[cfe-commits] r93117 - in /cfe/trunk/lib/CodeGen: TargetABIInfo.cpp TargetInfo.cpp

Anton Korobeynikov asl at math.spbu.ru
Sun Jan 10 04:57:31 PST 2010


Author: asl
Date: Sun Jan 10 06:57:30 2010
New Revision: 93117

URL: http://llvm.org/viewvc/llvm-project?rev=93117&view=rev
Log:
Rename file to generalization in next commits

Added:
    cfe/trunk/lib/CodeGen/TargetInfo.cpp
      - copied, changed from r93114, cfe/trunk/lib/CodeGen/TargetABIInfo.cpp
Removed:
    cfe/trunk/lib/CodeGen/TargetABIInfo.cpp

Removed: cfe/trunk/lib/CodeGen/TargetABIInfo.cpp
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetABIInfo.cpp?rev=93116&view=auto

==============================================================================
--- cfe/trunk/lib/CodeGen/TargetABIInfo.cpp (original)
+++ cfe/trunk/lib/CodeGen/TargetABIInfo.cpp (removed)
@@ -1,1821 +0,0 @@
-//===---- TargetABIInfo.cpp - Encapsulate target ABI details ----*- C++ -*-===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// These classes wrap the information about a call or function
-// definition used to handle ABI compliancy.
-//
-//===----------------------------------------------------------------------===//
-
-#include "ABIInfo.h"
-#include "CodeGenFunction.h"
-#include "clang/AST/RecordLayout.h"
-#include "llvm/Type.h"
-#include "llvm/ADT/Triple.h"
-#include "llvm/Support/raw_ostream.h"
-using namespace clang;
-using namespace CodeGen;
-
-ABIInfo::~ABIInfo() {}
-
-void ABIArgInfo::dump() const {
-  llvm::raw_ostream &OS = llvm::errs();
-  OS << "(ABIArgInfo Kind=";
-  switch (TheKind) {
-  case Direct:
-    OS << "Direct";
-    break;
-  case Extend:
-    OS << "Extend";
-    break;
-  case Ignore:
-    OS << "Ignore";
-    break;
-  case Coerce:
-    OS << "Coerce Type=";
-    getCoerceToType()->print(OS);
-    break;
-  case Indirect:
-    OS << "Indirect Align=" << getIndirectAlign();
-    break;
-  case Expand:
-    OS << "Expand";
-    break;
-  }
-  OS << ")\n";
-}
-
-static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
-
-/// isEmptyField - Return true iff a the field is "empty", that is it
-/// is an unnamed bit-field or an (array of) empty record(s).
-static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
-                         bool AllowArrays) {
-  if (FD->isUnnamedBitfield())
-    return true;
-
-  QualType FT = FD->getType();
-
-    // Constant arrays of empty records count as empty, strip them off.
-  if (AllowArrays)
-    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
-      FT = AT->getElementType();
-
-  return isEmptyRecord(Context, FT, AllowArrays);
-}
-
-/// isEmptyRecord - Return true iff a structure contains only empty
-/// fields. Note that a structure with a flexible array member is not
-/// considered empty.
-static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
-  const RecordType *RT = T->getAs<RecordType>();
-  if (!RT)
-    return 0;
-  const RecordDecl *RD = RT->getDecl();
-  if (RD->hasFlexibleArrayMember())
-    return false;
-  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
-         i != e; ++i)
-    if (!isEmptyField(Context, *i, AllowArrays))
-      return false;
-  return true;
-}
-
-/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
-/// a non-trivial destructor or a non-trivial copy constructor.
-static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
-  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
-  if (!RD)
-    return false;
-  
-  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
-}
-
-/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
-/// a record type with either a non-trivial destructor or a non-trivial copy
-/// constructor.
-static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
-  const RecordType *RT = T->getAs<RecordType>();
-  if (!RT)
-    return false;
-
-  return hasNonTrivialDestructorOrCopyConstructor(RT);
-}
-
-/// isSingleElementStruct - Determine if a structure is a "single
-/// element struct", i.e. it has exactly one non-empty field or
-/// exactly one field which is itself a single element
-/// struct. Structures with flexible array members are never
-/// considered single element structs.
-///
-/// \return The field declaration for the single non-empty field, if
-/// it exists.
-static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
-  const RecordType *RT = T->getAsStructureType();
-  if (!RT)
-    return 0;
-
-  const RecordDecl *RD = RT->getDecl();
-  if (RD->hasFlexibleArrayMember())
-    return 0;
-
-  const Type *Found = 0;
-  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
-         i != e; ++i) {
-    const FieldDecl *FD = *i;
-    QualType FT = FD->getType();
-
-    // Ignore empty fields.
-    if (isEmptyField(Context, FD, true))
-      continue;
-
-    // If we already found an element then this isn't a single-element
-    // struct.
-    if (Found)
-      return 0;
-
-    // Treat single element arrays as the element.
-    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
-      if (AT->getSize().getZExtValue() != 1)
-        break;
-      FT = AT->getElementType();
-    }
-
-    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
-      Found = FT.getTypePtr();
-    } else {
-      Found = isSingleElementStruct(FT, Context);
-      if (!Found)
-        return 0;
-    }
-  }
-
-  return Found;
-}
-
-static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
-  if (!Ty->getAs<BuiltinType>() && !Ty->isAnyPointerType() &&
-      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
-      !Ty->isBlockPointerType())
-    return false;
-
-  uint64_t Size = Context.getTypeSize(Ty);
-  return Size == 32 || Size == 64;
-}
-
-/// canExpandIndirectArgument - Test whether an argument type which is to be
-/// passed indirectly (on the stack) would have the equivalent layout if it was
-/// expanded into separate arguments. If so, we prefer to do the latter to avoid
-/// inhibiting optimizations.
-///
-// FIXME: This predicate is missing many cases, currently it just follows
-// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
-// should probably make this smarter, or better yet make the LLVM backend
-// capable of handling it.
-static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
-  // We can only expand structure types.
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (!RT)
-    return false;
-
-  // We can only expand (C) structures.
-  //
-  // FIXME: This needs to be generalized to handle classes as well.
-  const RecordDecl *RD = RT->getDecl();
-  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
-    return false;
-
-  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
-         i != e; ++i) {
-    const FieldDecl *FD = *i;
-
-    if (!is32Or64BitBasicType(FD->getType(), Context))
-      return false;
-
-    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
-    // how to expand them yet, and the predicate for telling if a bitfield still
-    // counts as "basic" is more complicated than what we were doing previously.
