r290297 - Add the alloc_size attribute to clang, attempt 2.

via cfe-commits cfe-commits at lists.llvm.org
Thu Dec 22 07:50:06 PST 2016


Hi George,
I'm guessing this may have caused PR31453.  Simple reproducer included 
in bug report.

  Chad

On 2016-12-21 21:50, George Burgess IV via cfe-commits wrote:
> Author: gbiv
> Date: Wed Dec 21 20:50:20 2016
> New Revision: 290297
> 
> URL: http://llvm.org/viewvc/llvm-project?rev=290297&view=rev
> Log:
> Add the alloc_size attribute to clang, attempt 2.
> 
> This is a recommit of r290149, which was reverted in r290169 due to 
> msan
> failures. msan was failing because we were calling
> `isMostDerivedAnUnsizedArray` on an invalid designator, which caused us
> to read uninitialized memory. To fix this, the logic of the caller of
> said function was simplified, and we now have a `!Invalid` assert in
> `isMostDerivedAnUnsizedArray`, so we can catch this particular bug more
> easily in the future.
> 
> Fingers crossed that this patch sticks this time. :)
> 
> Original commit message:
> 
> This patch does three things:
> - Gives us the alloc_size attribute in clang, which lets us infer the
>   number of bytes handed back to us by malloc/realloc/calloc/any user
>   functions that act in a similar manner.
> - Teaches our constexpr evaluator that evaluating some `const` 
> variables
>   is OK sometimes. This is why we have a change in
>   test/SemaCXX/constant-expression-cxx11.cpp and other seemingly
>   unrelated tests. Richard Smith okay'ed this idea some time ago in
>   person.
> - Uniques some Blocks in CodeGen, which was reviewed separately at
>   D26410. Lack of uniquing only really shows up as a problem when
>   combined with our new eagerness in the face of const.
> 
> Added:
>     cfe/trunk/test/CodeGen/alloc-size.c
>     cfe/trunk/test/CodeGenCXX/alloc-size.cpp
>     cfe/trunk/test/Sema/alloc-size.c
> Modified:
>     cfe/trunk/include/clang/Basic/Attr.td
>     cfe/trunk/include/clang/Basic/AttrDocs.td
>     cfe/trunk/include/clang/Basic/DiagnosticSemaKinds.td
>     cfe/trunk/lib/AST/ExprConstant.cpp
>     cfe/trunk/lib/CodeGen/CGBlocks.cpp
>     cfe/trunk/lib/CodeGen/CGCall.cpp
>     cfe/trunk/lib/CodeGen/CodeGenFunction.h
>     cfe/trunk/lib/CodeGen/CodeGenModule.h
>     cfe/trunk/lib/Sema/SemaDeclAttr.cpp
>     cfe/trunk/test/CodeGenCXX/block-in-ctor-dtor.cpp
>     cfe/trunk/test/CodeGenCXX/global-init.cpp
>     cfe/trunk/test/CodeGenOpenCL/cl20-device-side-enqueue.cl
>     cfe/trunk/test/SemaCXX/constant-expression-cxx11.cpp
> 
> Modified: cfe/trunk/include/clang/Basic/Attr.td
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Basic/Attr.td?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/include/clang/Basic/Attr.td (original)
> +++ cfe/trunk/include/clang/Basic/Attr.td Wed Dec 21 20:50:20 2016
> @@ -780,6 +780,15 @@ def EmptyBases : InheritableAttr, Target
>    let Documentation = [EmptyBasesDocs];
>  }
> 
> +def AllocSize : InheritableAttr {
> +  let Spellings = [GCC<"alloc_size">];
> +  let Subjects = SubjectList<[HasFunctionProto], WarnDiag,
> +                             "ExpectedFunctionWithProtoType">;
> +  let Args = [IntArgument<"ElemSizeParam">, 
> IntArgument<"NumElemsParam", 1>];
> +  let TemplateDependent = 1;
> +  let Documentation = [AllocSizeDocs];
> +}
> +
>  def EnableIf : InheritableAttr {
>    let Spellings = [GNU<"enable_if">];
>    let Subjects = SubjectList<[Function]>;
> 
> Modified: cfe/trunk/include/clang/Basic/AttrDocs.td
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Basic/AttrDocs.td?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/include/clang/Basic/AttrDocs.td (original)
> +++ cfe/trunk/include/clang/Basic/AttrDocs.td Wed Dec 21 20:50:20 2016
> @@ -206,6 +206,44 @@ to enforce the provided alignment assump
>    }];
>  }
> 
> +def AllocSizeDocs : Documentation {
> +  let Category = DocCatFunction;
> +  let Content = [{
> +The ``alloc_size`` attribute can be placed on functions that return 
> pointers in
> +order to hint to the compiler how many bytes of memory will be 
> available at the
> +returned poiner. ``alloc_size`` takes one or two arguments.
> +
> +- ``alloc_size(N)`` implies that argument number N equals the number 
> of
> +  available bytes at the returned pointer.
> +- ``alloc_size(N, M)`` implies that the product of argument number N 
> and
> +  argument number M equals the number of available bytes at the 
> returned
> +  pointer.
> +
> +Argument numbers are 1-based.
> +
> +An example of how to use ``alloc_size``
> +
> +.. code-block:: c
> +
> +  void *my_malloc(int a) __attribute__((alloc_size(1)));
> +  void *my_calloc(int a, int b) __attribute__((alloc_size(1, 2)));
> +
> +  int main() {
> +    void *const p = my_malloc(100);
> +    assert(__builtin_object_size(p, 0) == 100);
> +    void *const a = my_calloc(20, 5);
> +    assert(__builtin_object_size(a, 0) == 100);
> +  }
> +
> +.. Note:: This attribute works differently in clang than it does in 
> GCC.
> +  Specifically, clang will only trace ``const`` pointers (as above); 
> we give up
> +  on pointers that are not marked as ``const``. In the vast majority 
> of cases,
> +  this is unimportant, because LLVM has support for the ``alloc_size``
> +  attribute. However, this may cause mildly unintuitive behavior when 
> used with
> +  other attributes, such as ``enable_if``.
> +  }];
> +}
> +
>  def EnableIfDocs : Documentation {
>    let Category = DocCatFunction;
>    let Content = [{
> 
> Modified: cfe/trunk/include/clang/Basic/DiagnosticSemaKinds.td
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/include/clang/Basic/DiagnosticSemaKinds.td?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/include/clang/Basic/DiagnosticSemaKinds.td (original)
> +++ cfe/trunk/include/clang/Basic/DiagnosticSemaKinds.td Wed Dec 21
> 20:50:20 2016
> @@ -2299,6 +2299,9 @@ def warn_attribute_pointers_only : Warni
>    "%0 attribute only applies to%select{| constant}1 pointer 
> arguments">,
>    InGroup<IgnoredAttributes>;
>  def err_attribute_pointers_only : 
> Error<warn_attribute_pointers_only.Text>;
> +def err_attribute_integers_only : Error<
> +  "%0 attribute argument may only refer to a function parameter of 
> integer "
> +  "type">;
>  def warn_attribute_return_pointers_only : Warning<
>    "%0 attribute only applies to return values that are pointers">,
>    InGroup<IgnoredAttributes>;
> 
> Modified: cfe/trunk/lib/AST/ExprConstant.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/AST/ExprConstant.cpp?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/lib/AST/ExprConstant.cpp (original)
> +++ cfe/trunk/lib/AST/ExprConstant.cpp Wed Dec 21 20:50:20 2016
> @@ -109,19 +109,57 @@ namespace {
>      return getAsBaseOrMember(E).getInt();
>    }
> 
> +  /// Given a CallExpr, try to get the alloc_size attribute. May 
> return null.
> +  static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
> +    const FunctionDecl *Callee = CE->getDirectCallee();
> +    return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
> +  }
> +
> +  /// Attempts to unwrap a CallExpr (with an alloc_size attribute)
> from an Expr.
> +  /// This will look through a single cast.
> +  ///
> +  /// Returns null if we couldn't unwrap a function with alloc_size.
> +  static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
> +    if (!E->getType()->isPointerType())
> +      return nullptr;
> +
> +    E = E->IgnoreParens();
> +    // If we're doing a variable assignment from e.g. malloc(N), there 
> will
> +    // probably be a cast of some kind. Ignore it.
> +    if (const auto *Cast = dyn_cast<CastExpr>(E))
> +      E = Cast->getSubExpr()->IgnoreParens();
> +
> +    if (const auto *CE = dyn_cast<CallExpr>(E))
> +      return getAllocSizeAttr(CE) ? CE : nullptr;
> +    return nullptr;
> +  }
> +
> +  /// Determines whether or not the given Base contains a call to a 
> function
> +  /// with the alloc_size attribute.
> +  static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
> +    const auto *E = Base.dyn_cast<const Expr *>();
> +    return E && E->getType()->isPointerType() && 
> tryUnwrapAllocSizeCall(E);
> +  }
> +
> +  /// Determines if an LValue with the given LValueBase will have an 
> unsized
> +  /// array in its designator.
>    /// Find the path length and type of the most-derived subobject in 
> the given
>    /// path, and find the size of the containing array, if any.
> -  static
> -  unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
> -                                    ArrayRef<APValue::LValuePathEntry> 
> Path,
> -                                    uint64_t &ArraySize, QualType 
> &Type,
> -                                    bool &IsArray) {
> +  static unsigned
> +  findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
> +                           ArrayRef<APValue::LValuePathEntry> Path,
> +                           uint64_t &ArraySize, QualType &Type, bool
> &IsArray) {
> +    // This only accepts LValueBases from APValues, and APValues don't 
> support
> +    // arrays that lack size info.
> +    assert(!isBaseAnAllocSizeCall(Base) &&
> +           "Unsized arrays shouldn't appear here");
>      unsigned MostDerivedLength = 0;
> -    Type = Base;
> +    Type = getType(Base);
> +
>      for (unsigned I = 0, N = Path.size(); I != N; ++I) {
>        if (Type->isArrayType()) {
>          const ConstantArrayType *CAT =
> -          cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
> +            cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
>          Type = CAT->getElementType();
>          ArraySize = CAT->getSize().getZExtValue();
>          MostDerivedLength = I + 1;
> @@ -162,17 +200,23 @@ namespace {
>      /// Is this a pointer one past the end of an object?
>      unsigned IsOnePastTheEnd : 1;
> 
> +    /// Indicator of whether the first entry is an unsized array.
> +    unsigned FirstEntryIsAnUnsizedArray : 1;
> +
>      /// Indicator of whether the most-derived object is an array 
> element.
>      unsigned MostDerivedIsArrayElement : 1;
> 
>      /// The length of the path to the most-derived object of which 
> this is a
>      /// subobject.
