8_zbf_s()
> +struct float_int8_zbf_s f_ret_float_int8_zbf_s() {
> +  return (struct float_int8_zbf_s){1.0, 2};
> +}
> +
> +// CHECK: define void @f_float_int8_s_arg_insufficient_gprs(i32 signext
> %a, i32 signext %b, i32 signext %c, i32 signext %d, i32 signext %e, i32
> signext %f, i32 signext %g, i32 signext %h, i64 %i.coerce)
> +void f_float_int8_s_arg_insufficient_gprs(int a, int b, int c, int d, int
> e,
> +                                          int f, int g, int h, struct
> float_int8_s i) {}
> +
> +// CHECK: define void @f_struct_float_int8_insufficient_fprs(float %a,
> float %b, float %c, float %d, float %e, float %f, float %g, float %h, i64
> %i.coerce)
> +void f_struct_float_int8_insufficient_fprs(float a, float b, float c,
> float d,
> +                                           float e, float f, float g,
> float h, struct float_int8_s i) {}
> +
> +// Complex floating-point values or structs containing a single complex
> +// floating-point value should be passed as if it were an fp+fp struct.
> +
> +// CHECK: define void @f_floatcomplex(float %a.coerce0, float %a.coerce1)
> +void f_floatcomplex(float __complex__ a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatcomplex()
> +float __complex__ f_ret_floatcomplex() {
> +  return 1.0;
> +}
> +
> +struct floatcomplex_s { float __complex__ c; };
> +
> +// CHECK: define void @f_floatcomplex_s_arg(float, float)
> +void f_floatcomplex_s_arg(struct floatcomplex_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatcomplex_s()
> +struct floatcomplex_s f_ret_floatcomplex_s() {
> +  return (struct floatcomplex_s){1.0};
> +}
> +
> +// Test single or two-element structs that need flattening. e.g. those
> +// containing nested structs, floats in small arrays, zero-length structs
> etc.
> +
> +struct floatarr1_s { float a[1]; };
> +
> +// CHECK: define void @f_floatarr1_s_arg(float)
> +void f_floatarr1_s_arg(struct floatarr1_s a) {}
> +
> +// CHECK: define float @f_ret_floatarr1_s()
> +struct floatarr1_s f_ret_floatarr1_s() {
> +  return (struct floatarr1_s){{1.0}};
> +}
> +
> +struct floatarr2_s { float a[2]; };
> +
> +// CHECK: define void @f_floatarr2_s_arg(float, float)
> +void f_floatarr2_s_arg(struct floatarr2_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatarr2_s()
> +struct floatarr2_s f_ret_floatarr2_s() {
> +  return (struct floatarr2_s){{1.0, 2.0}};
> +}
> +
> +struct floatarr2_tricky1_s { struct { float f[1]; } g[2]; };
> +
> +// CHECK: define void @f_floatarr2_tricky1_s_arg(float, float)
> +void f_floatarr2_tricky1_s_arg(struct floatarr2_tricky1_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatarr2_tricky1_s()
> +struct floatarr2_tricky1_s f_ret_floatarr2_tricky1_s() {
> +  return (struct floatarr2_tricky1_s){{{{1.0}}, {{2.0}}}};
> +}
> +
> +struct floatarr2_tricky2_s { struct {}; struct { float f[1]; } g[2]; };
> +
> +// CHECK: define void @f_floatarr2_tricky2_s_arg(float, float)
> +void f_floatarr2_tricky2_s_arg(struct floatarr2_tricky2_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatarr2_tricky2_s()
> +struct floatarr2_tricky2_s f_ret_floatarr2_tricky2_s() {
> +  return (struct floatarr2_tricky2_s){{}, {{{1.0}}, {{2.0}}}};
> +}
> +
> +struct floatarr2_tricky3_s { union {}; struct { float f[1]; } g[2]; };
> +
> +// CHECK: define void @f_floatarr2_tricky3_s_arg(float, float)
> +void f_floatarr2_tricky3_s_arg(struct floatarr2_tricky3_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatarr2_tricky3_s()
> +struct floatarr2_tricky3_s f_ret_floatarr2_tricky3_s() {
> +  return (struct floatarr2_tricky3_s){{}, {{{1.0}}, {{2.0}}}};
> +}
> +
> +struct floatarr2_tricky4_s { union {}; struct { struct {}; float f[1]; }
> g[2]; };
> +
> +// CHECK: define void @f_floatarr2_tricky4_s_arg(float, float)
> +void f_floatarr2_tricky4_s_arg(struct floatarr2_tricky4_s a) {}
> +
> +// CHECK: define { float, float } @f_ret_floatarr2_tricky4_s()
> +struct floatarr2_tricky4_s f_ret_floatarr2_tricky4_s() {
> +  return (struct floatarr2_tricky4_s){{}, {{{}, {1.0}}, {{}, {2.0}}}};
> +}
> +
> +// Test structs that should be passed according to the normal integer
> calling
> +// convention.