-    if (FD->isBitField())
-      return false;
-  }
-
-  return true;
-}
-
-static bool typeContainsSSEVector(const RecordDecl *RD, ASTContext &Context) {
-  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
-         i != e; ++i) {
-    const FieldDecl *FD = *i;
-
-    if (FD->getType()->isVectorType() &&
-        Context.getTypeSize(FD->getType()) >= 128)
-      return true;
-
-    if (const RecordType* RT = FD->getType()->getAs<RecordType>())
-      if (typeContainsSSEVector(RT->getDecl(), Context))
-        return true;
-  }
-
-  return false;
-}
-
-namespace {
-/// DefaultABIInfo - The default implementation for ABI specific
-/// details. This implementation provides information which results in
-/// self-consistent and sensible LLVM IR generation, but does not
-/// conform to any particular ABI.
-class DefaultABIInfo : public ABIInfo {
-  ABIArgInfo classifyReturnType(QualType RetTy,
-                                ASTContext &Context,
-                                llvm::LLVMContext &VMContext) const;
-
-  ABIArgInfo classifyArgumentType(QualType RetTy,
-                                  ASTContext &Context,
-                                  llvm::LLVMContext &VMContext) const;
-
-  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
-                           llvm::LLVMContext &VMContext) const {
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
-                                            VMContext);
-    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
-         it != ie; ++it)
-      it->info = classifyArgumentType(it->type, Context, VMContext);
-  }
-
-  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                 CodeGenFunction &CGF) const;
-};
-
-/// X86_32ABIInfo - The X86-32 ABI information.
-class X86_32ABIInfo : public ABIInfo {
-  ASTContext &Context;
-  bool IsDarwinVectorABI;
-  bool IsSmallStructInRegABI;
-
-  static bool isRegisterSize(unsigned Size) {
-    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
-  }
-
-  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
-
-  static unsigned getIndirectArgumentAlignment(QualType Ty,
-                                               ASTContext &Context);
-
-public:
-  ABIArgInfo classifyReturnType(QualType RetTy,
-                                ASTContext &Context,
-                                llvm::LLVMContext &VMContext) const;
-
-  ABIArgInfo classifyArgumentType(QualType RetTy,
-                                  ASTContext &Context,
-                                  llvm::LLVMContext &VMContext) const;
-
-  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
-                           llvm::LLVMContext &VMContext) const {
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
-                                            VMContext);
-    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
-         it != ie; ++it)
-      it->info = classifyArgumentType(it->type, Context, VMContext);
-  }
-
-  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                 CodeGenFunction &CGF) const;
-
-  X86_32ABIInfo(ASTContext &Context, bool d, bool p)
-    : ABIInfo(), Context(Context), IsDarwinVectorABI(d),
-      IsSmallStructInRegABI(p) {}
-};
-}
-
-
-/// shouldReturnTypeInRegister - Determine if the given type should be
-/// passed in a register (for the Darwin ABI).
-bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
-                                               ASTContext &Context) {
-  uint64_t Size = Context.getTypeSize(Ty);
-
-  // Type must be register sized.
-  if (!isRegisterSize(Size))
-    return false;
-
-  if (Ty->isVectorType()) {
-    // 64- and 128- bit vectors inside structures are not returned in
-    // registers.
-    if (Size == 64 || Size == 128)
-      return false;
-
-    return true;
-  }
-
-  // If this is a builtin, pointer, enum, or complex type, it is ok.
-  if (Ty->getAs<BuiltinType>() || Ty->isAnyPointerType() || 
-      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
-      Ty->isBlockPointerType())
-    return true;
-
-  // Arrays are treated like records.
-  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
-    return shouldReturnTypeInRegister(AT->getElementType(), Context);
-
-  // Otherwise, it must be a record type.
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (!RT) return false;
-
-  // Structure types are passed in register if all fields would be
-  // passed in a register.
-  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
-         e = RT->getDecl()->field_end(); i != e; ++i) {
-    const FieldDecl *FD = *i;
-
-    // Empty fields are ignored.
-    if (isEmptyField(Context, FD, true))
-      continue;
-
-    // Check fields recursively.
-    if (!shouldReturnTypeInRegister(FD->getType(), Context))
-      return false;
-  }
-
-  return true;
-}
-
-ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
-                                            ASTContext &Context,
-                                          llvm::LLVMContext &VMContext) const {
-  if (RetTy->isVoidType()) {
-    return ABIArgInfo::getIgnore();
-  } else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
-    // On Darwin, some vectors are returned in registers.
-    if (IsDarwinVectorABI) {
-      uint64_t Size = Context.getTypeSize(RetTy);
-
-      // 128-bit vectors are a special case; they are returned in
-      // registers and we need to make sure to pick a type the LLVM
-      // backend will like.
-      if (Size == 128)
-        return ABIArgInfo::getCoerce(llvm::VectorType::get(
-                  llvm::Type::getInt64Ty(VMContext), 2));
-
-      // Always return in register if it fits in a general purpose
-      // register, or if it is 64 bits and has a single element.
-      if ((Size == 8 || Size == 16 || Size == 32) ||
-          (Size == 64 && VT->getNumElements() == 1))
-        return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
-
-      return ABIArgInfo::getIndirect(0);
-    }
-
-    return ABIArgInfo::getDirect();
-  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
-    if (const RecordType *RT = RetTy->getAsStructureType()) {
-      // Structures with either a non-trivial destructor or a non-trivial
-      // copy constructor are always indirect.
-      if (hasNonTrivialDestructorOrCopyConstructor(RT))
-        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
-      
-      // Structures with flexible arrays are always indirect.
-      if (RT->getDecl()->hasFlexibleArrayMember())
-        return ABIArgInfo::getIndirect(0);
-    }
-    
-    // If specified, structs and unions are always indirect.
-    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
-      return ABIArgInfo::getIndirect(0);
-
-    // Classify "single element" structs as their element type.
-    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
-      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
-        if (BT->isIntegerType()) {
-          // We need to use the size of the structure, padding
-          // bit-fields can adjust that to be larger than the single
-          // element type.
-          uint64_t Size = Context.getTypeSize(RetTy);
-          return ABIArgInfo::getCoerce(
-            llvm::IntegerType::get(VMContext, (unsigned) Size));
-        } else if (BT->getKind() == BuiltinType::Float) {
-          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
-                 "Unexpect single element structure size!");
-          return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
-        } else if (BT->getKind() == BuiltinType::Double) {
-          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
-                 "Unexpect single element structure size!");
-          return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
-        }
-      } else if (SeltTy->isPointerType()) {
-        // FIXME: It would be really nice if this could come out as the proper
-        // pointer type.
-        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
-        return ABIArgInfo::getCoerce(PtrTy);
-      } else if (SeltTy->isVectorType()) {
-        // 64- and 128-bit vectors are never returned in a
-        // register when inside a structure.
-        uint64_t Size = Context.getTypeSize(RetTy);
-        if (Size == 64 || Size == 128)
-          return ABIArgInfo::getIndirect(0);
-
-        return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
-      }
-    }
-
-    // Small structures which are register sized are generally returned
-    // in a register.