> -    unsigned MostDerivedPathLength : 29;
> +    unsigned MostDerivedPathLength : 28;
> 
>      /// The size of the array of which the most-derived object is an 
> element.
>      /// This will always be 0 if the most-derived object is not an 
> array
>      /// element. 0 is not an indicator of whether or not the
> most-derived object
>      /// is an array, however, because 0-length arrays are allowed.
> +    ///
> +    /// If the current array is an unsized array, the value of this is
> +    /// undefined.
>      uint64_t MostDerivedArraySize;
> 
>      /// The type of the most derived object referred to by this 
> address.
> @@ -187,23 +231,24 @@ namespace {
> 
>      explicit SubobjectDesignator(QualType T)
>          : Invalid(false), IsOnePastTheEnd(false),
> -          MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
> -          MostDerivedArraySize(0), MostDerivedType(T) {}
> +          FirstEntryIsAnUnsizedArray(false), 
> MostDerivedIsArrayElement(false),
> +          MostDerivedPathLength(0), MostDerivedArraySize(0),
> +          MostDerivedType(T) {}
> 
>      SubobjectDesignator(ASTContext &Ctx, const APValue &V)
>          : Invalid(!V.isLValue() || !V.hasLValuePath()), 
> IsOnePastTheEnd(false),
> -          MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
> -          MostDerivedArraySize(0) {
> +          FirstEntryIsAnUnsizedArray(false), 
> MostDerivedIsArrayElement(false),
> +          MostDerivedPathLength(0), MostDerivedArraySize(0) {
> +      assert(V.isLValue() && "Non-LValue used to make an LValue 
> designator?");
>        if (!Invalid) {
>          IsOnePastTheEnd = V.isLValueOnePastTheEnd();
>          ArrayRef<PathEntry> VEntries = V.getLValuePath();
>          Entries.insert(Entries.end(), VEntries.begin(), 
> VEntries.end());
>          if (V.getLValueBase()) {
>            bool IsArray = false;
> -          MostDerivedPathLength =
> -              findMostDerivedSubobject(Ctx, 
> getType(V.getLValueBase()),
> -                                       V.getLValuePath(), 
> MostDerivedArraySize,
> -                                       MostDerivedType, IsArray);
> +          MostDerivedPathLength = findMostDerivedSubobject(
> +              Ctx, V.getLValueBase(), V.getLValuePath(), 
> MostDerivedArraySize,
> +              MostDerivedType, IsArray);
>            MostDerivedIsArrayElement = IsArray;
>          }
>        }
> @@ -214,12 +259,26 @@ namespace {
>        Entries.clear();
>      }
> 
> +    /// Determine whether the most derived subobject is an array 
> without a
> +    /// known bound.
> +    bool isMostDerivedAnUnsizedArray() const {
> +      assert(!Invalid && "Calling this makes no sense on invalid 
> designators");
> +      return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
> +    }
> +
> +    /// Determine what the most derived array's size is. Results in
> an assertion
> +    /// failure if the most derived array lacks a size.
> +    uint64_t getMostDerivedArraySize() const {
> +      assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no 
> size");
> +      return MostDerivedArraySize;
> +    }
> +
>      /// Determine whether this is a one-past-the-end pointer.
>      bool isOnePastTheEnd() const {
>        assert(!Invalid);
>        if (IsOnePastTheEnd)
>          return true;
> -      if (MostDerivedIsArrayElement &&
> +      if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement 
> &&
>            Entries[MostDerivedPathLength - 1].ArrayIndex ==
> MostDerivedArraySize)
>          return true;
>        return false;
> @@ -247,6 +306,21 @@ namespace {
>        MostDerivedArraySize = CAT->getSize().getZExtValue();
>        MostDerivedPathLength = Entries.size();
>      }
> +    /// Update this designator to refer to the first element within
> the array of
> +    /// elements of type T. This is an array of unknown size.
> +    void addUnsizedArrayUnchecked(QualType ElemTy) {
> +      PathEntry Entry;
> +      Entry.ArrayIndex = 0;
> +      Entries.push_back(Entry);
> +
> +      MostDerivedType = ElemTy;
> +      MostDerivedIsArrayElement = true;
> +      // The value in MostDerivedArraySize is undefined in this case.
> So, set it
> +      // to an arbitrary value that's likely to loudly break things if 
> it's
> +      // used.
> +      MostDerivedArraySize = std::numeric_limits<uint64_t>::max() / 2;
> +      MostDerivedPathLength = Entries.size();
> +    }
>      /// Update this designator to refer to the given base or member of 
> this
>      /// object.
>      void addDeclUnchecked(const Decl *D, bool Virtual = false) {
> @@ -280,10 +354,16 @@ namespace {
>      /// Add N to the address of this subobject.
>      void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
>        if (Invalid) return;
> +      if (isMostDerivedAnUnsizedArray()) {
> +        // Can't verify -- trust that the user is doing the right 
> thing (or if
> +        // not, trust that the caller will catch the bad behavior).
> +        Entries.back().ArrayIndex += N;
> +        return;
> +      }
>        if (MostDerivedPathLength == Entries.size() &&
>            MostDerivedIsArrayElement) {
>          Entries.back().ArrayIndex += N;
> -        if (Entries.back().ArrayIndex > MostDerivedArraySize) {
> +        if (Entries.back().ArrayIndex > getMostDerivedArraySize()) {
>            diagnosePointerArithmetic(Info, E, 
> Entries.back().ArrayIndex);
>            setInvalid();
>          }
> @@ -524,9 +604,15 @@ namespace {
>        /// gets a chance to look at it.
>        EM_PotentialConstantExpressionUnevaluated,
> 
> -      /// Evaluate as a constant expression. Continue evaluating if we 
> find a
> -      /// MemberExpr with a base that can't be evaluated.
> -      EM_DesignatorFold,
> +      /// Evaluate as a constant expression. Continue evaluating if 
> either:
> +      /// - We find a MemberExpr with a base that can't be evaluated.
> +      /// - We find a variable initialized with a call to a function 
> that has
> +      ///   the alloc_size attribute on it.
> +      /// In either case, the LValue returned shall have an invalid
> base; in the
> +      /// former, the base will be the invalid MemberExpr, in the 
> latter, the
> +      /// base will be either the alloc_size CallExpr or a CastExpr 
> wrapping
> +      /// said CallExpr.
> +      EM_OffsetFold,
>      } EvalMode;
> 
>      /// Are we checking whether the expression is a potential constant
> @@ -628,7 +714,7 @@ namespace {
>            case EM_PotentialConstantExpression:
>            case EM_ConstantExpressionUnevaluated:
>            case EM_PotentialConstantExpressionUnevaluated:
> -          case EM_DesignatorFold:
> +          case EM_OffsetFold:
>              HasActiveDiagnostic = false;
>              return OptionalDiagnostic();
>            }
> @@ -720,7 +806,7 @@ namespace {
>        case EM_ConstantExpression:
>        case EM_ConstantExpressionUnevaluated:
>        case EM_ConstantFold:
> -      case EM_DesignatorFold:
> +      case EM_OffsetFold:
>          return false;
>        }
>        llvm_unreachable("Missed EvalMode case");
> @@ -739,7 +825,7 @@ namespace {
>        case EM_EvaluateForOverflow:
>        case EM_IgnoreSideEffects:
>        case EM_ConstantFold:
> -      case EM_DesignatorFold:
> +      case EM_OffsetFold:
>          return true;
> 
>        case EM_PotentialConstantExpression:
> @@ -775,7 +861,7 @@ namespace {
>        case EM_ConstantExpressionUnevaluated:
>        case EM_ConstantFold:
>        case EM_IgnoreSideEffects:
> -      case EM_DesignatorFold:
> +      case EM_OffsetFold:
>          return false;
>        }
>        llvm_unreachable("Missed EvalMode case");
> @@ -805,7 +891,7 @@ namespace {
>      }
> 
>      bool allowInvalidBaseExpr() const {
> -      return EvalMode == EM_DesignatorFold;
> +      return EvalMode == EM_OffsetFold;
>      }
> 
>      class ArrayInitLoopIndex {
> @@ -856,11 +942,10 @@ namespace {
>    struct FoldOffsetRAII {
>      EvalInfo &Info;
>      EvalInfo::EvaluationMode OldMode;
> -    explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject)
> +    explicit FoldOffsetRAII(EvalInfo &Info)
>          : Info(Info), OldMode(Info.EvalMode) {
>        if (!Info.checkingPotentialConstantExpression())
> -        Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold
> -                                  : EvalInfo::EM_ConstantFold;
> +        Info.EvalMode = EvalInfo::EM_OffsetFold;
>      }
> 
>      ~FoldOffsetRAII() { Info.EvalMode = OldMode; }
> @@ -966,10 +1051,12 @@ bool SubobjectDesignator::checkSubobject
> 
>  void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
>                                                      const Expr *E,
> uint64_t N) {
> +  // If we're complaining, we must be able to statically determine the 
> size of
> +  // the most derived array.
>    if (MostDerivedPathLength == Entries.size() && 
> MostDerivedIsArrayElement)
>      Info.CCEDiag(E, diag::note_constexpr_array_index)
>        << static_cast<int>(N) << /*array*/ 0
> -      << static_cast<unsigned>(MostDerivedArraySize);
> +      << static_cast<unsigned>(getMostDerivedArraySize());
>    else
>      Info.CCEDiag(E, diag::note_constexpr_array_index)
>        << static_cast<int>(N) << /*non-array*/ 1;
> @@ -1102,12 +1189,16 @@ namespace {
>        if (Designator.Invalid)
>          V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex,
>                      IsNullPtr);
> -      else
> +      else {
> +        assert(!InvalidBase && "APValues can't handle invalid LValue 
> bases");
> +        assert(!Designator.FirstEntryIsAnUnsizedArray &&
> +               "Unsized array with a valid base?");
>          V = APValue(Base, Offset, Designator.Entries,
>                      Designator.IsOnePastTheEnd, CallIndex, IsNullPtr);
> +      }
>      }
>      void setFrom(ASTContext &Ctx, const APValue &V) {
> -      assert(V.isLValue());
> +      assert(V.isLValue() && "Setting LValue from a non-LValue?");
>        Base = V.getLValueBase();
>        Offset = V.getLValueOffset();
>        InvalidBase = false;
> @@ -1118,6 +1209,15 @@ namespace {
> 
>      void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = 
> false,
>               bool IsNullPtr_ = false, uint64_t Offset_ = 0) {
> +#ifndef NDEBUG
> +      // We only allow a few types of invalid bases. Enforce that 
> here.