> +
> +struct int_float_int_s { int a; float b; int c; };
> +
> +// CHECK: define void @f_int_float_int_s_arg([2 x i64] %a.coerce)
> +void f_int_float_int_s_arg(struct int_float_int_s a) {}
> +
> +// CHECK: define [2 x i64] @f_ret_int_float_int_s()
> +struct int_float_int_s f_ret_int_float_int_s() {
> +  return (struct int_float_int_s){1, 2.0, 3};
> +}
> +
> +struct char_char_float_s { char a; char b; float c; };
> +
> +// CHECK-LABEL: define void @f_char_char_float_s_arg(i64 %a.coerce)
> +void f_char_char_float_s_arg(struct char_char_float_s a) {}
> +
> +// CHECK: define i64 @f_ret_char_char_float_s()
> +struct char_char_float_s f_ret_char_char_float_s() {
> +  return (struct char_char_float_s){1, 2, 3.0};
> +}
> +
> +// Unions are always passed according to the integer calling convention,
> even
> +// if they can only contain a float.
> +
> +union float_u { float a; };
> +
> +// CHECK: define void @f_float_u_arg(i64 %a.coerce)
> +void f_float_u_arg(union float_u a) {}
> +
> +// CHECK: define i64 @f_ret_float_u()
> +union float_u f_ret_float_u() {
> +  return (union float_u){1.0};
> +}
>
> Modified: cfe/trunk/test/Preprocessor/riscv-target-features.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/Preprocessor/riscv-target-features.c?rev=366450&r1=366449&r2=366450&view=diff
>
> ==============================================================================
> --- cfe/trunk/test/Preprocessor/riscv-target-features.c (original)
> +++ cfe/trunk/test/Preprocessor/riscv-target-features.c Thu Jul 18
> 08:33:41 2019
> @@ -47,3 +47,27 @@
>  // RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ic -x c -E
> -dM %s \
>  // RUN: -o - | FileCheck --check-prefix=CHECK-C-EXT %s
>  // CHECK-C-EXT: __riscv_compressed 1
> +
> +// RUN: %clang -target riscv32-unknown-linux-gnu -march=rv32ifd -x c -E
> -dM %s \
> +// RUN: -o - | FileCheck --check-prefix=CHECK-SOFT %s
> +// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ifd -x c -E
> -dM %s \
> +// RUN: -o - | FileCheck --check-prefix=CHECK-SOFT %s
> +// CHECK-SOFT: __riscv_float_abi_soft 1
> +// CHECK-SOFT-NOT: __riscv_float_abi_single
> +// CHECK-SOFT-NOT: __riscv_float_abi_double
> +
> +// RUN: %clang -target riscv32-unknown-linux-gnu -march=rv32ifd
> -mabi=ilp32f -x c -E -dM %s \
> +// RUN: -o - | FileCheck --check-prefix=CHECK-SINGLE %s
> +// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ifd
> -mabi=lp64f -x c -E -dM %s \
> +// RUN: -o - | FileCheck --check-prefix=CHECK-SINGLE %s
> +// CHECK-SINGLE: __riscv_float_abi_single 1
> +// CHECK-SINGLE-NOT: __riscv_float_abi_soft
> +// CHECK-SINGLE-NOT: __riscv_float_abi_double
> +
> +// RUN: %clang -target riscv32-unknown-linux-gnu -march=rv32ifd
> -mabi=ilp32f -x c -E -dM %s \
> +// RUN: -o - | FileCheck --check-prefix=CHECK-DOUBLE %s
> +// RUN: %clang -target riscv64-unknown-linux-gnu -march=rv64ifd
> -mabi=lp64f -x c -E -dM %s \
> +// RUN: -o - | FileCheck --check-prefix=CHECK-DOUBLE %s
> +// CHECK-DOUBLE: __riscv_float_abi_double 1
> +// CHECK-DOUBLE-NOT: __riscv_float_abi_soft
> +// CHECK-DOUBLE-NOT: __riscv_float_abi_single
>
>
> _______________________________________________
> cfe-commits mailing list
> cfe-commits at lists.llvm.org
> https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits
>


-- 
Regards,
Ilya Biryukov
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/cfe-commits/attachments/20190718/266e792f/attachment-0001.html>


More information about the cfe-commits mailing list