-    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
-      uint64_t Size = Context.getTypeSize(RetTy);
-      return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
-    }
-
-    return ABIArgInfo::getIndirect(0);
-  } else {
-    return (RetTy->isPromotableIntegerType() ?
-            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-  }
-}
-
-unsigned X86_32ABIInfo::getIndirectArgumentAlignment(QualType Ty,
-                                                     ASTContext &Context) {
-  unsigned Align = Context.getTypeAlign(Ty);
-  if (Align < 128) return 0;
-  if (const RecordType* RT = Ty->getAs<RecordType>())
-    if (typeContainsSSEVector(RT->getDecl(), Context))
-      return 16;
-  return 0;
-}
-
-ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
-                                               ASTContext &Context,
-                                           llvm::LLVMContext &VMContext) const {
-  // FIXME: Set alignment on indirect arguments.
-  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
-    // Structures with flexible arrays are always indirect.
-    if (const RecordType *RT = Ty->getAsStructureType())
-      if (RT->getDecl()->hasFlexibleArrayMember())
-        return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty,
-                                                                    Context));
-
-    // Ignore empty structs.
-    if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
-      return ABIArgInfo::getIgnore();
-
-    // Expand small (<= 128-bit) record types when we know that the stack layout
-    // of those arguments will match the struct. This is important because the
-    // LLVM backend isn't smart enough to remove byval, which inhibits many
-    // optimizations.
-    if (Context.getTypeSize(Ty) <= 4*32 &&
-        canExpandIndirectArgument(Ty, Context))
-      return ABIArgInfo::getExpand();
-
-    return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, Context));
-  } else {
-    return (Ty->isPromotableIntegerType() ?
-            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-  }
-}
-
-llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                      CodeGenFunction &CGF) const {
-  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
-  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
-
-  CGBuilderTy &Builder = CGF.Builder;
-  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
-                                                       "ap");
-  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
-  llvm::Type *PTy =
-    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
-  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
-
-  uint64_t Offset =
-    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
-  llvm::Value *NextAddr =
-    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
-                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
-                      "ap.next");
-  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
-
-  return AddrTyped;
-}
-
-namespace {
-/// X86_64ABIInfo - The X86_64 ABI information.
-class X86_64ABIInfo : public ABIInfo {
-  enum Class {
-    Integer = 0,
-    SSE,
-    SSEUp,
-    X87,
-    X87Up,
-    ComplexX87,
-    NoClass,
-    Memory
-  };
-
-  /// merge - Implement the X86_64 ABI merging algorithm.
-  ///
-  /// Merge an accumulating classification \arg Accum with a field
-  /// classification \arg Field.
-  ///
-  /// \param Accum - The accumulating classification. This should
-  /// always be either NoClass or the result of a previous merge
-  /// call. In addition, this should never be Memory (the caller
-  /// should just return Memory for the aggregate).
-  Class merge(Class Accum, Class Field) const;
-
-  /// classify - Determine the x86_64 register classes in which the
-  /// given type T should be passed.
-  ///
-  /// \param Lo - The classification for the parts of the type
-  /// residing in the low word of the containing object.
-  ///
-  /// \param Hi - The classification for the parts of the type
-  /// residing in the high word of the containing object.
-  ///
-  /// \param OffsetBase - The bit offset of this type in the
-  /// containing object.  Some parameters are classified different
-  /// depending on whether they straddle an eightbyte boundary.
-  ///
-  /// If a word is unused its result will be NoClass; if a type should
-  /// be passed in Memory then at least the classification of \arg Lo
-  /// will be Memory.
-  ///
-  /// The \arg Lo class will be NoClass iff the argument is ignored.
-  ///
-  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
-  /// also be ComplexX87.
-  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
-                Class &Lo, Class &Hi) const;
-
-  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
-  /// to coerce to, chose the best way to pass Ty in the same place
-  /// that \arg CoerceTo would be passed, but while keeping the
-  /// emitted code as simple as possible.
-  ///
-  /// FIXME: Note, this should be cleaned up to just take an enumeration of all
-  /// the ways we might want to pass things, instead of constructing an LLVM
-  /// type. This makes this code more explicit, and it makes it clearer that we
-  /// are also doing this for correctness in the case of passing scalar types.
-  ABIArgInfo getCoerceResult(QualType Ty,
-                             const llvm::Type *CoerceTo,
-                             ASTContext &Context) const;
-
-  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
-  /// such that the argument will be passed in memory.
-  ABIArgInfo getIndirectResult(QualType Ty,
-                               ASTContext &Context) const;
-
-  ABIArgInfo classifyReturnType(QualType RetTy,
-                                ASTContext &Context,
-                                llvm::LLVMContext &VMContext) const;
-
-  ABIArgInfo classifyArgumentType(QualType Ty,
-                                  ASTContext &Context,
-                                  llvm::LLVMContext &VMContext,
-                                  unsigned &neededInt,
-                                  unsigned &neededSSE) const;
-
-public:
-  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
-                           llvm::LLVMContext &VMContext) const;
-
-  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                 CodeGenFunction &CGF) const;
-};
-}
-
-X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
-                                          Class Field) const {
-  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
-  // classified recursively so that always two fields are
-  // considered. The resulting class is calculated according to
-  // the classes of the fields in the eightbyte:
-  //
-  // (a) If both classes are equal, this is the resulting class.
-  //
-  // (b) If one of the classes is NO_CLASS, the resulting class is
-  // the other class.
-  //
-  // (c) If one of the classes is MEMORY, the result is the MEMORY
-  // class.
-  //
-  // (d) If one of the classes is INTEGER, the result is the
-  // INTEGER.
-  //
-  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
-  // MEMORY is used as class.
-  //
-  // (f) Otherwise class SSE is used.
-
-  // Accum should never be memory (we should have returned) or
-  // ComplexX87 (because this cannot be passed in a structure).
-  assert((Accum != Memory && Accum != ComplexX87) &&
-         "Invalid accumulated classification during merge.");
-  if (Accum == Field || Field == NoClass)
-    return Accum;
-  else if (Field == Memory)
-    return Memory;
-  else if (Accum == NoClass)
-    return Field;
-  else if (Accum == Integer || Field == Integer)
-    return Integer;
-  else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
-           Accum == X87 || Accum == X87Up)
-    return Memory;
-  else
-    return SSE;
-}
-
-void X86_64ABIInfo::classify(QualType Ty,
-                             ASTContext &Context,
-                             uint64_t OffsetBase,
-                             Class &Lo, Class &Hi) const {
-  // FIXME: This code can be simplified by introducing a simple value class for
-  // Class pairs with appropriate constructor methods for the various
-  // situations.
-
-  // FIXME: Some of the split computations are wrong; unaligned vectors
-  // shouldn't be passed in registers for example, so there is no chance they
-  // can straddle an eightbyte. Verify & simplify.