> +      if (BInvalid) {
> +        const auto *E = B.get<const Expr *>();
> +        assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
> +               "Unexpected type of invalid base");
> +      }
> +#endif
> +
>        Base = B;
>        Offset = CharUnits::fromQuantity(Offset_);
>        InvalidBase = BInvalid;
> @@ -1157,6 +1257,13 @@ namespace {
>        if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : 
> CSK_Base))
>          Designator.addDeclUnchecked(D, Virtual);
>      }
> +    void addUnsizedArray(EvalInfo &Info, QualType ElemTy) {
> +      assert(Designator.Entries.empty() && 
> getType(Base)->isPointerType());
> +      assert(isBaseAnAllocSizeCall(Base) &&
> +             "Only alloc_size bases can have unsized arrays");
> +      Designator.FirstEntryIsAnUnsizedArray = true;
> +      Designator.addUnsizedArrayUnchecked(ElemTy);
> +    }
>      void addArray(EvalInfo &Info, const Expr *E, const
> ConstantArrayType *CAT) {
>        if (checkSubobject(Info, E, CSK_ArrayToPointer))
>          Designator.addArrayUnchecked(CAT);
> @@ -2796,7 +2903,7 @@ static CompleteObject findCompleteObject
>          // All the remaining cases only permit reading.
>          Info.FFDiag(E, diag::note_constexpr_modify_global);
>          return CompleteObject();
> -      } else if (VD->isConstexpr()) {
> +      } else if (VD->isConstexpr() || BaseType.isConstQualified()) {
>          // OK, we can read this variable.
>        } else if (BaseType->isIntegralOrEnumerationType()) {
>          // In OpenCL if a variable is in constant address space it is
> a const value.
> @@ -5079,6 +5186,105 @@ bool LValueExprEvaluator::VisitBinAssign
>  // Pointer Evaluation
> 
> //===----------------------------------------------------------------------===//
> 
> +/// \brief Attempts to compute the number of bytes available at the 
> pointer
> +/// returned by a function with the alloc_size attribute. Returns true 
> if we
> +/// were successful. Places an unsigned number into `Result`.
> +///
> +/// This expects the given CallExpr to be a call to a function with an
> +/// alloc_size attribute.
> +static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
> +                                            const CallExpr *Call,
> +                                            llvm::APInt &Result) {
> +  const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
> +
> +  // alloc_size args are 1-indexed, 0 means not present.
> +  assert(AllocSize && AllocSize->getElemSizeParam() != 0);
> +  unsigned SizeArgNo = AllocSize->getElemSizeParam() - 1;
> +  unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
> +  if (Call->getNumArgs() <= SizeArgNo)
> +    return false;
> +
> +  auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
> +    if (!E->EvaluateAsInt(Into, Ctx, Expr::SE_AllowSideEffects))
> +      return false;
> +    if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
> +      return false;
> +    Into = Into.zextOrSelf(BitsInSizeT);
> +    return true;
> +  };
> +
> +  APSInt SizeOfElem;
> +  if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
> +    return false;
> +
> +  if (!AllocSize->getNumElemsParam()) {
> +    Result = std::move(SizeOfElem);
> +    return true;
> +  }
> +
> +  APSInt NumberOfElems;
> +  // Argument numbers start at 1
> +  unsigned NumArgNo = AllocSize->getNumElemsParam() - 1;
> +  if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
> +    return false;
> +
> +  bool Overflow;
> +  llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, 
> Overflow);
> +  if (Overflow)
> +    return false;
> +
> +  Result = std::move(BytesAvailable);
> +  return true;
> +}
> +
> +/// \brief Convenience function. LVal's base must be a call to an 
> alloc_size
> +/// function.
> +static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
> +                                            const LValue &LVal,
> +                                            llvm::APInt &Result) {
> +  assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
> +         "Can't get the size of a non alloc_size function");
> +  const auto *Base = LVal.getLValueBase().get<const Expr *>();
> +  const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
> +  return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
> +}
> +
> +/// \brief Attempts to evaluate the given LValueBase as the result of 
> a call to
> +/// a function with the alloc_size attribute. If it was possible to do 
> so, this
> +/// function will return true, make Result's Base point to said 
> function call,
> +/// and mark Result's Base as invalid.
> +static bool evaluateLValueAsAllocSize(EvalInfo &Info, 
> APValue::LValueBase Base,
> +                                      LValue &Result) {
> +  if (!Info.allowInvalidBaseExpr() || Base.isNull())
> +    return false;
> +
> +  // Because we do no form of static analysis, we only support const 
> variables.
> +  //
> +  // Additionally, we can't support parameters, nor can we support 
> static
> +  // variables (in the latter case, use-before-assign isn't UB; in the 
> former,
> +  // we have no clue what they'll be assigned to).
> +  const auto *VD =
> +      dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
> +  if (!VD || !VD->isLocalVarDecl() || 
> !VD->getType().isConstQualified())
> +    return false;
> +
> +  const Expr *Init = VD->getAnyInitializer();
> +  if (!Init)
> +    return false;
> +
> +  const Expr *E = Init->IgnoreParens();
> +  if (!tryUnwrapAllocSizeCall(E))
> +    return false;
> +
> +  // Store E instead of E unwrapped so that the type of the LValue's 
> base is
> +  // what the user wanted.
> +  Result.setInvalid(E);
> +
> +  QualType Pointee = 
> E->getType()->castAs<PointerType>()->getPointeeType();
> +  Result.addUnsizedArray(Info, Pointee);
> +  return true;
> +}
> +
>  namespace {
>  class PointerExprEvaluator
>    : public ExprEvaluatorBase<PointerExprEvaluator> {
> @@ -5088,6 +5294,8 @@ class PointerExprEvaluator
>      Result.set(E);
>      return true;
>    }
> +
> +  bool visitNonBuiltinCallExpr(const CallExpr *E);
>  public:
> 
>    PointerExprEvaluator(EvalInfo &info, LValue &Result)
> @@ -5270,6 +5478,19 @@ bool PointerExprEvaluator::VisitCastExpr
> 
>    case CK_FunctionToPointerDecay:
>      return EvaluateLValue(SubExpr, Result, Info);
> +
> +  case CK_LValueToRValue: {
> +    LValue LVal;
> +    if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
> +      return false;
> +
> +    APValue RVal;
> +    // Note, we use the subexpression's type in order to retain 
> cv-qualifiers.
> +    if (!handleLValueToRValueConversion(Info, E, 
> E->getSubExpr()->getType(),
> +                                        LVal, RVal))
> +      return evaluateLValueAsAllocSize(Info, LVal.Base, Result);
> +    return Success(RVal, E);
> +  }
>    }
> 
>    return ExprEvaluatorBaseTy::VisitCastExpr(E);
> @@ -5307,6 +5528,20 @@ static CharUnits GetAlignOfExpr(EvalInfo
>    return GetAlignOfType(Info, E->getType());
>  }
> 
> +// To be clear: this happily visits unsupported builtins. Better name 
> welcomed.
> +bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) 
> {
> +  if (ExprEvaluatorBaseTy::VisitCallExpr(E))
> +    return true;
> +
> +  if (!(Info.allowInvalidBaseExpr() && getAllocSizeAttr(E)))
> +    return false;
> +
> +  Result.setInvalid(E);
> +  QualType PointeeTy = 
> E->getType()->castAs<PointerType>()->getPointeeType();
> +  Result.addUnsizedArray(Info, PointeeTy);
> +  return true;
> +}
> +
>  bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
>    if (IsStringLiteralCall(E))
>      return Success(E);
> @@ -5314,7 +5549,7 @@ bool PointerExprEvaluator::VisitCallExpr
>    if (unsigned BuiltinOp = E->getBuiltinCallee())
>      return VisitBuiltinCallExpr(E, BuiltinOp);
> 
> -  return ExprEvaluatorBaseTy::VisitCallExpr(E);
> +  return visitNonBuiltinCallExpr(E);
>  }
> 
>  bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
> @@ -5473,7 +5708,7 @@ bool PointerExprEvaluator::VisitBuiltinC
>    }
> 
>    default:
> -    return ExprEvaluatorBaseTy::VisitCallExpr(E);
> +    return visitNonBuiltinCallExpr(E);
>    }
>  }
> 
> @@ -6512,8 +6747,6 @@ public:
>    bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
>    bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
> 
> -private:
> -  bool TryEvaluateBuiltinObjectSize(const CallExpr *E, unsigned Type);
>    // FIXME: Missing: array subscript of vector, member of vector
>  };
>  } // end anonymous namespace
> @@ -6785,7 +7018,7 @@ static QualType getObjectType(APValue::L
>  }
> 
>  /// A more selective version of E->IgnoreParenCasts for
> -/// TryEvaluateBuiltinObjectSize. This ignores some casts/parens that
> serve only
> +/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that
> serve only
>  /// to change the type of E.
>  /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
>  ///
> @@ -6852,82 +7085,191 @@ static bool isDesignatorAtObjectEnd(cons
>      }
>    }
> 
> +  unsigned I = 0;
>    QualType BaseType = getType(Base);
> -  for (int I = 0, E = LVal.Designator.Entries.size(); I != E; ++I) {
> +  if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
> +    assert(isBaseAnAllocSizeCall(Base) &&
> +           "Unsized array in non-alloc_size call?");
> +    // If this is an alloc_size base, we should ignore the initial 
> array index
> +    ++I;
> +    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
> +  }
> +
> +  for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
> +    const auto &Entry = LVal.Designator.Entries[I];
>      if (BaseType->isArrayType()) {
>        // Because __builtin_object_size treats arrays as objects, we 
> can ignore
>        // the index iff this is the last array in the Designator.
>        if (I + 1 == E)
>          return true;
> -      auto *CAT = 
> cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
> -      uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
> +      const auto *CAT = 
> cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
> +      uint64_t Index = Entry.ArrayIndex;
>        if (Index + 1 != CAT->getSize())
>          return false;
>        BaseType = CAT->getElementType();
>      } else if (BaseType->isAnyComplexType()) {
> -      auto *CT = BaseType->castAs<ComplexType>();
> -      uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
> +      const auto *CT = BaseType->castAs<ComplexType>();
> +      uint64_t Index = Entry.ArrayIndex;
>        if (Index != 1)
>          return false;
>        BaseType = CT->getElementType();
> -    } else if (auto *FD = getAsField(LVal.Designator.Entries[I])) {
> +    } else if (auto *FD = getAsField(Entry)) {
>        bool Invalid;
>        if (!IsLastOrInvalidFieldDecl(FD, Invalid))
>          return Invalid;
>        BaseType = FD->getType();
>      } else {
> -      assert(getAsBaseClass(LVal.Designator.Entries[I]) != nullptr &&
> -             "Expecting cast to a base class");
> +      assert(getAsBaseClass(Entry) && "Expecting cast to a base 
> class");
>        return false;
>      }
>    }
>    return true;
>  }
> 
> -/// Tests to see if the LValue has a designator (that isn't 
> necessarily valid).