-
-  Lo = Hi = NoClass;
-
-  Class &Current = OffsetBase < 64 ? Lo : Hi;
-  Current = Memory;
-
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
-    BuiltinType::Kind k = BT->getKind();
-
-    if (k == BuiltinType::Void) {
-      Current = NoClass;
-    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
-      Lo = Integer;
-      Hi = Integer;
-    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
-      Current = Integer;
-    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
-      Current = SSE;
-    } else if (k == BuiltinType::LongDouble) {
-      Lo = X87;
-      Hi = X87Up;
-    }
-    // FIXME: _Decimal32 and _Decimal64 are SSE.
-    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
-  } else if (const EnumType *ET = Ty->getAs<EnumType>()) {
-    // Classify the underlying integer type.
-    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
-  } else if (Ty->hasPointerRepresentation()) {
-    Current = Integer;
-  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
-    uint64_t Size = Context.getTypeSize(VT);
-    if (Size == 32) {
-      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
-      // float> as integer.
-      Current = Integer;
-
-      // If this type crosses an eightbyte boundary, it should be
-      // split.
-      uint64_t EB_Real = (OffsetBase) / 64;
-      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
-      if (EB_Real != EB_Imag)
-        Hi = Lo;
-    } else if (Size == 64) {
-      // gcc passes <1 x double> in memory. :(
-      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
-        return;
-
-      // gcc passes <1 x long long> as INTEGER.
-      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
-        Current = Integer;
-      else
-        Current = SSE;
-
-      // If this type crosses an eightbyte boundary, it should be
-      // split.
-      if (OffsetBase && OffsetBase != 64)
-        Hi = Lo;
-    } else if (Size == 128) {
-      Lo = SSE;
-      Hi = SSEUp;
-    }
-  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
-    QualType ET = Context.getCanonicalType(CT->getElementType());
-
-    uint64_t Size = Context.getTypeSize(Ty);
-    if (ET->isIntegralType()) {
-      if (Size <= 64)
-        Current = Integer;
-      else if (Size <= 128)
-        Lo = Hi = Integer;
-    } else if (ET == Context.FloatTy)
-      Current = SSE;
-    else if (ET == Context.DoubleTy)
-      Lo = Hi = SSE;
-    else if (ET == Context.LongDoubleTy)
-      Current = ComplexX87;
-
-    // If this complex type crosses an eightbyte boundary then it
-    // should be split.
-    uint64_t EB_Real = (OffsetBase) / 64;
-    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
-    if (Hi == NoClass && EB_Real != EB_Imag)
-      Hi = Lo;
-  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
-    // Arrays are treated like structures.
-
-    uint64_t Size = Context.getTypeSize(Ty);
-
-    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
-    // than two eightbytes, ..., it has class MEMORY.
-    if (Size > 128)
-      return;
-
-    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
-    // fields, it has class MEMORY.
-    //
-    // Only need to check alignment of array base.
-    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
-      return;
-
-    // Otherwise implement simplified merge. We could be smarter about
-    // this, but it isn't worth it and would be harder to verify.
-    Current = NoClass;
-    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
-    uint64_t ArraySize = AT->getSize().getZExtValue();
-    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
-      Class FieldLo, FieldHi;
-      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
-      Lo = merge(Lo, FieldLo);
-      Hi = merge(Hi, FieldHi);
-      if (Lo == Memory || Hi == Memory)
-        break;
-    }
-
-    // Do post merger cleanup (see below). Only case we worry about is Memory.
-    if (Hi == Memory)
-      Lo = Memory;
-    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
-  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
-    uint64_t Size = Context.getTypeSize(Ty);
-
-    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
-    // than two eightbytes, ..., it has class MEMORY.
-    if (Size > 128)
-      return;
-
-    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
-    // copy constructor or a non-trivial destructor, it is passed by invisible
-    // reference.
-    if (hasNonTrivialDestructorOrCopyConstructor(RT))
-      return;
-
-    const RecordDecl *RD = RT->getDecl();
-
-    // Assume variable sized types are passed in memory.
-    if (RD->hasFlexibleArrayMember())
-      return;
-
-    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
-
-    // Reset Lo class, this will be recomputed.
-    Current = NoClass;
-
-    // If this is a C++ record, classify the bases first.
-    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
-      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
-             e = CXXRD->bases_end(); i != e; ++i) {
-        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
-               "Unexpected base class!");
-        const CXXRecordDecl *Base =
-          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
-
-        // Classify this field.
-        //
-        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
-        // single eightbyte, each is classified separately. Each eightbyte gets
-        // initialized to class NO_CLASS.
-        Class FieldLo, FieldHi;
-        uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
-        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
-        Lo = merge(Lo, FieldLo);
-        Hi = merge(Hi, FieldHi);
-        if (Lo == Memory || Hi == Memory)
-          break;
-      }
-
-      // If this record has no fields but isn't empty, classify as INTEGER.
-      if (RD->field_empty() && Size)
-        Current = Integer;
-    }
-
-    // Classify the fields one at a time, merging the results.
-    unsigned idx = 0;
-    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
-           i != e; ++i, ++idx) {
-      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
-      bool BitField = i->isBitField();
-
-      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
-      // fields, it has class MEMORY.
-      //
-      // Note, skip this test for bit-fields, see below.
-      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
-        Lo = Memory;
-        return;
-      }
-
-      // Classify this field.
-      //
-      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
-      // exceeds a single eightbyte, each is classified
-      // separately. Each eightbyte gets initialized to class
-      // NO_CLASS.
-      Class FieldLo, FieldHi;
-
-      // Bit-fields require special handling, they do not force the
-      // structure to be passed in memory even if unaligned, and
-      // therefore they can straddle an eightbyte.
-      if (BitField) {
-        // Ignore padding bit-fields.
-        if (i->isUnnamedBitfield())
-          continue;
-
-        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
-        uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
-
-        uint64_t EB_Lo = Offset / 64;
-        uint64_t EB_Hi = (Offset + Size - 1) / 64;
-        FieldLo = FieldHi = NoClass;
-        if (EB_Lo) {
-          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
-          FieldLo = NoClass;
-          FieldHi = Integer;
-        } else {
-          FieldLo = Integer;
-          FieldHi = EB_Hi ? Integer : NoClass;
-        }
-      } else
-        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
-      Lo = merge(Lo, FieldLo);
-      Hi = merge(Hi, FieldHi);
-      if (Lo == Memory || Hi == Memory)
-        break;
-    }
-
-    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
-    //
-    // (a) If one of the classes is MEMORY, the whole argument is
-    // passed in memory.
-    //
-    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
-
-    // The first of these conditions is guaranteed by how we implement
-    // the merge (just bail).
-    //
-    // The second condition occurs in the case of unions; for example
-    // union { _Complex double; unsigned; }.
-    if (Hi == Memory)
-      Lo = Memory;
-    if (Hi == SSEUp && Lo != SSE)
-      Hi = SSE;
-  }
-}
-
-ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
-                                          const llvm::Type *CoerceTo,
-                                          ASTContext &Context) const {
-  if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) {
-    // Integer and pointer types will end up in a general purpose
-    // register.
-    if (Ty->isIntegralType() || Ty->hasPointerRepresentation())
-      return (Ty->isPromotableIntegerType() ?
-              ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-  } else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) {
-    // FIXME: It would probably be better to make CGFunctionInfo only map using
-    // canonical types than to canonize here.
-    QualType CTy = Context.getCanonicalType(Ty);
-
-    // Float and double end up in a single SSE reg.
-    if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
-      return ABIArgInfo::getDirect();
-
-  }
-
-  return ABIArgInfo::getCoerce(CoerceTo);
-}
-
-ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
-                                            ASTContext &Context) const {
-  // If this is a scalar LLVM value then assume LLVM will pass it in the right
-  // place naturally.
-  if (!CodeGenFunction::hasAggregateLLVMType(Ty))
-    return (Ty->isPromotableIntegerType() ?
-            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-
-  bool ByVal = !isRecordWithNonTrivialDestructorOrCopyConstructor(Ty);
-
-  // FIXME: Set alignment correctly.
-  return ABIArgInfo::getIndirect(0, ByVal);
-}
-
-ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
-                                            ASTContext &Context,
-                                          llvm::LLVMContext &VMContext) const {
-  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
-  // classification algorithm.
-  X86_64ABIInfo::Class Lo, Hi;
-  classify(RetTy, Context, 0, Lo, Hi);
-
-  // Check some invariants.
-  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
-  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
-  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
-
-  const llvm::Type *ResType = 0;
-  switch (Lo) {
-  case NoClass:
-    return ABIArgInfo::getIgnore();
-
-  case SSEUp:
-  case X87Up:
-    assert(0 && "Invalid classification for lo word.");
-
-    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
-    // hidden argument.
-  case Memory:
-    return getIndirectResult(RetTy, Context);
-
-    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
-    // available register of the sequence %rax, %rdx is used.
-  case Integer:
-    ResType = llvm::Type::getInt64Ty(VMContext); break;
-
-    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
-    // available SSE register of the sequence %xmm0, %xmm1 is used.
-  case SSE:
-    ResType = llvm::Type::getDoubleTy(VMContext); break;
-
-    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
-    // returned on the X87 stack in %st0 as 80-bit x87 number.
-  case X87:
-    ResType = llvm::Type::getX86_FP80Ty(VMContext); break;
-
-    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
-    // part of the value is returned in %st0 and the imaginary part in
-    // %st1.
-  case ComplexX87:
-    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
-    ResType = llvm::StructType::get(VMContext, llvm::Type::getX86_FP80Ty(VMContext),
-                                    llvm::Type::getX86_FP80Ty(VMContext),
-                                    NULL);
-    break;
-  }
-
-  switch (Hi) {
-    // Memory was handled previously and X87 should
-    // never occur as a hi class.
-  case Memory:
-  case X87:
-    assert(0 && "Invalid classification for hi word.");
-
-  case ComplexX87: // Previously handled.
-  case NoClass: break;
-
-  case Integer:
-    ResType = llvm::StructType::get(VMContext, ResType,
-                                    llvm::Type::getInt64Ty(VMContext), NULL);
-    break;
-  case SSE:
-    ResType = llvm::StructType::get(VMContext, ResType,
-                                    llvm::Type::getDoubleTy(VMContext), NULL);
-    break;
-
-    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
-    // is passed in the upper half of the last used SSE register.
-    //
-    // SSEUP should always be preceeded by SSE, just widen.
-  case SSEUp:
-    assert(Lo == SSE && "Unexpected SSEUp classification.");
-    ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
-    break;
-
-    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
-    // returned together with the previous X87 value in %st0.
-  case X87Up:
-    // If X87Up is preceeded by X87, we don't need to do
-    // anything. However, in some cases with unions it may not be
-    // preceeded by X87. In such situations we follow gcc and pass the
-    // extra bits in an SSE reg.
-    if (Lo != X87)
-      ResType = llvm::StructType::get(VMContext, ResType,
-                                      llvm::Type::getDoubleTy(VMContext), NULL);
-    break;
-  }
-
-  return getCoerceResult(RetTy, ResType, Context);
-}
-
-ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
-                                               llvm::LLVMContext &VMContext,
-                                               unsigned &neededInt,
-                                               unsigned &neededSSE) const {
-  X86_64ABIInfo::Class Lo, Hi;
-  classify(Ty, Context, 0, Lo, Hi);
-
-  // Check some invariants.
-  // FIXME: Enforce these by construction.
-  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
-  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
-  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
-
-  neededInt = 0;
-  neededSSE = 0;
-  const llvm::Type *ResType = 0;
-  switch (Lo) {
-  case NoClass:
-    return ABIArgInfo::getIgnore();
-
-    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
-    // on the stack.
-  case Memory:
-
-    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
-    // COMPLEX_X87, it is passed in memory.
-  case X87:
-  case ComplexX87:
-    return getIndirectResult(Ty, Context);
-
-  case SSEUp:
-  case X87Up:
-    assert(0 && "Invalid classification for lo word.");
-
-    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
-    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
-    // and %r9 is used.
-  case Integer:
-    ++neededInt;
-    ResType = llvm::Type::getInt64Ty(VMContext);
-    break;
-
-    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
-    // available SSE register is used, the registers are taken in the
-    // order from %xmm0 to %xmm7.
-  case SSE:
-    ++neededSSE;
-    ResType = llvm::Type::getDoubleTy(VMContext);
-    break;
-  }
-
-  switch (Hi) {
-    // Memory was handled previously, ComplexX87 and X87 should
-    // never occur as hi classes, and X87Up must be preceed by X87,
-    // which is passed in memory.
-  case Memory:
-  case X87:
-  case ComplexX87:
-    assert(0 && "Invalid classification for hi word.");
-    break;
-
-  case NoClass: break;
-  case Integer:
-    ResType = llvm::StructType::get(VMContext, ResType,
-                                    llvm::Type::getInt64Ty(VMContext), NULL);
-    ++neededInt;
-    break;
-
-    // X87Up generally doesn't occur here (long double is passed in
-    // memory), except in situations involving unions.
-  case X87Up:
-  case SSE:
-    ResType = llvm::StructType::get(VMContext, ResType,
-                                    llvm::Type::getDoubleTy(VMContext), NULL);
-    ++neededSSE;
-    break;
-
-    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
-    // eightbyte is passed in the upper half of the last used SSE
-    // register.