> +/// Tests to see if the LValue has a user-specified designator (that 
> isn't
> +/// necessarily valid). Note that this always returns 'true' if the 
> LValue has
> +/// an unsized array as its first designator entry, because there's
> currently no
> +/// way to tell if the user typed *foo or foo[0].
>  static bool refersToCompleteObject(const LValue &LVal) {
> -  if (LVal.Designator.Invalid || !LVal.Designator.Entries.empty())
> +  if (LVal.Designator.Invalid)
>      return false;
> 
> +  if (!LVal.Designator.Entries.empty())
> +    return LVal.Designator.isMostDerivedAnUnsizedArray();
> +
>    if (!LVal.InvalidBase)
>      return true;
> 
> -  auto *E = LVal.Base.dyn_cast<const Expr *>();
> -  (void)E;
> -  assert(E != nullptr && isa<MemberExpr>(E));
> -  return false;
> +  // If `E` is a MemberExpr, then the first part of the designator is 
> hiding in
> +  // the LValueBase.
> +  const auto *E = LVal.Base.dyn_cast<const Expr *>();
> +  return !E || !isa<MemberExpr>(E);
> +}
> +
> +/// Attempts to detect a user writing into a piece of memory that's 
> impossible
> +/// to figure out the size of by just using types.
> +static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue 
> &LVal) {
> +  const SubobjectDesignator &Designator = LVal.Designator;
> +  // Notes:
> +  // - Users can only write off of the end when we have an invalid
> base. Invalid
> +  //   bases imply we don't know where the memory came from.
> +  // - We used to be a bit more aggressive here; we'd only be 
> conservative if
> +  //   the array at the end was flexible, or if it had 0 or 1 
> elements. This
> +  //   broke some common standard library extensions (PR30346), but 
> was
> +  //   otherwise seemingly fine. It may be useful to reintroduce this 
> behavior
> +  //   with some sort of whitelist. OTOH, it seems that GCC is always
> +  //   conservative with the last element in structs (if it's an 
> array), so our
> +  //   current behavior is more compatible than a whitelisting 
> approach would
> +  //   be.
> +  return LVal.InvalidBase &&
> +         Designator.Entries.size() == Designator.MostDerivedPathLength 
> &&
> +         Designator.MostDerivedIsArrayElement &&
> +         isDesignatorAtObjectEnd(Ctx, LVal);
> +}
> +
> +/// Converts the given APInt to CharUnits, assuming the APInt is 
> unsigned.
> +/// Fails if the conversion would cause loss of precision.
> +static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
> +                                            CharUnits &Result) {
> +  auto CharUnitsMax = 
> std::numeric_limits<CharUnits::QuantityType>::max();
> +  if (Int.ugt(CharUnitsMax))
> +    return false;
> +  Result = CharUnits::fromQuantity(Int.getZExtValue());
> +  return true;
>  }
> 
> -/// Tries to evaluate the __builtin_object_size for @p E. If
> successful, returns
> -/// true and stores the result in @p Size.
> +/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this 
> will
> +/// determine how many bytes exist from the beginning of the object to 
> either
> +/// the end of the current subobject, or the end of the object
> itself, depending
> +/// on what the LValue looks like + the value of Type.
>  ///
> -/// If @p WasError is non-null, this will report whether the failure
> to evaluate
> -/// is to be treated as an Error in IntExprEvaluator.
> -static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
> -                                         EvalInfo &Info, uint64_t 
> &Size,
> -                                         bool *WasError = nullptr) {
> -  if (WasError != nullptr)
> -    *WasError = false;
> -
> -  auto Error = [&](const Expr *E) {
> -    if (WasError != nullptr)
> -      *WasError = true;
> +/// If this returns false, the value of Result is undefined.
> +static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
> +                               unsigned Type, const LValue &LVal,
> +                               CharUnits &EndOffset) {
> +  bool DetermineForCompleteObject = refersToCompleteObject(LVal);
> +
> +  // We want to evaluate the size of the entire object. This is a
> valid fallback
> +  // for when Type=1 and the designator is invalid, because we're 
> asked for an
> +  // upper-bound.
> +  if (!(Type & 1) || LVal.Designator.Invalid || 
> DetermineForCompleteObject) {
> +    // Type=3 wants a lower bound, so we can't fall back to this.
> +    if (Type == 3 && !DetermineForCompleteObject)
> +      return false;
> +
> +    llvm::APInt APEndOffset;
> +    if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
> +        getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
> +      return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
> +
> +    if (LVal.InvalidBase)
> +      return false;
> +
> +    QualType BaseTy = getObjectType(LVal.getLValueBase());
> +    return !BaseTy.isNull() && HandleSizeof(Info, ExprLoc, BaseTy, 
> EndOffset);
> +  }
> +
> +  // We want to evaluate the size of a subobject.
> +  const SubobjectDesignator &Designator = LVal.Designator;
> +
> +  // The following is a moderately common idiom in C:
> +  //
> +  // struct Foo { int a; char c[1]; };
> +  // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + 
> strlen(Bar));
> +  // strcpy(&F->c[0], Bar);
> +  //
> +  // In order to not break too much legacy code, we need to support 
> it.
> +  if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
> +    // If we can resolve this to an alloc_size call, we can hand that 
> back,
> +    // because we know for certain how many bytes there are to write 
> to.
> +    llvm::APInt APEndOffset;
> +    if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
> +        getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
> +      return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
> +
> +    // If we cannot determine the size of the initial allocation, then 
> we can't
> +    // given an accurate upper-bound. However, we are still able to 
> give
> +    // conservative lower-bounds for Type=3.
> +    if (Type == 1)
> +      return false;
> +  }
> +
> +  CharUnits BytesPerElem;
> +  if (!HandleSizeof(Info, ExprLoc, Designator.MostDerivedType, 
> BytesPerElem))
>      return false;
> -  };
> 
> -  auto Success = [&](uint64_t S, const Expr *E) {
> -    Size = S;
> -    return true;
> -  };
> +  // According to the GCC documentation, we want the size of the 
> subobject
> +  // denoted by the pointer. But that's not quite right -- what we 
> actually
> +  // want is the size of the immediately-enclosing array, if there is 
> one.
> +  int64_t ElemsRemaining;
> +  if (Designator.MostDerivedIsArrayElement &&
> +      Designator.Entries.size() == Designator.MostDerivedPathLength) {
> +    uint64_t ArraySize = Designator.getMostDerivedArraySize();
> +    uint64_t ArrayIndex = Designator.Entries.back().ArrayIndex;
> +    ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - 
> ArrayIndex;
> +  } else {
> +    ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
> +  }
> 
> +  EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
> +  return true;
> +}
> +
> +/// \brief Tries to evaluate the __builtin_object_size for @p E. If 
> successful,
> +/// returns true and stores the result in @p Size.
> +///
> +/// If @p WasError is non-null, this will report whether the failure
> to evaluate
> +/// is to be treated as an Error in IntExprEvaluator.
> +static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
> +                                         EvalInfo &Info, uint64_t 
> &Size) {
>    // Determine the denoted object.
> -  LValue Base;
> +  LValue LVal;
>    {
>      // The operand of __builtin_object_size is never evaluated for
> side-effects.
>      // If there are any, but we can determine the pointed-to object
> anyway, then
>      // ignore the side-effects.
>      SpeculativeEvaluationRAII SpeculativeEval(Info);
> -    FoldOffsetRAII Fold(Info, Type & 1);
> +    FoldOffsetRAII Fold(Info);
> 
>      if (E->isGLValue()) {
>        // It's possible for us to be given GLValues if we're called via
> @@ -6935,122 +7277,29 @@ static bool tryEvaluateBuiltinObjectSize
>        APValue RVal;
>        if (!EvaluateAsRValue(Info, E, RVal))
>          return false;
> -      Base.setFrom(Info.Ctx, RVal);
> -    } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), Base, 
> Info))
> +      LVal.setFrom(Info.Ctx, RVal);
> +    } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, 
> Info))
>        return false;
>    }
> 
> -  CharUnits BaseOffset = Base.getLValueOffset();
>    // If we point to before the start of the object, there are no 
> accessible
>    // bytes.
> -  if (BaseOffset.isNegative())
> -    return Success(0, E);
> -
> -  // In the case where we're not dealing with a subobject, we discard 
> the
> -  // subobject bit.
> -  bool SubobjectOnly = (Type & 1) != 0 && 
> !refersToCompleteObject(Base);
> -
> -  // If Type & 1 is 0, we need to be able to statically guarantee
> that the bytes
> -  // exist. If we can't verify the base, then we can't do that.
> -  //
> -  // As a special case, we produce a valid object size for an unknown 
> object
> -  // with a known designator if Type & 1 is 1. For instance:
> -  //
> -  //   extern struct X { char buff[32]; int a, b, c; } *p;
> -  //   int a = __builtin_object_size(p->buff + 4, 3); // returns 28
> -  //   int b = __builtin_object_size(p->buff + 4, 2); // returns 0, 
> not 40
> -  //
> -  // This matches GCC's behavior.
> -  if (Base.InvalidBase && !SubobjectOnly)
> -    return Error(E);
> -
> -  // If we're not examining only the subobject, then we reset to a 
> complete
> -  // object designator
> -  //
> -  // If Type is 1 and we've lost track of the subobject, just find the 
> complete
> -  // object instead. (If Type is 3, that's not correct behavior and we 
> should
> -  // return 0 instead.)
> -  LValue End = Base;
> -  if (!SubobjectOnly || (End.Designator.Invalid && Type == 1)) {
> -    QualType T = getObjectType(End.getLValueBase());
> -    if (T.isNull())
> -      End.Designator.setInvalid();
> -    else {
> -      End.Designator = SubobjectDesignator(T);
> -      End.Offset = CharUnits::Zero();
> -    }
> +  if (LVal.getLValueOffset().isNegative()) {
> +    Size = 0;
> +    return true;
>    }
> 
> -  // If it is not possible to determine which objects ptr points to at 
> compile
> -  // time, __builtin_object_size should return (size_t) -1 for type 0 
> or 1
> -  // and (size_t) 0 for type 2 or 3.
> -  if (End.Designator.Invalid)
> +  CharUnits EndOffset;
> +  if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, 
> EndOffset))
>      return false;
> 
> -  // According to the GCC documentation, we want the size of the 
> subobject
> -  // denoted by the pointer. But that's not quite right -- what we 
> actually
> -  // want is the size of the immediately-enclosing array, if there is 
> one.
> -  int64_t AmountToAdd = 1;
> -  if (End.Designator.MostDerivedIsArrayElement &&
> -      End.Designator.Entries.size() == 
> End.Designator.MostDerivedPathLength) {
> -    // We got a pointer to an array. Step to its end.
> -    AmountToAdd = End.Designator.MostDerivedArraySize -
> -                  End.Designator.Entries.back().ArrayIndex;
> -  } else if (End.Designator.isOnePastTheEnd()) {
> -    // We're already pointing at the end of the object.