-  case SSEUp:
-    assert(Lo == SSE && "Unexpected SSEUp classification.");
-    ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
-    break;
-  }
-
-  return getCoerceResult(Ty, ResType, Context);
-}
-
-void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
-                                llvm::LLVMContext &VMContext) const {
-  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
-                                          Context, VMContext);
-
-  // Keep track of the number of assigned registers.
-  unsigned freeIntRegs = 6, freeSSERegs = 8;
-
-  // If the return value is indirect, then the hidden argument is consuming one
-  // integer register.
-  if (FI.getReturnInfo().isIndirect())
-    --freeIntRegs;
-
-  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
-  // get assigned (in left-to-right order) for passing as follows...
-  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
-       it != ie; ++it) {
-    unsigned neededInt, neededSSE;
-    it->info = classifyArgumentType(it->type, Context, VMContext,
-                                    neededInt, neededSSE);
-
-    // AMD64-ABI 3.2.3p3: If there are no registers available for any
-    // eightbyte of an argument, the whole argument is passed on the
-    // stack. If registers have already been assigned for some
-    // eightbytes of such an argument, the assignments get reverted.
-    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
-      freeIntRegs -= neededInt;
-      freeSSERegs -= neededSSE;
-    } else {
-      it->info = getIndirectResult(it->type, Context);
-    }
-  }
-}
-
-static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
-                                        QualType Ty,
-                                        CodeGenFunction &CGF) {
-  llvm::Value *overflow_arg_area_p =
-    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
-  llvm::Value *overflow_arg_area =
-    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
-
-  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
-  // byte boundary if alignment needed by type exceeds 8 byte boundary.
-  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
-  if (Align > 8) {
-    // Note that we follow the ABI & gcc here, even though the type
-    // could in theory have an alignment greater than 16. This case
-    // shouldn't ever matter in practice.
-
-    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
-    llvm::Value *Offset =
-      llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 15);
-    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
-    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
-                                 llvm::Type::getInt64Ty(CGF.getLLVMContext()));
-    llvm::Value *Mask = llvm::ConstantInt::get(
-        llvm::Type::getInt64Ty(CGF.getLLVMContext()), ~15LL);
-    overflow_arg_area =
-      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
-                                 overflow_arg_area->getType(),
-                                 "overflow_arg_area.align");
-  }
-
-  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
-  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
-  llvm::Value *Res =
-    CGF.Builder.CreateBitCast(overflow_arg_area,
-                              llvm::PointerType::getUnqual(LTy));
-
-  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
-  // l->overflow_arg_area + sizeof(type).
-  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
-  // an 8 byte boundary.
-
-  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
-  llvm::Value *Offset =
-      llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
-                                               (SizeInBytes + 7)  & ~7);
-  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
-                                            "overflow_arg_area.next");
-  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
-
-  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
-  return Res;
-}
-
-llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                      CodeGenFunction &CGF) const {
-  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
-  const llvm::Type *i32Ty = llvm::Type::getInt32Ty(VMContext);
-  const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
-
-  // Assume that va_list type is correct; should be pointer to LLVM type:
-  // struct {
-  //   i32 gp_offset;
-  //   i32 fp_offset;
-  //   i8* overflow_arg_area;
-  //   i8* reg_save_area;
-  // };
-  unsigned neededInt, neededSSE;
-  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
-                                       neededInt, neededSSE);
-
-  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
-  // in the registers. If not go to step 7.
-  if (!neededInt && !neededSSE)
-    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
-
-  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
-  // general purpose registers needed to pass type and num_fp to hold
-  // the number of floating point registers needed.
-
-  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
-  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
-  // l->fp_offset > 304 - num_fp * 16 go to step 7.
-  //
-  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
-  // register save space).
-
-  llvm::Value *InRegs = 0;
-  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
-  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
-  if (neededInt) {
-    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
-    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
-    InRegs =
-      CGF.Builder.CreateICmpULE(gp_offset,
-                                llvm::ConstantInt::get(i32Ty,
-                                                       48 - neededInt * 8),
-                                "fits_in_gp");
-  }
-
-  if (neededSSE) {
-    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
-    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
-    llvm::Value *FitsInFP =
-      CGF.Builder.CreateICmpULE(fp_offset,
-                                llvm::ConstantInt::get(i32Ty,
-                                                       176 - neededSSE * 16),
-                                "fits_in_fp");
-    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
-  }
-
-  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
-  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
-  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
-  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
-
-  // Emit code to load the value if it was passed in registers.
-
-  CGF.EmitBlock(InRegBlock);
-
-  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
-  // an offset of l->gp_offset and/or l->fp_offset. This may require
-  // copying to a temporary location in case the parameter is passed
-  // in different register classes or requires an alignment greater
-  // than 8 for general purpose registers and 16 for XMM registers.
-  //
-  // FIXME: This really results in shameful code when we end up needing to
-  // collect arguments from different places; often what should result in a
-  // simple assembling of a structure from scattered addresses has many more
-  // loads than necessary. Can we clean this up?
-  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
-  llvm::Value *RegAddr =
-    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
-                           "reg_save_area");
-  if (neededInt && neededSSE) {
-    // FIXME: Cleanup.
-    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
-    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
-    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
-    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
-    const llvm::Type *TyLo = ST->getElementType(0);
-    const llvm::Type *TyHi = ST->getElementType(1);
-    assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
-           "Unexpected ABI info for mixed regs");
-    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
-    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
-    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
-    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
-    llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
-    llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
-    llvm::Value *V =
-      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
-    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
-    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
-    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
-
-    RegAddr = CGF.Builder.CreateBitCast(Tmp,
-                                        llvm::PointerType::getUnqual(LTy));
-  } else if (neededInt) {
-    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
-    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
-                                        llvm::PointerType::getUnqual(LTy));
-  } else {
-    if (neededSSE == 1) {
-      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
-      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
-                                          llvm::PointerType::getUnqual(LTy));
-    } else {
-      assert(neededSSE == 2 && "Invalid number of needed registers!");
-      // SSE registers are spaced 16 bytes apart in the register save
-      // area, we need to collect the two eightbytes together.
-      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
-      llvm::Value *RegAddrHi =
-        CGF.Builder.CreateGEP(RegAddrLo,
-                            llvm::ConstantInt::get(i32Ty, 16));
-      const llvm::Type *DblPtrTy =
-        llvm::PointerType::getUnqual(DoubleTy);
-      const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
-                                                         DoubleTy, NULL);
-      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
-      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
-                                                           DblPtrTy));
-      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
-      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
-                                                           DblPtrTy));
-      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
-      RegAddr = CGF.Builder.CreateBitCast(Tmp,
-                                          llvm::PointerType::getUnqual(LTy));
-    }
-  }
-
-  // AMD64-ABI 3.5.7p5: Step 5. Set:
-  // l->gp_offset = l->gp_offset + num_gp * 8
-  // l->fp_offset = l->fp_offset + num_fp * 16.