> -    AmountToAdd = 0;
> -  }
> -
> -  QualType PointeeType = End.Designator.MostDerivedType;
> -  assert(!PointeeType.isNull());
> -  if (PointeeType->isIncompleteType() || 
> PointeeType->isFunctionType())
> -    return Error(E);
> -
> -  if (!HandleLValueArrayAdjustment(Info, E, End,
> End.Designator.MostDerivedType,
> -                                   AmountToAdd))
> -    return false;
> -
> -  auto EndOffset = End.getLValueOffset();
> -
> -  // The following is a moderately common idiom in C:
> -  //
> -  // struct Foo { int a; char c[1]; };
> -  // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + 
> strlen(Bar));
> -  // strcpy(&F->c[0], Bar);
> -  //
> -  // So, if we see that we're examining an array at the end of a 
> struct with an
> -  // unknown base, we give up instead of breaking code that behaves 
> this way.
> -  // Note that we only do this when Type=1, because Type=3 is a lower 
> bound, so
> -  // answering conservatively is fine.
> -  //
> -  // We used to be a bit more aggressive here; we'd only be 
> conservative if the
> -  // array at the end was flexible, or if it had 0 or 1 elements. This 
> broke
> -  // some common standard library extensions (PR30346), but was 
> otherwise
> -  // seemingly fine. It may be useful to reintroduce this behavior 
> with some
> -  // sort of whitelist. OTOH, it seems that GCC is always conservative 
> with the
> -  // last element in structs (if it's an array), so our current
> behavior is more
> -  // compatible than a whitelisting approach would be.
> -  if (End.InvalidBase && SubobjectOnly && Type == 1 &&
> -      End.Designator.Entries.size() == 
> End.Designator.MostDerivedPathLength &&
> -      End.Designator.MostDerivedIsArrayElement &&
> -      isDesignatorAtObjectEnd(Info.Ctx, End))
> -    return false;
> -
> -  if (BaseOffset > EndOffset)
> -    return Success(0, E);
> -
> -  return Success((EndOffset - BaseOffset).getQuantity(), E);
> -}
> -
> -bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
> -                                                    unsigned Type) {
> -  uint64_t Size;
> -  bool WasError;
> -  if (::tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size,
> &WasError))
> -    return Success(Size, E);
> -  if (WasError)
> -    return Error(E);
> -  return false;
> +  // If we've fallen outside of the end offset, just pretend there's 
> nothing to
> +  // write to/read from.
> +  if (EndOffset <= LVal.getLValueOffset())
> +    Size = 0;
> +  else
> +    Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
> +  return true;
>  }
> 
>  bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
> @@ -7072,8 +7321,9 @@ bool IntExprEvaluator::VisitBuiltinCallE
>          E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
>      assert(Type <= 3 && "unexpected type");
> 
> -    if (TryEvaluateBuiltinObjectSize(E, Type))
> -      return true;
> +    uint64_t Size;
> +    if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
> +      return Success(Size, E);
> 
>      if (E->getArg(0)->HasSideEffects(Info.Ctx))
>        return Success((Type & 2) ? 0 : -1, E);
> @@ -7086,7 +7336,7 @@ bool IntExprEvaluator::VisitBuiltinCallE
>      case EvalInfo::EM_ConstantFold:
>      case EvalInfo::EM_EvaluateForOverflow:
>      case EvalInfo::EM_IgnoreSideEffects:
> -    case EvalInfo::EM_DesignatorFold:
> +    case EvalInfo::EM_OffsetFold:
>        // Leave it to IR generation.
>        return Error(E);
>      case EvalInfo::EM_ConstantExpressionUnevaluated:
> @@ -10189,5 +10439,5 @@ bool Expr::tryEvaluateObjectSize(uint64_
> 
>    Expr::EvalStatus Status;
>    EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
> -  return ::tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
> +  return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
>  }
> 
> Modified: cfe/trunk/lib/CodeGen/CGBlocks.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CGBlocks.cpp?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/CGBlocks.cpp (original)
> +++ cfe/trunk/lib/CodeGen/CGBlocks.cpp Wed Dec 21 20:50:20 2016
> @@ -686,6 +686,8 @@ llvm::Value *CodeGenFunction::EmitBlockL
>    // If the block has no captures, we won't have a pre-computed
>    // layout for it.
>    if (!blockExpr->getBlockDecl()->hasCaptures()) {
> +    if (llvm::Constant *Block = 
> CGM.getAddrOfGlobalBlockIfEmitted(blockExpr))
> +      return Block;
>      CGBlockInfo blockInfo(blockExpr->getBlockDecl(), 
> CurFn->getName());
>      computeBlockInfo(CGM, this, blockInfo);
>      blockInfo.BlockExpression = blockExpr;
> @@ -1047,9 +1049,19 @@ Address CodeGenFunction::GetAddrOfBlockD
>    return addr;
>  }
> 
> +void CodeGenModule::setAddrOfGlobalBlock(const BlockExpr *BE,
> +                                         llvm::Constant *Addr) {
> +  bool Ok = EmittedGlobalBlocks.insert(std::make_pair(BE, 
> Addr)).second;
> +  (void)Ok;
> +  assert(Ok && "Trying to replace an already-existing global block!");
> +}
> +
>  llvm::Constant *
>  CodeGenModule::GetAddrOfGlobalBlock(const BlockExpr *BE,
>                                      StringRef Name) {
> +  if (llvm::Constant *Block = getAddrOfGlobalBlockIfEmitted(BE))
> +    return Block;
> +
>    CGBlockInfo blockInfo(BE->getBlockDecl(), Name);
>    blockInfo.BlockExpression = BE;
> 
> @@ -1074,6 +1086,11 @@ static llvm::Constant *buildGlobalBlock(
>                                          const CGBlockInfo &blockInfo,
>                                          llvm::Constant *blockFn) {
>    assert(blockInfo.CanBeGlobal);
> +  // Callers should detect this case on their own: calling this 
> function
> +  // generally requires computing layout information, which is a waste 
> of time
> +  // if we've already emitted this block.
> +  assert(!CGM.getAddrOfGlobalBlockIfEmitted(blockInfo.BlockExpression) 
> &&
> +         "Refusing to re-emit a global block.");
> 
>    // Generate the constants for the block literal initializer.
>    ConstantInitBuilder builder(CGM);
> @@ -1103,9 +1120,12 @@ static llvm::Constant *buildGlobalBlock(
>                                   /*constant*/ true);
> 
>    // Return a constant of the appropriately-casted type.
> -  llvm::Type *requiredType =
> +  llvm::Type *RequiredType =
>      CGM.getTypes().ConvertType(blockInfo.getBlockExpr()->getType());
> -  return llvm::ConstantExpr::getBitCast(literal, requiredType);
> +  llvm::Constant *Result =
> +      llvm::ConstantExpr::getBitCast(literal, RequiredType);
> +  CGM.setAddrOfGlobalBlock(blockInfo.BlockExpression, Result);
> +  return Result;
>  }
> 
>  void CodeGenFunction::setBlockContextParameter(const ImplicitParamDecl 
> *D,
> 
> Modified: cfe/trunk/lib/CodeGen/CGCall.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CGCall.cpp?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/CGCall.cpp (original)
> +++ cfe/trunk/lib/CodeGen/CGCall.cpp Wed Dec 21 20:50:20 2016
> @@ -1683,6 +1683,14 @@ void CodeGenModule::ConstructAttributeLi
> 
>      HasAnyX86InterruptAttr = 
> TargetDecl->hasAttr<AnyX86InterruptAttr>();
>      HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
> +    if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
> +      Optional<unsigned> NumElemsParam;
> +      // alloc_size args are base-1, 0 means not present.
> +      if (unsigned N = AllocSize->getNumElemsParam())
> +        NumElemsParam = N - 1;
> +      FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1,
> +                                 NumElemsParam);
> +    }
>    }
> 
>    // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning 
> needed.
> 
> Modified: cfe/trunk/lib/CodeGen/CodeGenFunction.h
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CodeGenFunction.h?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/CodeGenFunction.h (original)
> +++ cfe/trunk/lib/CodeGen/CodeGenFunction.h Wed Dec 21 20:50:20 2016
> @@ -1499,7 +1499,6 @@ public:
> 
> //===--------------------------------------------------------------------===//
> 
>    llvm::Value *EmitBlockLiteral(const BlockExpr *);
> -  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
>    static void destroyBlockInfos(CGBlockInfo *info);
> 
>    llvm::Function *GenerateBlockFunction(GlobalDecl GD,
> @@ -2726,6 +2725,9 @@ public:
>                                    OMPPrivateScope &LoopScope);
> 
>  private:
> +  /// Helpers for blocks
> +  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
> +
>    /// Helpers for the OpenMP loop directives.
>    void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
>    void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = 
> false);
> 
> Modified: cfe/trunk/lib/CodeGen/CodeGenModule.h
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CodeGenModule.h?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/lib/CodeGen/CodeGenModule.h (original)
> +++ cfe/trunk/lib/CodeGen/CodeGenModule.h Wed Dec 21 20:50:20 2016
> @@ -455,6 +455,10 @@ private:
>    bool isTriviallyRecursive(const FunctionDecl *F);
>    bool shouldEmitFunction(GlobalDecl GD);
> 
> +  /// Map of the global blocks we've emitted, so that we don't have to 
> re-emit
> +  /// them if the constexpr evaluator gets aggressive.
> +  llvm::DenseMap<const BlockExpr *, llvm::Constant *> 
> EmittedGlobalBlocks;
> +
>    /// @name Cache for Blocks Runtime Globals
>    /// @{
> 
> @@ -776,6 +780,16 @@ public:
> 
>    /// Gets the address of a block which requires no captures.
>    llvm::Constant *GetAddrOfGlobalBlock(const BlockExpr *BE, StringRef 
> Name);
> +
> +  /// Returns the address of a block which requires no caputres, or 
> null if
> +  /// we've yet to emit the block for BE.
> +  llvm::Constant *getAddrOfGlobalBlockIfEmitted(const BlockExpr *BE) {
> +    return EmittedGlobalBlocks.lookup(BE);
> +  }
> +
> +  /// Notes that BE's global block is available via Addr. Asserts that 
> BE
> +  /// isn't already emitted.
> +  void setAddrOfGlobalBlock(const BlockExpr *BE, llvm::Constant 
> *Addr);
> 
>    /// Return a pointer to a constant CFString object for the given 
> string.