-  if (neededInt) {
-    llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededInt * 8);
-    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
-                            gp_offset_p);
-  }
-  if (neededSSE) {
-    llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededSSE * 16);
-    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
-                            fp_offset_p);
-  }
-  CGF.EmitBranch(ContBlock);
-
-  // Emit code to load the value if it was passed in memory.
-
-  CGF.EmitBlock(InMemBlock);
-  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
-
-  // Return the appropriate result.
-
-  CGF.EmitBlock(ContBlock);
-  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
-                                                 "vaarg.addr");
-  ResAddr->reserveOperandSpace(2);
-  ResAddr->addIncoming(RegAddr, InRegBlock);
-  ResAddr->addIncoming(MemAddr, InMemBlock);
-
-  return ResAddr;
-}
-
-// PIC16 ABI Implementation
-
-namespace {
-
-class PIC16ABIInfo : public ABIInfo {
-  ABIArgInfo classifyReturnType(QualType RetTy,
-                                ASTContext &Context,
-                                llvm::LLVMContext &VMContext) const;
-
-  ABIArgInfo classifyArgumentType(QualType RetTy,
-                                  ASTContext &Context,
-                                  llvm::LLVMContext &VMContext) const;
-
-  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
-                           llvm::LLVMContext &VMContext) const {
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
-                                            VMContext);
-    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
-         it != ie; ++it)
-      it->info = classifyArgumentType(it->type, Context, VMContext);
-  }
-
-  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                 CodeGenFunction &CGF) const;
-};
-
-}
-
-ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
-                                            ASTContext &Context,
-                                          llvm::LLVMContext &VMContext) const {
-  if (RetTy->isVoidType()) {
-    return ABIArgInfo::getIgnore();
-  } else {
-    return ABIArgInfo::getDirect();
-  }
-}
-
-ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
-                                              ASTContext &Context,
-                                          llvm::LLVMContext &VMContext) const {
-  return ABIArgInfo::getDirect();
-}
-
-llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                       CodeGenFunction &CGF) const {
-  return 0;
-}
-
-// ARM ABI Implementation
-
-namespace {
-
-class ARMABIInfo : public ABIInfo {
-public:
-  enum ABIKind {
-    APCS = 0,
-    AAPCS = 1,
-    AAPCS_VFP
-  };
-
-private:
-  ABIKind Kind;
-
-public:
-  ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {}
-
-private:
-  ABIKind getABIKind() const { return Kind; }
-
-  ABIArgInfo classifyReturnType(QualType RetTy,
-                                ASTContext &Context,
-                                llvm::LLVMContext &VMCOntext) const;
-
-  ABIArgInfo classifyArgumentType(QualType RetTy,
-                                  ASTContext &Context,
-                                  llvm::LLVMContext &VMContext) const;
-
-  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
-                           llvm::LLVMContext &VMContext) const;
-
-  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                 CodeGenFunction &CGF) const;
-};
-
-}
-
-void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
-                             llvm::LLVMContext &VMContext) const {
-  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
-                                          VMContext);
-  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
-       it != ie; ++it) {
-    it->info = classifyArgumentType(it->type, Context, VMContext);
-  }
-
-  // ARM always overrides the calling convention.
-  switch (getABIKind()) {
-  case APCS:
-    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
-    break;
-
-  case AAPCS:
-    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
-    break;
-
-  case AAPCS_VFP:
-    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
-    break;
-  }
-}
-
-ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
-                                            ASTContext &Context,
-                                          llvm::LLVMContext &VMContext) const {
-  if (!CodeGenFunction::hasAggregateLLVMType(Ty))
-    return (Ty->isPromotableIntegerType() ?
-            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-
-  // Ignore empty records.
-  if (isEmptyRecord(Context, Ty, true))
-    return ABIArgInfo::getIgnore();
-
-  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
-  // backend doesn't support byval.
-  // FIXME: This doesn't handle alignment > 64 bits.
-  const llvm::Type* ElemTy;
-  unsigned SizeRegs;
-  if (Context.getTypeAlign(Ty) > 32) {
-    ElemTy = llvm::Type::getInt64Ty(VMContext);
-    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
-  } else {
-    ElemTy = llvm::Type::getInt32Ty(VMContext);
-    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
-  }
-  std::vector<const llvm::Type*> LLVMFields;
-  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
-  const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true);
-  return ABIArgInfo::getCoerce(STy);
-}
-
-static bool isIntegerLikeType(QualType Ty,
-                              ASTContext &Context,
-                              llvm::LLVMContext &VMContext) {
-  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
-  // is called integer-like if its size is less than or equal to one word, and
-  // the offset of each of its addressable sub-fields is zero.
-
-  uint64_t Size = Context.getTypeSize(Ty);
-
-  // Check that the type fits in a word.
-  if (Size > 32)
-    return false;
-
-  // FIXME: Handle vector types!
-  if (Ty->isVectorType())
-    return false;
-
-  // Float types are never treated as "integer like".
-  if (Ty->isRealFloatingType())
-    return false;
-
-  // If this is a builtin or pointer type then it is ok.
-  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
-    return true;
-
-  // Complex types "should" be ok by the definition above, but they are not.
-  if (Ty->isAnyComplexType())
-    return false;
-
-  // Single element and zero sized arrays should be allowed, by the definition
-  // above, but they are not.
-
-  // Otherwise, it must be a record type.
-  const RecordType *RT = Ty->getAs<RecordType>();
-  if (!RT) return false;
-
-  // Ignore records with flexible arrays.
-  const RecordDecl *RD = RT->getDecl();
-  if (RD->hasFlexibleArrayMember())
-    return false;
-
-  // Check that all sub-fields are at offset 0, and are themselves "integer
-  // like".
-  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
-
-  bool HadField = false;
-  unsigned idx = 0;
-  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
-       i != e; ++i, ++idx) {
-    const FieldDecl *FD = *i;
-
-    // Check if this field is at offset 0.
-    uint64_t Offset = Layout.getFieldOffset(idx);
-    if (Offset != 0) {
-      // Allow padding bit-fields, but only if they are all at the end of the
-      // structure (despite the wording above, this matches gcc).
-      if (FD->isBitField() && 
-          !FD->getBitWidth()->EvaluateAsInt(Context).getZExtValue()) {
-        for (; i != e; ++i)
-          if (!i->isBitField() ||
-              i->getBitWidth()->EvaluateAsInt(Context).getZExtValue())
-            return false;
-
-        // All remaining fields are padding, allow this.
-        return true;
-      }
-
-      return false;
-    }
-
-    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
-      return false;
-    
-    // Only allow at most one field in a structure. Again this doesn't match the
-    // wording above, but follows gcc.
-    if (!RD->isUnion()) {
-      if (HadField)
-        return false;
-
-      HadField = true;
-    }
-  }
-
-  return true;
-}
-
-ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
-                                          ASTContext &Context,
-                                          llvm::LLVMContext &VMContext) const {
-  if (RetTy->isVoidType())
-    return ABIArgInfo::getIgnore();
-
-  if (!CodeGenFunction::hasAggregateLLVMType(RetTy))
-    return (RetTy->isPromotableIntegerType() ?
-            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-
-  // Are we following APCS?
-  if (getABIKind() == APCS) {
-    if (isEmptyRecord(Context, RetTy, false))
-      return ABIArgInfo::getIgnore();
-
-    // Integer like structures are returned in r0.
-    if (isIntegerLikeType(RetTy, Context, VMContext)) {
-      // Return in the smallest viable integer type.
-      uint64_t Size = Context.getTypeSize(RetTy);
-      if (Size <= 8)
-        return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
-      if (Size <= 16)
-        return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
-      return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
-    }
-
-    // Otherwise return in memory.
-    return ABIArgInfo::getIndirect(0);
-  }
-
-  // Otherwise this is an AAPCS variant.
-
-  if (isEmptyRecord(Context, RetTy, true))
-    return ABIArgInfo::getIgnore();
-
-  // Aggregates <= 4 bytes are returned in r0; other aggregates
-  // are returned indirectly.
-  uint64_t Size = Context.getTypeSize(RetTy);
-  if (Size <= 32) {
-    // Return in the smallest viable integer type.
-    if (Size <= 8)
-      return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
-    if (Size <= 16)
-      return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
-    return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
-  }
-
-  return ABIArgInfo::getIndirect(0);
-}
-
-llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                      CodeGenFunction &CGF) const {
-  // FIXME: Need to handle alignment
-  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
-  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
-
-  CGBuilderTy &Builder = CGF.Builder;
-  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
-                                                       "ap");
-  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
-  llvm::Type *PTy =
-    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
-  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
-
-  uint64_t Offset =
-    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
-  llvm::Value *NextAddr =
-    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
-                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
-                      "ap.next");
-  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
-
-  return AddrTyped;
-}
-
-ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
-                                              ASTContext &Context,
-                                          llvm::LLVMContext &VMContext) const {
-  if (RetTy->isVoidType()) {
-    return ABIArgInfo::getIgnore();
-  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
-    return ABIArgInfo::getIndirect(0);
-  } else {
-    return (RetTy->isPromotableIntegerType() ?
-            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-  }
-}
-
-// SystemZ ABI Implementation
-
-namespace {
-
-class SystemZABIInfo : public ABIInfo {
-  bool isPromotableIntegerType(QualType Ty) const;
-
-  ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
-                                llvm::LLVMContext &VMContext) const;
-
-  ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
-                                  llvm::LLVMContext &VMContext) const;
-
-  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
-                          llvm::LLVMContext &VMContext) const {
-    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
-                                            Context, VMContext);
-    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
-         it != ie; ++it)
-      it->info = classifyArgumentType(it->type, Context, VMContext);
-  }
-
-  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                 CodeGenFunction &CGF) const;
-};
-
-}
-
-bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
-  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
-  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
-    switch (BT->getKind()) {
-    case BuiltinType::Bool:
-    case BuiltinType::Char_S:
-    case BuiltinType::Char_U:
-    case BuiltinType::SChar:
-    case BuiltinType::UChar:
-    case BuiltinType::Short:
-    case BuiltinType::UShort:
-    case BuiltinType::Int:
-    case BuiltinType::UInt:
-      return true;
-    default:
-      return false;
-    }
-  return false;
-}
-
-llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                       CodeGenFunction &CGF) const {
-  // FIXME: Implement
-  return 0;
-}
-
-
-ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
-                                              ASTContext &Context,
-                                           llvm::LLVMContext &VMContext) const {
-  if (RetTy->isVoidType()) {
-    return ABIArgInfo::getIgnore();
-  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
-    return ABIArgInfo::getIndirect(0);
-  } else {
-    return (isPromotableIntegerType(RetTy) ?
-            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-  }
-}
-
-ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
-                                                ASTContext &Context,
-                                           llvm::LLVMContext &VMContext) const {
-  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
-    return ABIArgInfo::getIndirect(0);
-  } else {
-    return (isPromotableIntegerType(Ty) ?
-            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-  }
-}
-
-ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
-                                                ASTContext &Context,
-                                          llvm::LLVMContext &VMContext) const {
-  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
-    return ABIArgInfo::getIndirect(0);
-  } else {
-    return (Ty->isPromotableIntegerType() ?
-            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
-  }
-}
-
-llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
-                                       CodeGenFunction &CGF) const {
-  return 0;
-}
-
-const ABIInfo &CodeGenTypes::getABIInfo() const {
-  if (TheABIInfo)
-    return *TheABIInfo;
-
-  // For now we just cache the ABIInfo in CodeGenTypes and don't free it.
-
-  const llvm::Triple &Triple(getContext().Target.getTriple());
-  switch (Triple.getArch()) {
-  default:
-    return *(TheABIInfo = new DefaultABIInfo);
-
-  case llvm::Triple::arm:
-  case llvm::Triple::thumb:
-    // FIXME: We want to know the float calling convention as well.
-    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
-      return *(TheABIInfo = new ARMABIInfo(ARMABIInfo::APCS));
-
-    return *(TheABIInfo = new ARMABIInfo(ARMABIInfo::AAPCS));
-
-  case llvm::Triple::pic16:
-    return *(TheABIInfo = new PIC16ABIInfo());
-
-  case llvm::Triple::systemz:
-    return *(TheABIInfo = new SystemZABIInfo());
-
-  case llvm::Triple::x86:
-    switch (Triple.getOS()) {
-    case llvm::Triple::Darwin:
-      return *(TheABIInfo = new X86_32ABIInfo(Context, true, true));
-    case llvm::Triple::Cygwin:
-    case llvm::Triple::MinGW32:
-    case llvm::Triple::MinGW64:
-    case llvm::Triple::AuroraUX:
-    case llvm::Triple::DragonFly:
-    case llvm::Triple::FreeBSD:
-    case llvm::Triple::OpenBSD:
-      return *(TheABIInfo = new X86_32ABIInfo(Context, false, true));
-
-    default:
-      return *(TheABIInfo = new X86_32ABIInfo(Context, false, false));
-    }
-
-  case llvm::Triple::x86_64:
-    return *(TheABIInfo = new X86_64ABIInfo());
-  }
-}

Copied: cfe/trunk/lib/CodeGen/TargetInfo.cpp (from r93114, cfe/trunk/lib/CodeGen/TargetABIInfo.cpp)
URL: http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.cpp?p2=cfe/trunk/lib/CodeGen/TargetInfo.cpp&p1=cfe/trunk/lib/CodeGen/TargetABIInfo.cpp&r1=93114&r2=93117&rev=93117&view=diff

==============================================================================
    (empty)





More information about the cfe-commits mailing list