>    ConstantAddress GetAddrOfConstantCFString(const StringLiteral 
> *Literal);
> 
> Modified: cfe/trunk/lib/Sema/SemaDeclAttr.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Sema/SemaDeclAttr.cpp?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/lib/Sema/SemaDeclAttr.cpp (original)
> +++ cfe/trunk/lib/Sema/SemaDeclAttr.cpp Wed Dec 21 20:50:20 2016
> @@ -246,6 +246,28 @@ static bool checkUInt32Argument(Sema &S,
>    return true;
>  }
> 
> +/// \brief Wrapper around checkUInt32Argument, with an extra check to 
> be sure
> +/// that the result will fit into a regular (signed) int. All args
> have the same
> +/// purpose as they do in checkUInt32Argument.
> +static bool checkPositiveIntArgument(Sema &S, const AttributeList 
> &Attr,
> +                                     const Expr *Expr, int &Val,
> +                                     unsigned Idx = UINT_MAX) {
> +  uint32_t UVal;
> +  if (!checkUInt32Argument(S, Attr, Expr, UVal, Idx))
> +    return false;
> +
> +  if (UVal > std::numeric_limits<int>::max()) {
> +    llvm::APSInt I(32); // for toString
> +    I = UVal;
> +    S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
> +        << I.toString(10, false) << 32 << /* Unsigned */ 0;
> +    return false;
> +  }
> +
> +  Val = UVal;
> +  return true;
> +}
> +
>  /// \brief Diagnose mutually exclusive attributes when present on a 
> given
>  /// declaration. Returns true if diagnosed.
>  template <typename AttrTy>
> @@ -730,6 +752,69 @@ static void handleAssertExclusiveLockAtt
>                                       
> Attr.getAttributeSpellingListIndex()));
>  }
> 
> +/// \brief Checks to be sure that the given parameter number is
> inbounds, and is
> +/// an some integral type. Will emit appropriate diagnostics if this 
> returns
> +/// false.
> +///
> +/// FuncParamNo is expected to be from the user, so is base-1.
> AttrArgNo is used
> +/// to actually retrieve the argument, so it's base-0.
> +static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD,
> +                                    const AttributeList &Attr,
> +                                    unsigned FuncParamNo, unsigned 
> AttrArgNo) {
> +  assert(Attr.isArgExpr(AttrArgNo) && "Expected expression argument");
> +  uint64_t Idx;
> +  if (!checkFunctionOrMethodParameterIndex(S, FD, Attr, FuncParamNo,
> +                                           
> Attr.getArgAsExpr(AttrArgNo), Idx))
> +    return false;
> +
> +  const ParmVarDecl *Param = FD->getParamDecl(Idx);
> +  if (!Param->getType()->isIntegerType() && 
> !Param->getType()->isCharType()) {
> +    SourceLocation SrcLoc = 
> Attr.getArgAsExpr(AttrArgNo)->getLocStart();
> +    S.Diag(SrcLoc, diag::err_attribute_integers_only)
> +        << Attr.getName() << Param->getSourceRange();
> +    return false;
> +  }
> +  return true;
> +}
> +
> +static void handleAllocSizeAttr(Sema &S, Decl *D, const AttributeList 
> &Attr) {
> +  if (!checkAttributeAtLeastNumArgs(S, Attr, 1) ||
> +      !checkAttributeAtMostNumArgs(S, Attr, 2))
> +    return;
> +
> +  const auto *FD = cast<FunctionDecl>(D);
> +  if (!FD->getReturnType()->isPointerType()) {
> +    S.Diag(Attr.getLoc(), diag::warn_attribute_return_pointers_only)
> +        << Attr.getName();
> +    return;
> +  }
> +
> +  const Expr *SizeExpr = Attr.getArgAsExpr(0);
> +  int SizeArgNo;
> +  // Paramater indices are 1-indexed, hence Index=1
> +  if (!checkPositiveIntArgument(S, Attr, SizeExpr, SizeArgNo, 
> /*Index=*/1))
> +    return;
> +
> +  if (!checkParamIsIntegerType(S, FD, Attr, SizeArgNo, 
> /*AttrArgNo=*/0))
> +    return;
> +
> +  // Args are 1-indexed, so 0 implies that the arg was not present
> +  int NumberArgNo = 0;
> +  if (Attr.getNumArgs() == 2) {
> +    const Expr *NumberExpr = Attr.getArgAsExpr(1);
> +    // Paramater indices are 1-based, hence Index=2
> +    if (!checkPositiveIntArgument(S, Attr, NumberExpr, NumberArgNo,
> +                                  /*Index=*/2))
> +      return;
> +
> +    if (!checkParamIsIntegerType(S, FD, Attr, NumberArgNo, 
> /*AttrArgNo=*/1))
> +      return;
> +  }
> +
> +  D->addAttr(::new (S.Context) AllocSizeAttr(
> +      Attr.getRange(), S.Context, SizeArgNo, NumberArgNo,
> +      Attr.getAttributeSpellingListIndex()));
> +}
> 
>  static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
>                                        const AttributeList &Attr,
> @@ -5552,6 +5637,9 @@ static void ProcessDeclAttribute(Sema &S
>    case AttributeList::AT_AlignValue:
>      handleAlignValueAttr(S, D, Attr);
>      break;
> +  case AttributeList::AT_AllocSize:
> +    handleAllocSizeAttr(S, D, Attr);
> +    break;
>    case AttributeList::AT_AlwaysInline:
>      handleAlwaysInlineAttr(S, D, Attr);
>      break;
> 
> Added: cfe/trunk/test/CodeGen/alloc-size.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/alloc-size.c?rev=290297&view=auto
> ==============================================================================
> --- cfe/trunk/test/CodeGen/alloc-size.c (added)
> +++ cfe/trunk/test/CodeGen/alloc-size.c Wed Dec 21 20:50:20 2016
> @@ -0,0 +1,352 @@
> +// RUN: %clang_cc1 -triple x86_64-apple-darwin -emit-llvm %s -o -
> 2>&1 | FileCheck %s
> +
> +#define NULL ((void *)0)
> +
> +int gi;
> +
> +typedef unsigned long size_t;
> +
> +// CHECK-DAG-RE: define void @my_malloc({{.*}}) 
> #[[MALLOC_ATTR_NUMBER:[0-9]+]]
> +// N.B. LLVM's allocsize arguments are base-0, whereas ours are base-1 
> (for
> +// compat with GCC)
> +// CHECK-DAG-RE: attributes #[[MALLOC_ATTR_NUMBER]] = 
> {.*allocsize(0).*}
> +void *my_malloc(size_t) __attribute__((alloc_size(1)));
> +
> +// CHECK-DAG-RE: define void @my_calloc({{.*}}) 
> #[[CALLOC_ATTR_NUMBER:[0-9]+]]
> +// CHECK-DAG-RE: attributes #[[CALLOC_ATTR_NUMBER]] = {.*allocsize(0, 
> 1).*}
> +void *my_calloc(size_t, size_t) __attribute__((alloc_size(1, 2)));
> +
> +// CHECK-LABEL: @test1
> +void test1() {
> +  void *const vp = my_malloc(100);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(vp, 0);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(vp, 1);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(vp, 2);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(vp, 3);
> +
> +  void *const arr = my_calloc(100, 5);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(arr, 0);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(arr, 1);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(arr, 2);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(arr, 3);
> +
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(my_malloc(100), 0);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(my_malloc(100), 1);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(my_malloc(100), 2);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(my_malloc(100), 3);
> +
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(my_calloc(100, 5), 0);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(my_calloc(100, 5), 1);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(my_calloc(100, 5), 2);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(my_calloc(100, 5), 3);
> +
> +  void *const zeroPtr = my_malloc(0);
> +  // CHECK: store i32 0
> +  gi = __builtin_object_size(zeroPtr, 0);
> +  // CHECK: store i32 0
> +  gi = __builtin_object_size(my_malloc(0), 0);
> +
> +  void *const zeroArr1 = my_calloc(0, 1);
> +  void *const zeroArr2 = my_calloc(1, 0);
> +  // CHECK: store i32 0
> +  gi = __builtin_object_size(zeroArr1, 0);
> +  // CHECK: store i32 0
> +  gi = __builtin_object_size(zeroArr2, 0);
> +  // CHECK: store i32 0
> +  gi = __builtin_object_size(my_calloc(1, 0), 0);
> +  // CHECK: store i32 0
> +  gi = __builtin_object_size(my_calloc(0, 1), 0);
> +}
> +
> +// CHECK-LABEL: @test2
> +void test2() {
> +  void *const vp = my_malloc(gi);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(vp, 0);
> +
> +  void *const arr1 = my_calloc(gi, 1);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(arr1, 0);
> +
> +  void *const arr2 = my_calloc(1, gi);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(arr2, 0);
> +}
> +
> +// CHECK-LABEL: @test3
> +void test3() {
> +  char *const buf = (char *)my_calloc(100, 5);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(buf, 0);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(buf, 1);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(buf, 2);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(buf, 3);
> +}
> +
> +struct Data {
> +  int a;
> +  int t[10];
> +  char pad[3];
> +  char end[1];
> +};
> +
> +// CHECK-LABEL: @test5
> +void test5() {
> +  struct Data *const data = my_malloc(sizeof(*data));
> +  // CHECK: store i32 48
> +  gi = __builtin_object_size(data, 0);
> +  // CHECK: store i32 48
> +  gi = __builtin_object_size(data, 1);
> +  // CHECK: store i32 48
> +  gi = __builtin_object_size(data, 2);
> +  // CHECK: store i32 48
> +  gi = __builtin_object_size(data, 3);
> +
> +  // CHECK: store i32 40
> +  gi = __builtin_object_size(&data->t[1], 0);
> +  // CHECK: store i32 36
> +  gi = __builtin_object_size(&data->t[1], 1);
> +  // CHECK: store i32 40
> +  gi = __builtin_object_size(&data->t[1], 2);
> +  // CHECK: store i32 36
> +  gi = __builtin_object_size(&data->t[1], 3);
> +
> +  struct Data *const arr = my_calloc(sizeof(*data), 2);
> +  // CHECK: store i32 96
> +  gi = __builtin_object_size(arr, 0);
> +  // CHECK: store i32 96
> +  gi = __builtin_object_size(arr, 1);
> +  // CHECK: store i32 96
> +  gi = __builtin_object_size(arr, 2);
> +  // CHECK: store i32 96
> +  gi = __builtin_object_size(arr, 3);
> +
> +  // CHECK: store i32 88
> +  gi = __builtin_object_size(&arr->t[1], 0);
> +  // CHECK: store i32 36
> +  gi = __builtin_object_size(&arr->t[1], 1);
> +  // CHECK: store i32 88
> +  gi = __builtin_object_size(&arr->t[1], 2);
> +  // CHECK: store i32 36
> +  gi = __builtin_object_size(&arr->t[1], 3);
> +}
> +
> +// CHECK-LABEL: @test6
> +void test6() {
> +  // Things that would normally trigger conservative estimates don't 
> need to do
> +  // so when we know the source of the allocation.
> +  struct Data *const data = my_malloc(sizeof(*data) + 10);
> +  // CHECK: store i32 11
> +  gi = __builtin_object_size(data->end, 0);
> +  // CHECK: store i32 11
> +  gi = __builtin_object_size(data->end, 1);
> +  // CHECK: store i32 11
> +  gi = __builtin_object_size(data->end, 2);
> +  // CHECK: store i32 11
> +  gi = __builtin_object_size(data->end, 3);
> +
> +  struct Data *const arr = my_calloc(sizeof(*arr) + 5, 3);
> +  // AFAICT, GCC treats malloc and calloc identically. So, we should 
> do the
> +  // same.
> +  //
> +  // Additionally, GCC ignores the initial array index when 
> determining whether
> +  // we're writing off the end of an alloc_size base. e.g.
> +  //   arr[0].end
> +  //   arr[1].end
> +  //   arr[2].end
> +  // ...Are all considered "writing off the end", because there's no
> way to tell
> +  // with high accuracy if the user meant "allocate a single N-byte 
> `Data`",
> +  // or "allocate M smaller `Data`s with extra padding".
> +
> +  // CHECK: store i32 112
> +  gi = __builtin_object_size(arr->end, 0);
> +  // CHECK: store i32 112
> +  gi = __builtin_object_size(arr->end, 1);
> +  // CHECK: store i32 112
> +  gi = __builtin_object_size(arr->end, 2);
> +  // CHECK: store i32 112
> +  gi = __builtin_object_size(arr->end, 3);
> +
> +  // CHECK: store i32 112
> +  gi = __builtin_object_size(arr[0].end, 0);
> +  // CHECK: store i32 112
> +  gi = __builtin_object_size(arr[0].end, 1);
> +  // CHECK: store i32 112
> +  gi = __builtin_object_size(arr[0].end, 2);
> +  // CHECK: store i32 112
> +  gi = __builtin_object_size(arr[0].end, 3);
> +
> +  // CHECK: store i32 64
> +  gi = __builtin_object_size(arr[1].end, 0);
> +  // CHECK: store i32 64
> +  gi = __builtin_object_size(arr[1].end, 1);
> +  // CHECK: store i32 64
> +  gi = __builtin_object_size(arr[1].end, 2);
> +  // CHECK: store i32 64
> +  gi = __builtin_object_size(arr[1].end, 3);
> +
> +  // CHECK: store i32 16
> +  gi = __builtin_object_size(arr[2].end, 0);
> +  // CHECK: store i32 16
> +  gi = __builtin_object_size(arr[2].end, 1);
> +  // CHECK: store i32 16
> +  gi = __builtin_object_size(arr[2].end, 2);
> +  // CHECK: store i32 16
> +  gi = __builtin_object_size(arr[2].end, 3);
> +}
> +
> +// CHECK-LABEL: @test7
> +void test7() {
> +  struct Data *const data = my_malloc(sizeof(*data) + 5);
> +  // CHECK: store i32 9
> +  gi = __builtin_object_size(data->pad, 0);
> +  // CHECK: store i32 3
> +  gi = __builtin_object_size(data->pad, 1);
> +  // CHECK: store i32 9
> +  gi = __builtin_object_size(data->pad, 2);
> +  // CHECK: store i32 3
> +  gi = __builtin_object_size(data->pad, 3);
> +}
> +
> +// CHECK-LABEL: @test8
> +void test8() {
> +  // Non-const pointers aren't currently supported.
> +  void *buf = my_calloc(100, 5);
> +  // CHECK: @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false)
> +  gi = __builtin_object_size(buf, 0);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(buf, 1);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(buf, 2);
> +  // CHECK: store i32 0
> +  gi = __builtin_object_size(buf, 3);
> +}
> +
> +// CHECK-LABEL: @test9
> +void test9() {
> +  // Check to be sure that we unwrap things correctly.
> +  short *const buf0 = (my_malloc(100));
> +  short *const buf1 = (short*)(my_malloc(100));
> +  short *const buf2 = ((short*)(my_malloc(100)));
> +
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(buf0, 0);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(buf1, 0);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(buf2, 0);
> +}
> +
> +// CHECK-LABEL: @test10
> +void test10() {
> +  // Yay overflow
> +  short *const arr = my_calloc((size_t)-1 / 2 + 1, 2);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(arr, 0);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(arr, 1);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(arr, 2);
> +  // CHECK: store i32 0
> +  gi = __builtin_object_size(arr, 3);
> +
> +  // As an implementation detail, CharUnits can't handle numbers
> greater than or
> +  // equal to 2**63. Realistically, this shouldn't be a problem, but 
> we should
> +  // be sure we don't emit crazy results for this case.
> +  short *const buf = my_malloc((size_t)-1);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(buf, 0);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(buf, 1);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(buf, 2);
> +  // CHECK: store i32 0
> +  gi = __builtin_object_size(buf, 3);
> +
> +  short *const arr_big = my_calloc((size_t)-1 / 2 - 1, 2);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(arr_big, 0);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(arr_big, 1);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(arr_big, 2);
> +  // CHECK: store i32 0
> +  gi = __builtin_object_size(arr_big, 3);
> +}
> +
> +void *my_tiny_malloc(char) __attribute__((alloc_size(1)));
> +void *my_tiny_calloc(char, char) __attribute__((alloc_size(1, 2)));
> +
> +// CHECK-LABEL: @test11
> +void test11() {
> +  void *const vp = my_tiny_malloc(100);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(vp, 0);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(vp, 1);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(vp, 2);
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(vp, 3);
> +
> +  // N.B. This causes char overflow, but not size_t overflow, so it 
> should be
> +  // supported.
> +  void *const arr = my_tiny_calloc(100, 5);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(arr, 0);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(arr, 1);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(arr, 2);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(arr, 3);
> +}
> +
> +void *my_signed_malloc(long) __attribute__((alloc_size(1)));
> +void *my_signed_calloc(long, long) __attribute__((alloc_size(1, 2)));
> +
> +// CHECK-LABEL: @test12
> +void test12() {
> +  // CHECK: store i32 100
> +  gi = __builtin_object_size(my_signed_malloc(100), 0);
> +  // CHECK: store i32 500
> +  gi = __builtin_object_size(my_signed_calloc(100, 5), 0);
> +
> +  void *const vp = my_signed_malloc(-2);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(vp, 0);
> +  // N.B. These get lowered to -1 because the function calls may have
> +  // side-effects, and we can't determine the objectsize.
> +  // CHECK: store i32 -1
> +  gi = __builtin_object_size(my_signed_malloc(-2), 0);
> +
> +  void *const arr1 = my_signed_calloc(-2, 1);
> +  void *const arr2 = my_signed_calloc(1, -2);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(arr1, 0);
> +  // CHECK: @llvm.objectsize
> +  gi = __builtin_object_size(arr2, 0);
> +  // CHECK: store i32 -1
> +  gi = __builtin_object_size(my_signed_calloc(1, -2), 0);
> +  // CHECK: store i32 -1
> +  gi = __builtin_object_size(my_signed_calloc(-2, 1), 0);
> +}
> 
> Added: cfe/trunk/test/CodeGenCXX/alloc-size.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGenCXX/alloc-size.cpp?rev=290297&view=auto
> ==============================================================================
> --- cfe/trunk/test/CodeGenCXX/alloc-size.cpp (added)
> +++ cfe/trunk/test/CodeGenCXX/alloc-size.cpp Wed Dec 21 20:50:20 2016
> @@ -0,0 +1,72 @@
> +// RUN: %clang_cc1 -triple x86_64-apple-darwin -emit-llvm -O0 %s -o -
> 2>&1 -std=c++11 | FileCheck %s
> +
> +namespace templates {
> +void *my_malloc(int N) __attribute__((alloc_size(1)));
> +void *my_calloc(int N, int M) __attribute__((alloc_size(1, 2)));
> +
> +struct MyType {
> +  int arr[4];
> +};
> +
> +template <typename T> int callMalloc();
> +
> +template <typename T, int N> int callCalloc();
> +
> +// CHECK-LABEL: define i32 @_ZN9templates6testItEv()
> +int testIt() {
> +  // CHECK: call i32 @_ZN9templates10callMallocINS_6MyTypeEEEiv
> +  // CHECK: call i32 @_ZN9templates10callCallocINS_6MyTypeELi4EEEiv
> +  return callMalloc<MyType>() + callCalloc<MyType, 4>();
> +}
> +
> +// CHECK-LABEL: define linkonce_odr i32
> +// @_ZN9templates10callMallocINS_6MyTypeEEEiv
> +template <typename T> int callMalloc() {
> +  static_assert(sizeof(T) == 16, "");
> +  // CHECK: ret i32 16
> +  return __builtin_object_size(my_malloc(sizeof(T)), 0);
> +}
> +
> +// CHECK-LABEL: define linkonce_odr i32
> +// @_ZN9templates10callCallocINS_6MyTypeELi4EEEiv
> +template <typename T, int N> int callCalloc() {
> +  static_assert(sizeof(T) * N == 64, "");
> +  // CHECK: ret i32 64
> +  return __builtin_object_size(my_malloc(sizeof(T) * N), 0);
> +}
> +}
> +
> +namespace templated_alloc_size {
> +using size_t = unsigned long;
> +
> +// We don't need bodies for any of these, because they're only used in
> +// __builtin_object_size, and that shouldn't need anything but a 
> function
> +// decl with alloc_size on it.
> +template <typename T>
> +T *my_malloc(size_t N = sizeof(T)) __attribute__((alloc_size(1)));
> +
> +template <typename T>
> +T *my_calloc(size_t M, size_t N = sizeof(T)) 
> __attribute__((alloc_size(2, 1)));
> +
> +template <size_t N>
> +void *dependent_malloc(size_t NT = N) __attribute__((alloc_size(1)));
> +
> +template <size_t N, size_t M>
> +void *dependent_calloc(size_t NT = N, size_t MT = M)
> +    __attribute__((alloc_size(1, 2)));
> +
> +template <typename T, size_t M>
> +void *dependent_calloc2(size_t NT = sizeof(T), size_t MT = M)
> +    __attribute__((alloc_size(1, 2)));
> +
> +// CHECK-LABEL: define i32 @_ZN20templated_alloc_size6testItEv
> +int testIt() {
> +  // 122 = 4 + 5*4 + 6 + 7*8 + 4*9
> +  // CHECK: ret i32 122
> +  return __builtin_object_size(my_malloc<int>(), 0) +
> +         __builtin_object_size(my_calloc<int>(5), 0) +
> +         __builtin_object_size(dependent_malloc<6>(), 0) +
> +         __builtin_object_size(dependent_calloc<7, 8>(), 0) +
> +         __builtin_object_size(dependent_calloc2<int, 9>(), 0);
> +}
> +}
> 
> Modified: cfe/trunk/test/CodeGenCXX/block-in-ctor-dtor.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGenCXX/block-in-ctor-dtor.cpp?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/test/CodeGenCXX/block-in-ctor-dtor.cpp (original)
> +++ cfe/trunk/test/CodeGenCXX/block-in-ctor-dtor.cpp Wed Dec 21 
> 20:50:20 2016
> @@ -42,7 +42,5 @@ X::~X() {
>  // CHECK-LABEL: define internal void @___ZN4ZoneD2Ev_block_invoke_
>  // CHECK-LABEL: define internal void @___ZN1XC2Ev_block_invoke
>  // CHECK-LABEL: define internal void @___ZN1XC2Ev_block_invoke_
> -// CHECK-LABEL: define internal void @___ZN1XC1Ev_block_invoke
> -// CHECK-LABEL: define internal void @___ZN1XC1Ev_block_invoke_
>  // CHECK-LABEL: define internal void @___ZN1XD2Ev_block_invoke
>  // CHECK-LABEL: define internal void @___ZN1XD2Ev_block_invoke_
> 
> Modified: cfe/trunk/test/CodeGenCXX/global-init.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGenCXX/global-init.cpp?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/test/CodeGenCXX/global-init.cpp (original)
> +++ cfe/trunk/test/CodeGenCXX/global-init.cpp Wed Dec 21 20:50:20 2016
> @@ -18,9 +18,6 @@ struct D { ~D(); };
>  // CHECK: @__dso_handle = external global i8
>  // CHECK: @c = global %struct.C zeroinitializer, align 8
> 
> -// It's okay if we ever implement the IR-generation optimization to
> remove this.
> -// CHECK: @_ZN5test3L3varE = internal constant i8* getelementptr
> inbounds ([7 x i8], [7 x i8]*
> -
>  // PR6205: The casts should not require global initializers
>  // CHECK: @_ZN6PR59741cE = external global %"struct.PR5974::C"
>  // CHECK: @_ZN6PR59741aE = global %"struct.PR5974::A"* getelementptr
> inbounds (%"struct.PR5974::C", %"struct.PR5974::C"* @_ZN6PR59741cE,
> i32 0, i32 0)
> 
> Modified: cfe/trunk/test/CodeGenOpenCL/cl20-device-side-enqueue.cl
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGenOpenCL/cl20-device-side-enqueue.cl?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/test/CodeGenOpenCL/cl20-device-side-enqueue.cl (original)
> +++ cfe/trunk/test/CodeGenOpenCL/cl20-device-side-enqueue.cl Wed Dec
> 21 20:50:20 2016
> @@ -3,6 +3,8 @@
> 
>  typedef void (^bl_t)(local void *);
> 
> +// N.B. The check here only exists to set BL_GLOBAL
> +// COMMON: @block_G = {{.*}}bitcast
> ([[BL_GLOBAL:[^@]+ at __block_literal_global(\.[0-9]+)?]]
>  const bl_t block_G = (bl_t) ^ (local void *a) {};
> 
>  kernel void device_side_enqueue(global int *a, global int *b, int i) {
> @@ -122,28 +124,24 @@ kernel void device_side_enqueue(global i
>                   },
>                   4294967296L);
> 
> -
> +  // The full type of these expressions are long (and repeated
> elsewhere), so we
> +  // capture it as part of the regex for convenience and clarity.
> +  // COMMON: store void ()* bitcast
> ([[BL_A:[^@]+ at __block_literal_global.[0-9]+]] to void ()*), void ()**
> %block_A
>    void (^const block_A)(void) = ^{
>      return;
>    };
> +
> +  // COMMON: store void (i8 addrspace(2)*)* bitcast
> ([[BL_B:[^@]+ at __block_literal_global.[0-9]+]] to void (i8
> addrspace(2)*)*), void (i8 addrspace(2)*)** %block_B
>    void (^const block_B)(local void *) = ^(local void *a) {
>      return;
>    };
> 
> -  // COMMON: [[BL:%[0-9]+]] = load void ()*, void ()** %block_A
> -  // COMMON: [[BL_I8:%[0-9]+]] = bitcast void ()* [[BL]] to i8*
> -  // COMMON: call i32 @__get_kernel_work_group_size_impl(i8* 
> [[BL_I8]])
> +  // COMMON: call i32 @__get_kernel_work_group_size_impl(i8* bitcast
> ([[BL_A]] to i8*))
>    unsigned size = get_kernel_work_group_size(block_A);
> -  // COMMON: [[BL:%[0-9]+]] = load void (i8 addrspace(2)*)*, void (i8
> addrspace(2)*)** %block_B
> -  // COMMON: [[BL_I8:%[0-9]+]] = bitcast void (i8 addrspace(2)*)* 
> [[BL]] to i8*
> -  // COMMON: call i32 @__get_kernel_work_group_size_impl(i8* 
> [[BL_I8]])
> +  // COMMON: call i32 @__get_kernel_work_group_size_impl(i8* bitcast
> ([[BL_B]] to i8*))
>    size = get_kernel_work_group_size(block_B);
> -  // COMMON: [[BL:%[0-9]+]] = load void ()*, void ()** %block_A
> -  // COMMON: [[BL_I8:%[0-9]+]] = bitcast void ()* [[BL]] to i8*
> -  // COMMON: call i32
> @__get_kernel_preferred_work_group_multiple_impl(i8* [[BL_I8]])
> +  // COMMON: call i32
> @__get_kernel_preferred_work_group_multiple_impl(i8* bitcast ([[BL_A]]
> to i8*))
>    size = get_kernel_preferred_work_group_size_multiple(block_A);
> -  // COMMON: [[BL:%[0-9]+]] = load void (i8 addrspace(2)*)*, void (i8
> addrspace(2)*)* addrspace(1)* @block_G
> -  // COMMON: [[BL_I8:%[0-9]+]] = bitcast void (i8 addrspace(2)*)* 
> [[BL]] to i8*
> -  // COMMON: call i32
> @__get_kernel_preferred_work_group_multiple_impl(i8* [[BL_I8]])
> +  // COMMON: call i32
> @__get_kernel_preferred_work_group_multiple_impl(i8* bitcast
> ([[BL_GLOBAL]] to i8*))
>    size = get_kernel_preferred_work_group_size_multiple(block_G);
>  }
> 
> Added: cfe/trunk/test/Sema/alloc-size.c
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/Sema/alloc-size.c?rev=290297&view=auto
> ==============================================================================
> --- cfe/trunk/test/Sema/alloc-size.c (added)
> +++ cfe/trunk/test/Sema/alloc-size.c Wed Dec 21 20:50:20 2016
> @@ -0,0 +1,23 @@
> +// RUN: %clang_cc1 %s -verify
> +
> +void *fail1(int a) __attribute__((alloc_size));
> //expected-error{{'alloc_size' attribute takes at least 1 argument}}
> +void *fail2(int a) __attribute__((alloc_size()));
> //expected-error{{'alloc_size' attribute takes at least 1 argument}}
> +
> +void *fail3(int a) __attribute__((alloc_size(0)));
> //expected-error{{'alloc_size' attribute parameter 0 is out of
> bounds}}
> +void *fail4(int a) __attribute__((alloc_size(2)));
> //expected-error{{'alloc_size' attribute parameter 2 is out of
> bounds}}
> +
> +void *fail5(int a, int b) __attribute__((alloc_size(0, 1)));
> //expected-error{{'alloc_size' attribute parameter 0 is out of
> bounds}}
> +void *fail6(int a, int b) __attribute__((alloc_size(3, 1)));
> //expected-error{{'alloc_size' attribute parameter 3 is out of
> bounds}}
> +
> +void *fail7(int a, int b) __attribute__((alloc_size(1, 0)));
> //expected-error{{'alloc_size' attribute parameter 0 is out of
> bounds}}
> +void *fail8(int a, int b) __attribute__((alloc_size(1, 3)));
> //expected-error{{'alloc_size' attribute parameter 3 is out of
> bounds}}
> +
> +int fail9(int a) __attribute__((alloc_size(1)));
> //expected-warning{{'alloc_size' attribute only applies to return
> values that are pointers}}
> +
> +int fail10 __attribute__((alloc_size(1)));
> //expected-warning{{'alloc_size' attribute only applies to
> non-K&R-style functions}}
> +
> +void *fail11(void *a) __attribute__((alloc_size(1)));
> //expected-error{{'alloc_size' attribute argument may only refer to a
> function parameter of integer type}}
> +
> +void *fail12(int a) __attribute__((alloc_size("abc")));
> //expected-error{{'alloc_size' attribute requires parameter 1 to be an
> integer constant}}
> +void *fail12(int a) __attribute__((alloc_size(1, "abc")));
> //expected-error{{'alloc_size' attribute requires parameter 2 to be an
> integer constant}}
> +void *fail13(int a) __attribute__((alloc_size(1U<<31)));
> //expected-error{{integer constant expression evaluates to value
> 2147483648 that cannot be represented in a 32-bit signed integer
> type}}
> 
> Modified: cfe/trunk/test/SemaCXX/constant-expression-cxx11.cpp
> URL:
> http://llvm.org/viewvc/llvm-project/cfe/trunk/test/SemaCXX/constant-expression-cxx11.cpp?rev=290297&r1=290296&r2=290297&view=diff
> ==============================================================================
> --- cfe/trunk/test/SemaCXX/constant-expression-cxx11.cpp (original)
> +++ cfe/trunk/test/SemaCXX/constant-expression-cxx11.cpp Wed Dec 21
> 20:50:20 2016
> @@ -1183,7 +1183,7 @@ constexpr int m1b = const_cast<const int
>  constexpr int m2b = const_cast<const int&>(n2); // expected-error
> {{constant expression}} expected-note {{read of volatile object 'n2'}}
> 
>  struct T { int n; };
> -const T t = { 42 }; // expected-note {{declared here}}
> +const T t = { 42 };
> 
>  constexpr int f(volatile int &&r) {
>    return r; // expected-note {{read of volatile-qualified type 
> 'volatile int'}}
> @@ -1195,7 +1195,7 @@ struct S {
>    int j : f(0); // expected-error {{constant expression}}
> expected-note {{in call to 'f(0)'}}
>    int k : g(0); // expected-error {{constant expression}}
> expected-note {{temporary created here}} expected-note {{in call to
> 'g(0)'}}
>    int l : n3; // expected-error {{constant expression}} expected-note
> {{read of non-const variable}}
> -  int m : t.n; // expected-error {{constant expression}}
> expected-note {{read of non-constexpr variable}}
> +  int m : t.n; // expected-warning{{width of bit-field 'm' (42 bits)}}
>  };
> 
>  }
> 
> 
> _______________________________________________
> cfe-commits mailing list
> cfe-commits at lists.llvm.org
> http://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits


More information about the cfe-commits mailing list